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Abstract

We study in this paper the equilibrium states of a gas in a box
with specular reflexion conditions. We prove that the renormalized
solutions of the Boltzmann equation converge towards those states in
the large time asymptotics.
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1 Introduction

Rarefied gas dynamics is usually described by the Boltzmann equation:

∂tf + v · ∇xf = Q(f, f), (1)

where f(t, x, v) is the density of particles which at time t and point x move
with velocity v, and Q is a quadratic collision term described in [Ce], [Ch, Co]
or [Tr, Mu].

A large amount of information on the behavior of the gas is contained
in the simpler model of B.G.K.,

∂tf + v · ∇xf =Mf − f, (2)

whereMf is the Maxwellian having the same moments as f (Cf. [Bh, Gr, Kr]).
From the physical point of view, the density of particles is assumed to

converge to an equilibrium represented by a Maxwellian function of the
velocity v when the time t becomes large. This Maxwellian is assumed to
be global (independant of x) when x lies in a bounded domain with suitable
boundary conditions or in a periodic box. In that case, the walls are said
to “thermalize” the gas (Cf. [Ar 1]). The reader can find a survey on the
problems of convergence towards equilibrium in [De 1].

The goal of this work is to give some mathematical results on these
topics. Note that this problem has already been studied by L. Arkeryd in
the case of the full Boltzmann equation in a periodic box (Cf. [Ar 1]). Note
also that the more complicated case when electromagnetic self consistant
forces are taken into account is now treated in [De, Do].

We shall systematically use the results on existence of solutions to the
Boltzmann equation stated by R.J. Di Perna and P–L. Lions in [DP, L] and
their extension when f is assumed to satisfy various boundary conditions
obtained by K. Hamdache (Cf. [Ha]).

In section 2, we establish mathematically the convergence of f to a
Maxwellian satisfying the free transport equation when x varies in a bounded
domain.

A complete study of the Maxwellians satisfying this condition is given
in section 3.

Then, section 4 is devoted to using this description together with some
classical boundary conditions in order to establish the thermalizing effect of
the walls.

Finally, section 5 is devoted to the study of the strong convergence in
the case of the B.G.K. equation.
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2 Convergence to equilibrium

This section is devoted to the study of the long time behavior of the Boltz-
mann and B.G.K equations when x lies in a bounded domain. Note that
L. Arkeryd has already proved in [Ar 1] the following result, using non–
standard techniques:

If f(t, x, v) is a renormalized solution of the Boltzmann equation with x
varying in a periodic box, then for every sequences tn going to infinity, there
exist a subsequence tnk

and a global time–independant Maxwellian m such
that fnk

(t, x, v) = f(tnk
+ t, x, v) converges weakly in L1([0, T ]×IRN/ZZN ×

IRN ) to m for every T > 0.

Let Ω be a bounded regular and connected open set of IRN . We denote
by n(x) its outward normal at point x and consider the Boltzmann equation,

∂tf + v · ∇xf = Q(f, f), (3)

where Q is a quadratic collision kernel acting only on the variable v,

Q(f, f)(v) =

∫

v1∈IRN

∫

ω∈SN−1

{ f(v′)f(v′1)− f(v)f(v1)}B(v, v1, ω) dωdv1,

(4)
with

v′ = v + ((v1 − v) · ω)ω, (5)

v′1 = v1 − ((v1 − v) · ω)ω, (6)

and B(v, v1, ω) is a cross section. We make the

Assumption 1:

1. The cross section B depends only on |v − v1| and |(v − v1) · ω|,

2. The cross section B is strictly positive a.e.,

3. There exists C > 0 such that

B(v, v1, ω) ≤ C(1 + |v|+ |v1|). (7)

Note that assumption 1 is satisfied by the hard–spheres and hard po-
tentials models with the hypothesis of angular cut–off of Grad (Cf. [Ce],
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[Ch, Co], [Gr] or [Tr, Mu]). Note also that the third part of assumption 1
can probably be relaxed, since the existence of renormalized solutions is
proved under a somewhat weaker assumption (Cf. [DP, L]). However, we
will keep here this assumption for the sake of simplicity.

The time variable t is in [0,+∞[, the position x is in Ω and the velocity
v is in IRN .

We add to eq. (1) one of the two following linear boundary conditions:
For all x lying in ∂Ω and all v such that v · n(x) ≤ 0,

1. Reverse reflexion holds:

f(t, x, v) = f(t, x,−v). (8)

2. Specular reflexion holds:

f(t, x, v) = f(t, x, v − 2(v · n(x))n(x)). (9)

Finally, we make on the initial datum f0 the

Assumption 2:

1. The initial datum f0 is nonnegative,

2. The initial datum f0 satisfies the following natural bounds:
∫

Ω

∫

IRN
f0(x, v)( 1 + |v|2 + | log f0(x, v)| ) dvdx < +∞. (10)

According to [DP, L] and [Ha], under assumptions 1 and 2, equations
(1), (8) or (1), (9) admit a nonnegative renormalized solution f(t, x, v) ∈
C([0,+∞[;L1(Ω× IRN )), and the boundary condition holds for the trace of
f on [0,+∞[×∂Ω × IRN . The main result of this section is the following:

Theorem 1: Let f(t, x, v) be a renormalized solution of equations (1),
(8) or (1), (9) under assumptions 1 and 2. Then, for every sequences tn
going to infinity, there exist a subsequence tnk

and a local time–dependant
Maxwellian m(t, x, v) such that fnk

(t, x, v) = f(tnk
+t, x, v) converges weakly

in L1([0, T ] × Ω × IRN ) to m(t, x, v) for every T > 0. Moreover, this
Maxwellian satisfies the free transport equation,

∂tm+ v · ∇xm = 0, (11)
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and the boundary condition (8) or (9).

Proof of theorem 1: Note that the proof given by L. Arkeryd in [Ar 1]
holds in this case (the assumption of x being in a periodic box is not used
in this part of the proof). However, we give here a different proof, without
any use of non–standard analysis.

We shall consider the solution f of theorem 1. According to [DP, L],
[Ha] and using assumption 2, the conservations of mass and energy and
Boltzmann’s H–theorem ensure that

sup
t∈[0,+∞[

∫

x∈Ω

∫

v∈IRN
f(t, x, v) (1 + |v|2 + | log f(t, x, v)|) dvdx

+

∫ +∞

0

∫

x∈Ω

∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

{ f(t, x, v′)f(t, x, v′1)−f(t, x, v)f(t, x, v1) }

{ log (f(t, x, v′)f(t, x, v′1))− log (f(t, x, v)f(t, x, v1)) }
B(v, v1, ω) dωdv1dvdxdt < +∞. (12)

Therefore, fn(t, x, v) = f(tn + t, x, v) is weakly compact in L1([0, T ] × Ω ×
IRN ) for all sequences tn of nonnegative numbers and all T > 0.

Now consider a sequence of nonnegative numbers tn going to infinity.
The weak compactness of fn(t, x, v) ensures the existence of a subsequence
tnk

and a function m in L1([0, T ] × Ω × IRN ) such that the functions fnk

converge to m weakly in L1([0, T ]×Ω×IRN ) for all T > 0. In order to prove
that m is a Maxwellian, we use estimate (12) in the following way:

∫ tnk
+T

tnk

∫

x∈Ω

∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

{ f(t, x, v′)f(t, x, v′1)−f(t, x, v)f(t, x, v1) }

{ log (f(t, x, v′)f(t, x, v′1))− log (f(t, x, v)f(t, x, v1)) }
B(v, v1, ω) dωdv1dvdxdt →

k→+∞

0, (13)

and thus

∫ T

0

∫

x∈Ω

∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

{fnk
(t, x, v′)fnk

(t, x, v′1)

− fnk
(t, x, v)fnk

(t, x, v1)} { log (fnk
(t, x, v′)fnk

(t, x, v′1))

− log (fnk
(t, x, v)fnk

(t, x, v1)) }B(v, v1, ω) dωdv1dvdxdt →
k→+∞

0. (14)
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But according to the proof of [DP, L] and [Ha], for all smooth nonnegative
functions φ,ψ with compact support,

∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

fnk
(t, x, v′) fnk

(t, x, v′)φ(v)ψ(v1)B(v, v1, ω) dωdv1dv

tends to
∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

m(t, x, v′)m(t, x, v′1)φ(v)ψ(v1)B(v, v1, ω) dωdv1dv

(15)
in measure on [0, T ]× Ω , and

∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

fnk
(t, x, v) fnk

(t, x, v1)φ(v)ψ(v1)B(v, v1, ω) dωdv1dv

tends to
∫

v∈IRN

∫

v1∈IRN

∫

ω∈SN−1

m(t, x, v)m(t, x, v1)φ(v)ψ(v1)B(v, v1, ω) dωdv1dv

(16)
in the same sense.

It is possible to extract a subsequence fnkp
such that the convergence

holds a.e in [0, T ] × Ω in (14), (15) and (16) for a dense and enumerable
set in C(IRN ) of nonnegative smooth functions φ and ψ. But P (x, y) =
(x − y)(log x − log y) is a nonnegative convex function from IR+ × IR+ to
IR+. Therefore, using the convexity of P , we get for a.e. (t, x, v, v1, ω),

P (m(t, x, v′)m(t, x, v′1), m(t, x, v)m(t, x, v1) )φ(v)ψ(v1)B(v, v1, ω) = 0.
(17)

Then, the nonnegativity of P and the strict positivity of B ensure that

m(t, x, v′) m(t, x, v′1) = m(t, x, v) m(t, x, v1) (18)

for a.e (t, x, v, v1, ω). According to [Tr, Mu], the function m is a Maxwellian.
Moreover, following the proof of [DP, L] and [Ha] of weak stability, m is a
renormalized solution of (1) and satisfies the boundary conditions (8) or (9).
Therefore, Q(m,m) = 0, and m satisfies the free transport equation

∂tm+ v · ∇xm = 0. (19)
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In a second step, we concentrate on the B.G.K. equation (2). B. Perthame
proved in [Pe] that this equation admits a nonnegative solution when x varies
in the whole space IRN and under natural assumptions on the initial datum
f0. This result was extended by E. Ringeissen in [Ri] in the case of a bounded
domain with boundary conditions (8) or (9). More precisely, he proved that
if the initial datum f0 satisfies assumption 2, there exists a solution f to
(2), (8) or (2), (9) in C([0,+∞[;L1(Ω× IRN )), and the boundary condition
holds for the trace of f on ∂Ω× IRN . We prove the following result:

Theorem 2: Let f be a solution of eq. (2) with boundary conditions (8)
or (9) and initial datum f0 satisfying assumption 2. We shall also assume
that f satisfies the following property:

sup
t∈[0,+∞[

∫

x∈Ω

∫

v∈IRN
f(t, x, v) |v|3 dvdx < +∞. (20)

Then, for every sequence tn going to infinity, there exists a subsequence tnk

and a local time–dependant Maxwellian m(t, x, v) such that fnk
(t, x, v) =

f(t + tnk
, x, v) converges weakly in L1([0, T ] × Ω × IRN ) to m(t, x, v) for

every T > 0. Moreover, m satisfies the free transport equation (11) and the
boundary conditions (8) or (9).

Proof of theorem 2: According to [DP, L] and [Bh, Gr, Kr], and using
(10) and (20), the conservation of mass and Boltzmann’s H–theorem ensure
that

sup
t∈[0,+∞[

∫

x∈Ω

∫

v∈IRN
f(t, x, v) (1 + |v|3 + | log f(t, x, v)|) dvdx

+

∫ +∞

0

∫

x∈Ω

∫

v∈IRN
{Mf (t, x, v) − f(t, x, v) }

{ logMf (t, x, v) − log f(t, x, v) } dvdxdt < +∞. (21)

Therefore, fn(t, x, v) = f(tn + t, x, v) is weakly compact in L1([0, T ] × Ω ×
IRN ) for all sequences tn and all T > 0.

Now consider a sequence of nonnegative numbers tn going to infinity, and
a given T > 0. The weak compactness of fn(t, x, v) ensures the existence
of a subsequence tnk

and a function m in L1([0, T ] × Ω × IRN) such that
the functions fnk

converge to m weakly in L1([0, T ]×Ω× IRN ). In order to
prove that m is a Maxwellian, we use estimate (21) in the following way:

∫ tnk
+T

tnk

∫

x∈Ω

∫

v∈IRN
{Mf (t, x, v) − f(t, x, v) }
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{ logMf (t, x, v) − log f(t, x, v) } dvdxdt −→
k→+∞

0, (22)

and therefore,
∫ T

0

∫

x∈Ω

∫

v∈IRN
{Mfnk

(t, x, v) − fnk
(t, x, v) }

{ logMfnk
(t, x, v) − log fnk

(t, x, v) } dvdxdt −→
k→+∞

0. (23)

Following the proof of [Ri], we prove that Mfnk
converges weakly (and even

strongly) in L1 to Mm because estimate (20) implies that

∫ T

0

∫

x∈Ω

∫

v∈IRN
fn(t, x, v)|v|3 dvdxdt (24)

is uniformly bounded.
Now estimate (23) and the convexity of P ensure that for all smooth and

nonnegative functions φ with compact support,

P (Mm(t, x, v),m(t, x, v)) φ(t, x, v) = 0. (25)

Then, the nonnegativity of P implies that for a.e. (t, x, v) ∈ [0, T ]×Ω×IRN ,

Mm(t, x, v) = m(t, x, v). (26)

Finally, m is a Maxwellian function of v. Following the proof of existence
of [Ri], we can see that m satisfies eq. (11) and the boundary conditions (8)
or (9).

3 Maxwellian solutions of the free transport equa-

tion

Theorem 1 ensures that when the time becomes large, the renormalized
solutions of the Boltzmann equation (in a bounded domain with boundary
conditions (8) or (9)) behave as Maxwellians satisfying the free transport
equation (11).

Therefore, this section will be devoted to the complete description of
such Maxwellians. We begin by the

Lemma 1: Let m(t, x, v) ∈ L1([0, T ] × Ω × IRN ) be a nonnegative
Maxwellian function of v satisfying the free transport equation (11). More-
over, we suppose that for all t ∈ [0, T ], m(t, · , · ) is not identically equal to
0. Then, m is strictly positive.
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Proof of lemma 1: In this lemma and the following, we do not take
into account the negligeable sets on which the equations do not hold. The
interested reader can find a detailed proof of lemma 1 in [De 2].

Since m ∈ L1 is a nonnegative Maxwellian function of v, we can write

m(t, x, v) =
ρ(t, x)

(2πΘ(t, x))N/2
exp

{

− |v − u(t, x)|2
2Θ(t, x)

}

, (27)

where 0 < Θ < +∞ and ρ ≥ 0.
We begin by the case when Ω is convex. We consider t ∈ [0, T ]. There

exists x0 ∈ Ω and v0 ∈ IRN such that m(t, x0, v0) > 0. Therefore, ρ(t, x0) >
0, and according to eq. (11), for any s, v such that t+s ∈ [0, T ] and x0+vs ∈
Ω, ρ(t+ s, x0 + vs) > 0. Finally, f is strictly positive on [0, T ]× Ω× IRN .

If Ω is not convex, note however that between two points x, y ∈ Ω, one
can find x1, ..., xK ∈ Ω such that [x, x1], [x1, x2], ..., [xK , y] ⊂ Ω. Then, by
induction, one can find ti such that ρ(ti, xi) > 0. According to the previous
part of the proof, ρ is strictly positive in a convex neighbourhood of y for
any time t ∈ [0, T ]. Therefore, lemma 1 is proved.

According to lemma 1, we can consider the logarithm of any m satisfyng
its hypothesis. Since m is a Maxwellian, one can find measurable a(t, x),
b(t, x) and c(t, x) such that

logm(t, x, v) = a(t, x) + b(t, x) · v + c(t, x)|v|2. (28)

Moreover, logm still satisfies eq. (11) in the following sense,
For any t ∈ [0, T ], x ∈ Ω, v ∈ IR3, and s such that s + t ∈ [0, T ] and

[x, x+ vs] ⊂ Ω,

logm(t, x, v) = logm(t+ s, x+ vs, v). (29)

Then, we prove the following lemma,

Lemma 2: Let h be a measurable function such that one can find
a(t, x), b(t, x) and c(t, x) satisfying

h(t, x, v) = a(t, x) + b(t, x) · v + c(t, x)|v|2, (30)

and such that for any t ∈ [0, T ], x ∈ Ω, v ∈ IR3, and s satisfying s+ t ∈ [0, T ]
and [x, x+ vs] ⊂ Ω,

h(t, x, v) = h(t+ s, x+ vs, v). (31)

9



Then, a, b, c and h are smooth.

Proof of lemma 2: If (t, x) ∈ [0, T ]×Ω, we fix t1, ..., tN+2 ∈ [0, T ] and
x1, ..., xN+2 ∈ Ω such that for all i, t 6= ti, and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
x1
1
−x1

t1−t
x2
1
−x2

t1−t ... |x1−x
t1−t |2

1
x1
2
−x1

t2−t
x2
2
−x2

t2−t ... |x2−x
t2−t |2

. . . .

. . . .

1
x1
N+2

−x1

tN+2−t

x2
N+2

−x2

tN+2−t ... |xN+2−x
tN+2−t |2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0. (32)

Then, this determinant is also different from 0 in a small convex neighbour-
hood V of (t, x).

Since for all i,

h(t, x,
xi − x

ti − t
) = h(ti, xi,

xi − x

ti − t
), (33)

we get for all i,

a(t, x) + b(t, x) · xi − x

ti − t
+ c(t, x) |xi − x

ti − t
|2

= a(ti, xi) + b(ti, xi) ·
xi − x

ti − t
+ c(ti, xi) |

xi − x

ti − t
|2. (34)

Solving this linear system, we get the boundedness of a, b and c on V. Using
then the compactness of [0, T ]×Ω, we can see that h ∈ L∞([0, T ]×Ω×IRN ).

Therefore, h satisfies eq. (11) in the sense of distributions, and we can
apply the averaging lemmas of [Go, L, Pe, Se]. But a, b and c can be
obtained as moments of h, therefore a, b, c and h are smooth.

The main result of this section is the following:

Theorem 3: Let m(t, x, v) ∈ L1([0, T ] × Ω × IRN ) be a nonnegative
Maxwellian function of v satisfying the free transport equation (11). More-
over, we suppose that for all t ∈ [0, T ], m(t, · , · ) is not identically equal to
0. Then, m can be written under the form

m(t, x, v) = exp {D0 + C1 · {x− vt}+ c3|x− vt|2

+C0 · v + c2{x− vt} · v + c1|v|2 + Λ0(x) · v }, (35)
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where D0, c1, c2, c3 ∈ IR, C0, C1 ∈ IRN , and Λ0 is a skew–symmetric tensor.

Remark: Note that m is clearly a Maxwellian function of v and that
it depends only upon x − vt and v. Therefore, these functions give an
exhaustive representation of the (non identically equal to 0) Maxwellian
solutions of the Boltzmann, B.G.K. and free transport equations.

Proof of theorem 3: We note first that because of lemmas 1 and 2,
logm exists and is smooth.

Therefore, we can substitute in eq. (11) identity (28) and write down the
result under the form of a polynomial of order 3 in the variable v that can
be identified to 0. We get

∂ta = 0, (36)

∂tb+∇xa = 0, (37)

∂tc+∇xb : k ⊗ k = 0, (38)

∇xc = 0, (39)

for all vectors k such that |k| = 1.
eq. (39) ensures that c depends only on t, therefore we can find c0 such

that
c(t, x) = c0(t). (40)

To deal with equation (38), we need the following result:

Lemma 3: Let φ be a map from Ω to IRN such that ∇φ is always
skew–symmetric. Then, φ is an affine map and its linear associated map is
skew–symmetric.

Proof of lemma 3: For all i, j in [1, N ], we can write

∂φi
∂xj

= −∂φj
∂xi

. (41)

Now let i, j, k be three distinct numbers in [1, N ] , we compute

∂2φk
∂xi∂xj

= − ∂2φj
∂xi∂xk

=
∂2φi
∂xj∂xk

= − ∂2φk
∂xj∂xi

, (42)
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and therefore
∂2φk
∂xi∂xj

= 0. (43)

For all distinct numbers i, j, eq. (43) provides the existence of functions φji
depending only on xj, such that

φi(x1, ..., xn) = φ1i (x1) + ...+ φni (xn), (44)

and φi does not depend on xi because of eq. (41). But eq. (41) applied to
identity (44) ensures the existence of constants λji and Cj

i such that

φji (xj) = λjixj + Cj
i , (45)

and
λji = −λij , (46)

which ends the proof of the lemma.

Coming back to eq. (38), we apply lemma 3 to the function W defined
by:

W (t, x) = b(t, x)− c′0(t)x . (47)

We obtain a linear, skew–symmetric, time–dependant map Λ(t), from IRN

to IRN , and a time–dependant vector C(t) such that

W (t, x) = Λ(t)(x) + C(t). (48)

Finally,
b(t, x) = Λ(t)(x) − c′0(t)x+ C(t). (49)

Then, eq. (37) becomes

Λ′(t)(x)− c′′0(t)x+ C ′(t) +∇xa = 0. (50)

According to eq. (50), the quantity

Φ(t, x) = Λ′(t)(x)− c′′0(t)x+ C ′(t) (51)

must be a gradient, and therefore

Λ′(t) = 0. (52)
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Then, we can find a constant skew–symmetric tensor Λ0 such that

Λ(t) = Λ0. (53)

Solving eq. (50), we get a function D(t) such that

a(t, x) = c′′0(t)
x2

2
− C ′(t) · x+D(t). (54)

According to eq. (36), we have moreover

c′′′0 (t) = 0, C ′′(t) = 0, D′(t) = 0. (55)

Finally, we can find D0, c1, c2, c3 ∈ IR and C0, C1 ∈ IRN such that

c0(t) = c1 − c2 t+ c3 t
2, (56)

C(t) = C0 − C1 t, (57)

and
D(t) = D0. (58)

Then, we get
a(t, x) = c3 |x|2 +C1 x+D0, (59)

b(t, x) = Λ0(x) + (c2 − 2 c3 t)x+ (C0 − C1 t), (60)

and
c(t, x) = c1 − c2 t+ c3 t

2. (61)

Therefore, theorem 3 is proved.

4 The effect of the boundary conditions on the

equilibrium

In section 2, we proved the convergence of the solutions of the Boltzmann
equation to Maxwellians satisfying the free transport equation. In section 3,
we described explicitly the form of these functions. The goal of this section
is to use this description and the boundary conditions in order to determine
the possible states of equilibrium.
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4.1 States of equilibrium in a bounded domain with reverse

reflexion at the wall

This subsection is devoted to the description of the states of equilibrium in
a bounded domain Ω when the function f satisfies the boundary condition
(8), which models the reverse reflexion of all particles at the wall.

Its main result is the following:

Theorem 4 let Ω be a bounded and regular (C2) open set of IRN , and
let f be a renormalized solution of the Boltzmann equation (1) with boundary
condition (8) under assumptions 1 and 2 (or of the B.G.K. equation (2) with
the same boundary condition and under assumption 2 and (20)). Then, for
every sequences tn going to infinity, there exist a subsequence tnk

and a
global, time–independant Maxwellian m(v) with zero bulk velocity:

m(t, x, v) = r0 exp−ν v2 (62)

with r0 ≥ 0 and ν > 0, such that fnk
(t, x, v) = f(tnk

+ t, x, v) converges
weakly in L1([0, T ] ×Ω× IRN ) to m(v) for any T > 0.

Remark: This result proves the thermalizing effect of the wall with such
a boundary condition. The constants r0 and ν could be determined by
the initial datum f0 if both mass and energy were conserved for the renor-
malized solution of the Boltzmann equation (only the mass is known to be
conserved). Note however that this is the case for the B.G.K. equation under
assumption (20).

Proof of theorem 4: Because of the conservation of mass, Theorem 1
and 3 (or 2 and 3) imply the convergence of fnk

to a Maxwellian m of the
form (35) satisfying the boundary condition (8) if f0 6= 0 (The trivial case
f = 0 must be treated separately).

For a Maxwellian of this type, the boundary condition exactly means
that for all v in IRN , t in [0, T ], x in ∂Ω,

−C1 · v t− 2 c3 (x · v) t+ C0 v + c2 v · x+ Λ0(x) · v = 0. (63)

Therefore, for all x in ∂Ω,

C1 + 2 c3 x = 0, (64)

C0 + c2 x+ Λ0(x) = 0. (65)
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But ∂Ω is not a single point, therefore C1 = 0, c3 = 0. Moreover, ∂Ω is not
included in an affine hyperplane, therefore C0 = 0, c2 = 0,Λ0 = 0. Finally,

m(t, x, v) = r0 exp−ν v2, (66)

where ν = −c1 > 0 since m ∈ L1 and r0 = logD0.

4.2 States of equilibrium in a bounded domain with specular

reflexion at the wall

This subsection is devoted to the description of the states of equilibrium in a
bounded domain Ω when the function satisfies the boundary condition (9),
which models the specular reflexion of all particles at the wall.

Its main result is the following:

Theorem 5: Let Ω be a bounded, regular, and simply connected open set
of IR2 or IR3 , and let f be a renormalized solution of the Boltzmann equation
(1) with boundary condition (9) under assumptions 1 and 2 (or of the B.G.K
equation (2) with the same boundary condition and under assumptions 2
and (20)). Then, for every sequences tn going to infinity, there exist a
subsequence tnk

and a local, time–independant Maxwellian m(x, v) such that
fnk

(t, x, v) = f(tnk
+ t, x, v) converges weakly in L1([0, T ] × Ω × IRN ) to

m(x, v) for any T > 0.

1. If N = 2 and Ω is not a disc, or if N = 3 and ∂Ω is not a surface of
revolution, there exist r0 ≥ 0 and ν > 0 such that

m(x, v) = r0 exp−ν v2. (67)

2. If N = 2 and Ω is a disc, or if N = 3 and Ω is a ball, which may
be assumed to be centered at 0 without loss of generality, there exist
r0 ≥ 0, ν > 0, and a constant skew–symmetric tensor Λ0 such that

m(x, v) = r0 exp{−ν v2 + Λ0(x) · v}. (68)

3. Finally, if N = 3, and ∂Ω is a surface of revolution which is not
a sphere, and which axis of revolution may be assumed to contain 0
without loss of generality, there exist r0 ≥ 0, ν > 0, and a constant
number λ0 such that

m(x, v) = r0 exp{−ν v2 + (λ0 z × x) · v}, (69)

where z is a unit vector parallel to the axis of revolution of Ω.
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Moreover, each Maxwellian given in the theorem may be obtained as a limit
when the time t goes to infinity of some renormalized solution of the Boltz-
mann equation.

Remark: The non–global Maxwellians appearing in eq. (68) and eq. (69)
reflect the fact that when the domain Ω is very symmetric, some extra global
conservations can appear for the Boltzmann equation. Namely, in the case
of the ball, the global kinetic momentum is conserved, and when ∂Ω is a
surface of revolution, one component of this global kinetic momentum is
conserved.

Proof of theorem 5: According to theorem 1 and 3 (or 2 and 3), m
is a Maxwellian of the type (35) satisfying the boundary condition (9) as
soon as f0 6= 0 (once again, the trivial case when f = 0 must be treated
independently). But for a Maxwellian of the type (35), eq. (9) ensures that
for all t in [0, T ], x in ∂Ω,

−(C1 · n(x)) t− 2 c3 t (x · n(x)) + (C0 · n(x))

+ c2 (x · n(x)) + (Λ0(x) · n(x)) = 0. (70)

Then, eq. (70) ensures that for all x in ∂Ω,

(C1 + 2 c3 x) · n(x) = 0, (71)

(C0 + c2 x+ Λ0(x)) · n(x) = 0. (72)

Now consider the curve defined by

dx

ds
(s) = 2 c3 x(s) + C1, (73)

x(0) = x0 ∈ ∂Ω. (74)

According to eq. (71), for all s ∈ IR, x(s) ∈ ∂Ω. But the solutions of eq. (73)
are given by

x(s) = (x0 +
C1

2c3
) exp{2 c3 s} −

C1

2c3
, (75)

if c3 6= 0. Therefore ∂Ω is not bounded, which is impossible. Now if c3 = 0,
it also implies that C1 = 0, or ∂Ω would be included in an affine hyperplane.

Now consider the curve defined by

dx

ds
(s) = Λ0(x(s)) + c2 x(s) + C0, (76)
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x(0) = x0 ∈ ∂Ω. (77)

According to eq. (72), for all s ∈ IR, x(s) ∈ ∂Ω. But ∂Ω is bounded, and
therefore c2 = 0.

In a first step, we concentrate on the case N = 2.
If Λ0 6= 0, there exists y in IR2 such that Λ0(y) = C0. According to

eq. (76),
x(s) = exp{sΛ0}(x0 + y)− y (78)

is in ∂Ω for all s in IR, and thus, ∂Ω is a union of circles of center −y.
If Ω is not a disc, its boundary is not a union of circles because Ω is

simply connected, therefore Λ0 = 0, and C0 = 0 because of eq. (72). In this
case, formula (67) holds.

If Ω is a disc, we can assume that it is centered at 0, without loss of
generality. Then eq. (72) becomes

C0 · x = 0 (79)

for all x in ∂Ω. It means that C0 = 0, and formula (68) holds.

In a second step, we assume that N = 3.
If Λ0 6= 0, then there exists z in IR3 such that Λ0(x) = z × x. Now C0

can be written under the form

C0 = δ z + w (80)

where δ is a real number and w is orthogonal to z. Moreover, there exists y
in IR3 such that Λ0(y) = w. According to eq. (72) and eq. (76),

x(s) = exp{sΛ0}(x0 + y)− y + δ s z (81)

is in ∂Ω for all s in IR. Therefore δ = 0 because ∂Ω is bounded. Moreover,
this formula implies (if Λ0 6= 0) that ∂Ω is a surface of revolution of axis ∆
parallel to z and containing −y.

If ∂Ω is not a surface of revolution, we obtain that Λ0 = 0 and U = 0
because of eq. (72), and formula (67) holds.

If ∂Ω is a surface of revolution which is not a sphere, it has a unique axis
of revolution (parallel to z) which may be assumed to contain 0 without loss
of generality. Then eq. (72) implies that Λ0 is of the form:

Λ0(x) = λ0 z × x, (82)

where λ0 is a real constant and C0 = 0. Therefore, formula (69) holds.
Finally, if Ω is a ball which may be assumed to be centered at 0, eq. (72)

implies that C0 = 0, and formula (68) holds.
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5 On strong convergence

In this section, we prove that the convergence stated in Theorem 2 for a
solution of the B.G.K model is in fact strong in L1.

Our goal is to prove the following proposition:

Theorem 6: Let f(t, x, v) be a solution of the B.G.K equation (2) with
boundary condition (8) or (9) under assumptions 2 and (20). Then, for
every sequences tn going to infinity, there exist a subsequence tnk

and a local
time–dependant Maxwellian m(t, x, v) satisfying the conclusions of theorem
4 or 5 such that fnk

(t, x, v) = f(tnk
+t, x, v) converges strongly in L1([0, T ]×

Ω× IRN ) to m(t, x, v) for any T > 0.

Proof of theorem 6: According to theorems 2, 4 and 5, the only thing
to prove is that the convergence holds strongly in L1. We already know that
Mfnk

converges strongly in L1 to m (Cf. the proof of theorem 2). Moreover,
using estimate (23), we can prove that

∫ T

0

∫

x∈Ω

∫

IRN
|
√

Mfnk
−

√

fnk
|2dtdxdv −→

k→+∞

0. (83)

Therefore, ||
√

Mfnk
−

√

fnk
||L2 tends to 0 when k → +∞. Now the fact

that ||Mfnk
−m||L1 tends to 0 together with the inequality

|
√
x−√

y|2 ≤ |x− y|, (84)

ensures that ||
√

Mfnk
− √

m||L2 tends to 0. Finally we obtain the strong

convergence in L2 of
√

fnk
to

√
m. Extracting another subsequence nkp , we

prove the convergence a.e. of fnkp
to m.

We conclude the proof by using the result of weak L1 convergence stated
in theorem 2.

Remark: It is now proved that the strong convergence to equilibrium also
holds in the case of renormalized solutions of the Boltzmann equation for
a large class of cross sections B. This is a consequence of the properties of
compactness of the positive termQ+ of Boltzmann’s collision kernel (Cf. [L]).
It can also be proved using non–standard techniques (Cf. [Ar 2])

Aknowledgment: I am indebted to Professor L. Arkeryd and Professor
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this article.
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