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2 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDthe variables t and x (typially, for example, the density, ow veloity and energy of eahphase [RavSa℄).We are here interested in a mixed uid-kineti modeling (a.k.a. partile-gas or Eulerian-Lagrangian), where the partiles (or droplets) are desribed by a probability density funtion(PDF) solution of a kineti equation in a phase spae (inluding at least the variables t,x and the veloities up of the partiles), whereas the ontinuous uid satis�es traditionaluid equations. This type of model was introdued by Williams [Wi℄ (see also [Ce℄). It ispartiularly suited to polydispersed ows, i.e. ows in whih the size of the droplets an varyin a wide range. The same framework was used, for instane, by O'Rourke [ORo℄ (and histeam in the Los Alamos National Laboratory), to develop the Kiva ode [Kiva2℄, [Kiva3℄, andby many other authors (for example, Sainsaulieu [Sa℄, Domelevo [Do℄ or Massot and Villedieu[MasVi℄).This work is an attempt to take into aount the ompressibility of the droplets in auid-kineti model at both modeling and numerial levels. This question has arisen in theframework of the study of a spray, in the ontext of the Frenh military nulear ageny(CEA-DAM), after Motte's �rst approah [Mo℄. The droplets remain spherial but theirradii an vary. Note that, in some papers, e.g. [Kiva2℄, the assumption of spheriity is notsystematially made. Moreover, we do not take into aount the exhanges of mass betweena partile and the ambient medium (vaporization, hemial reations, et.) or between two(or several) partiles (ollisions, oalesene, breakup [Ba℄...). That implies, in partiular,that eah partile has a onstant mass. Moreover, at a thermodynami level, we shall usethe density � and the spei� internal energy e as state variables, as in [Mo℄.Note that we shall not takle the problem of boundary onditions in this work.In setion 2 we derive the equations of our model and give some elements showing itsoherene. Then, in setion 3, we briey disuss the numerial method and present somenumerial results. 2. Presentation of the model2.1. The unknowns of the problem. We onsider a omplex two-phase ow made upof a uid and droplets (or partiles). The unknowns for the uid are the volume fration�(t; x), the density �g(t; x), the ow veloity ug(t; x), the mass internal energy eg(t; x), thetemperature Tg(t; x) and the uid pressure p(t; x).The partiles are desribed by the PDF f . The value f(t; x; up; ep;mp) is the numberdensity of partiles of mass mp loated at oordinate x at time t, moving with the veloityup and having the internal energy ep. Afterwards, sine mp is a parameter whih doesnot hange, we shall write f(t; x; up; ep) instead of f(t; x; up; ep;mp). We also assume theequality of pressures inside and outside a droplet, so that we do not introdue an extraquantity pp. This assumption is lassial (see [LanLi℄ p. 57 or [Dr℄): the pressures betweentwo phases reahing an equilibrium is a very fast (mehanial) phenomenon with respet tothe (thermodynamial) phenomenon of temperatures equilibrium. That implies in partiularthat the radius rp of a droplet and its density �p are not variables of the PDF, as in [Kiva2℄,but are funtions of ep, mp and the pressure p(t; x). It is a signi�ant di�erene ompared toother already existing models (e.g. [Kiva2℄, [Sa℄), in whih one onsiders mass transfers, butnot the ompressibility of the partiles, and where rp is a variable of the PDF.2.2. Equation of state. The two equations of state for the uid make it possible to obtaintwo algebrai relations between p, �g, eg and Tg, that is to sayp(t; x) = P1(�g(t; x); eg(t; x));(2.1) Tg(t; x) = T1(�g(t; x); eg(t; x)):(2.2)



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 3Moreover, one an de�ne �p(t; x; ep) by the formulap(t; x) = P2(�p(t; x; ep); ep);(2.3)whih is the pressure equation inside the droplet. Finally, one de�nes the temperature Tpinside the droplet by Tp(t; x; ep) = T2(�p(t; x; ep); ep):(2.4)That implies that �p does not depend on the variables up and mp. Moreover, sine themass of eah droplet is invariant, rp is obviously a funtion of t, x, ep and mp. More preisely,we have mp�p = 43�rp3:(2.5)2.3. The ompressible model. The model onsidered here is an extension of the alreadyexisting model with inompressible droplets used by Motte in [Mo℄, in whih we add theterms due to the ompressibility of the partiles.2.3.1. Equations of the model. We propose the following system losed by the equations ofstate (2.1){(2.4) :�t(��g) +rx � (��gug) = 0;(2.6) �t(��gug) +rx � (��gug 
 ug) +rxp = �Zup;ep mp�f;(2.7) �t(��geg) +rx � (��gegug) + p [�t�+rx � (�ug)℄(2.8) = Zup;ep �(mp� + mp�p rxp) � (ug � up)� 4�rp�Nu(Tg � Tp)� f;� = 1� Zup;ep mp�p f;(2.9) mp� = �mp�p rxp�Dp(up � ug) + �gCamp�p2 d�pdt (up � ug);(2.10) mp� = 4�rp�Nu(Tg � Tp) + pmp�p2 d�pdt ;(2.11) �tf + up � rxf +rup � (f�) + �ep(f�) = 0;(2.12)where d�pdt = ��p�t + up � rx�p +���p�ep :Let us omment the hoies arried out in (2.6){(2.12).Equations (2.6){(2.8) ome from the loal onservation of mass, momentum and internalenergy for the uid. The right-hand sides model the feedbak (transfer of momentum andenergy) of the droplets on the uid (we shall later detail their meaning while ommentingequations (2.10){(2.11)) and their form is usual [ORo℄, [Kiva2℄, [Mo℄. One an reognize inthe left hand sides of the equations the usual terms of the two-phase ow equations. Notethat (2.7) an be rewritten, thanks to (2.9){(2.10), under the more usual form�t(��gug) +rx � (��gug 
 ug) + �rxp = Zup;ep �Dp(up � ug)� �gCamp�p2 d�pdt (up � ug)� f:Equation (2.9) expresses the fat that the total volume is the sum of the volume of the uidand the volume of the droplets. Moreover, thanks to this equation (2.9) and the fat that



4 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDf � 0 (sine f is initially nonnegative and satis�es a Vlasov equation), it is lear that � � 1.Although it is not obvious to mathematially prove that � � 0, suh models are assumed tobe reliable only when � remains lose to 1 (the volume of the droplets remains negligible tothe volume oupied by the uid). In the omputations shown later, this is always veri�ed.Equations (2.6){(2.9) together with (2.12) are more or less standard (f. [ORo℄ for example).The Vlasov equation (2.12) is obtained by writing down the onservation of the number ofpartiles in a volume of the phase spae (in t, x, up and ep). Note that one does not take intoaount the abrasion of the droplets and the mass transfers between both phases, whereas itis done in the Kiva ode [Kiva2℄, for instane.The form of relations (2.10) and (2.11) is spei� to the ase of ompressible droplets. Thequantities � and � appear as the variations of up and ep in the phase spae, and are thusrespetively given by the fundamental relation of dynamis (2.10) and by the equation ofenergy transfer (2.11) applied to a given partile.In (2.10), the �rst two terms already appear when the droplets are inompressible : theyrepresent the pressure fore and the drag fore. The last term is spei� to the ompressiblease, and models an e�et of mass addition. As a matter of fat, the volume variation ofthe droplet implies some loal movements of the uid whih are very similar to a lassialadded mass fore. The main term mp�p2 d�pdt represents the volume variation of the droplets dueto their ompressibility and the remaining terms are obtained by analogy with the standardadded mass fore [ClGrWe℄, [RanMa℄. Note that in the omputations shown here, this termis very small with respet to the drag fore.In the equation of energy transfer (2.11), the term 4�rp�Nu(Tg �Tp) is already taken intoaount when the droplets are inompressible. It represents the heat transfer between bothphases. The term with d�p=dt models the mehanial work due to the ompressibility of thepartiles.Eventually, the various physial oeÆients (Nu, Dp, et.) whih appear here are de�nedin the appendix. They depend on the various quantities of the problem, suh as up, ug, et.Remark 1. The system (2.1){(2.12) is impliit in the sense that there are time derivatives(of �p) in right hand sides of some equations. Those an be written in terms of �tp beauseof (2.3), then in terms of �t�g, �teg beause of (2.1), of �t� beause of (2.6){(2.8), and �nallyof �t�p itself beause of (2.9) (and (2.10){(2.11)). Thus one an prove that�t�p(t; x; ~ep) = Zup;epF(t; x; up; ep; ~ep) �t�p(t; x; ep) f(t; x; up; ep) dupdep + G(t; x; ~ep);(2.13)where there are no time derivatives in the expressions of F and G.We only detail the expression of F in the one-dimensional ase (the expression of G is evenmore intriate than the one of F , so we hoose not to write it down). We introdue the stateequations derivative oeÆientsAg(t; x) = ��p���uid(�g(t; x); eg(t; x)); Bg(t; x) = ��p�e�uid(�g(t; x); eg(t; x));Ap(t; x; ep) = ����p�drop(p(t; x); ep); Bp(t; x; ep) = ����e�drop(p(t; x); ep);(2.14)and the following oeÆient (whih equals  when the droplets onstitute an ideal gas)�p(t; x; ep) = �1� p(t; x)�p(t; x; ep)2Bp(t; x; ep)��1 :



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 5For the sake of simpliity, we do not write the dependene of the funtions in the variablest and x. We an then write downF(up; ep; ~ep) = �Ap( ~ep)� mp�p(ep)�p(ep)2 �Ag�g +Bg� p�g + Cajup � ugj2��:We shall explain in Setion 3 how this diÆulty is takled at the numerial level.2.3.2. Global onservations. First note that the system (2.1){(2.12) is losed. Like for mostof the systems desribing omplex uids, we verify that the properties of onservation holds.Proposition 1. The total energy, momentum and mass of the system (2.1){(2.12) are on-served.Proof. For the onveniene of the proof, we setHp = pmp�p2 d�pdt ;so that equation (2.11) writesmp� = 4�rp�Nu(Tg � Tp) +Hp:(2.15)We suessively verify the onservations of the total energy, momentum and mass of thesystem. We �rst notie that��g�tug = ���g(rx � ug)ug �rxp� Zup;ep mp�f(2.16)by using (2.6) and (2.7) together. Moreover, by using (2.12) and (2.14), the derivation of(2.9) with respet to t gives�t� = Zup;ep mp��t�p�p2 f � 1�p�tf�= Zup;ep mp ��t�p�p2 f + 1�p �up � rxf +rup � (f�) + �ep(f�)��= Zup;ep mp�t�p�p2 f + Zup;ep mp�p up � rxf + Zup;ep mp��p2 Bpf:(2.17)Now let us ompute the variations of the total energy E of the systemdEdt = ddt Zx ��g �eg + jugj22 �+ ddt Zx;up;ep mp�ep + jupj22 � f= Zx �t(��geg) + 12 Zx �t(��gug) � ug + 12 Zx ��gug � �tug+Zx;up;ep mp� jupj22 + ep� �tf:



6 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDBy using (2.8), (2.7), (2.16) and (2.12) and by diretly eliminating the integrated onservativeterms, one obtainsdEdt = �Zx p�t�� Zx prx � (�ug)+Zx;up;ep mp� � (ug � up)f + Zx;up;ep mp�p rxp � (ug � up)f�Zx;up;ep 4�rp�Nu(Tg � Tp)f+12 Zx ug � "�rx � (��gug 
 ug)�rxp� Zup;ep mp�f#+12 Zx ug � ���g(rx � ug)ug �rxp� Zup;ep mp�f!�Zx;up;ep mp� jupj22 + ep� (rup � (f�) + �ep(f�)):With (2.16){(2.17), we �nddEdt = �Zx;up;eppmp�p2�t�pf � Zx;up;eppmp�p up � rxf � Zx;up;eppmp��p2 ���p�ep� f+Zx �ug � rxp+ Zx;up;epmp� � (ug � up)f+Zx;up;ep mp�p rxp � (ug � up)f � Zx;up;ep4�rp�Nu(Tg � Tp)f�Zxug � rxp� Zx;up;epmp� � ugf + Zx;up;epmp� � upf + Zx;up;epmp�f:Thanks to an integration by parts in the seond integral, and using (2.9) and (2.15), we getdEdt = �Zx;up;ep pmp�p2�t�pf + Zx;up;ep mpup � rx� p�p� f�Zx;up;ep p�p2mp����p�ep� f � Zx;up;ep mp�p rxp � ugf+Zx;up;ep mp�p rxp � (ug � up)f + Zx;up;ep Hpf;hene dEdt = �Zx;up;ep pmp�p2 �t�pf + Zx;up;ep mp�p up � rxpf�Zx;up;ep pmp�p2up � rx�pf � Zx;up;ep p�p2mp����p�ep� f�Zx;up;ep mp�p up�xpf + Zx;up;ep Hpf= 0:



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 7The total mass onservation holdsddt Zx ��g + ddt Zx;up;ep mpf= Zx �t(��g) + Zx;up;ep mp�tf= �Zxrx � (��gug)� Zx;up;ep mp(up � rxf +rup � (f�) + �ep(f�))= 0;and so does the total momentum onservationddt Zx ��gug + ddt Zx;up;ep mpupf= Zx �t(��gug) + Zx;up;ep mpup�tf= �Z rxp+rx � (��gug 
 ug)� Zx;up;ep mp�f� Zx;up;ep(mp(up � rxf)up +mp�ep(f�)) + Zx;up;ep mp�f= 0:That ends the proof of Proposition 1. �3. Numerial tests3.1. Numerial method. Our method is lose to that of [Mo℄ and was originally developpedfor a simulation ode in the ontext of the nulear industry. We use a splitting of the uidpart (2.6){(2.8) of the model and of its kineti part (2.10){(2.12). We refer to [BDM-pro℄for more details about the sheme.3.1.1. Solving the uid equations. The numerial method for solving (2.6){(2.8) is time-splitinto two steps, respetively alled Lagrange and \re-map" (or transport). In the �rst step(Lagrange), we solve a system whih is quite similar to the Lagrange reformulation of (2.6){(2.8) (see [GoRav℄): that means that we solve these equations in a referential whih followsthe uid ow. The seond step (re-map) gets us bak from the Lagrange referential to the�xed one. The reader will �nd the study of a similar sheme for the ompressible Eulerequations (without soure term) in [DeLag℄.We here use a �nite volume method to disretize this system. This method is spae-split itself: every uid quantity is omputed at the enter of eah volume, exept the uidveloities, whih are omputed at the borders of eah volume.3.1.2. Solving the kineti equation. We use a partile method to solve the Vlasov equation(2.12): the PDF f is disretized by a sum of Dira masses. Consequently, when we need toompute some quantity at point x, we are led to use ontrol volumes. The whole physialspae is divided into suh ontrol volumes that do not depend on the droplets but are a prioride�ned. For the sake of simpliity, in this ode, ontrol volumes are hosen to oinide withthe �nite volumes used in the solving of the uid equations.For instane, if we want to ompute the uid volume fration at time t and position x, weonsider the ontrol volume V whih ontains x. Then we replae the Dira masses (withrespet to position) by harateristial funtions. Hene, the disretized value of the uid



8 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDpressure (�106 Pa) temperature (K) density (kg.m�3)uid 1:00 1000 0:388droplet 1:00 100 12:1Table 1. Thermodynami state of the uid and the dropletsvolume fration at time t and position x writes�V (t) = 1�Xp mp�p jV j�11fxp2V g;where one sums over all the droplets inside the omputation domain.3.1.3. Impliit in time feature of the equations. As we already pointed out in Remark 1, thesystem (2.1){(2.12) is time-impliit. We notied that we had to �rst solve the impliit integralequation (2.13). In theory, (2.13) should be solved by a �xed point method: more preisely,at eah time step, this �xed point method should be implemented. However, sine we areonly interested in weakly ompressible droplets, we are led to replae this (very expensive)proedure by the simple approximation�t�p(tn+1; x; ~ep) = Zup;epF(tn; x; up; ep; ~ep) �t�p(tn; x; ep) f(tn; x; up; ep) dupdep + G(tn; x; ~ep):3.2. Droplets in thermal imbalane with the uid. In order to test the validity of ourode, we onsider a situation in whih the initial datum does not depend on the variable x(uniform medium): inside eah mesh (the volume of whih equals to V = 0:025m3), there aren = 5000 droplets. Both phases are supposed to be ideal gases. The thermodynami statesof the uid and eah droplet are given in table 1. Note that the uid and the droplets havethe same pressure beause of the isobari equilibrium assumption.In this partiular ase, there exists a semi-expliit solution. As a matter of fat, �rst,the uniformity with respet to x implies that there is no dependene on x for every studiedquantity. Next, sine there is initially no motion inside both the spray and the uid, it is learthat we an take ug = 0 and that the spray has only one elerity up = 0. Then f now onlydepends on t and ep, so that we an hoose f as a Dira mass: f(t; ep) = Æep=ep(t). Finally,we have to note that the equations of state are very simple beause both phases are idealgases. Consequently, all the quantities are algebrai funtions of eg and ep, whih satisfy thefollowing system of ordinary di�erential equationse0g = �(g � 1)�0� eg � 1Mg nV 4�rp�Nu� egvg � epvp� ;mppe0p = 4�rp�Nu� egvg � epvp�+ (p � 1)mpep�e0geg � �0� � ;where vg (resp. vp) is the uid (resp. droplets) isohori (that is, when the volume is �xed)spei� heat, g (resp. p) the ratio of the uid (resp. droplets) spei� heats, Mg is theonstant value of ��g, and where � and rp are given by
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Figure 1. Towards the equilibrium of temperatures.� = �1 + nV p � 1g � 1 mpMg epeg��1 ;rp = � 34� p � 1g � 1 �mpMg epeg�1=3 :
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Figure 2. Temperature and density of a droplet.Two physial phenomena happen almost simultaneously:� the temperatures of both uid and droplets are well-balaned (see �g. 1);



10 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID� to balane the inreasing of the temperature, eah droplet density dereases to reah anequilibrium value (see �g. 2).Fig. 2 also shows that the numerial results obtained thanks to our ode �t very well tothe semi-expliit solutions (omputed by Maple).This test was very aurate to get both mathematial and programming validations of themodel. Still the thermodynamis leads to very important and unrealisti variations of thedensities of eah droplet. The following omputation has been performed in a more realistithermodynamial setting.3.3. Hollow-one spray. This seond numerial test has been set in [Du℄ and allows usto ompare the numerial results for both ompressible and inompressible droplets. Thedroplets are injeted with the same veloity 100m:s�1 in a uid following the border of ahollow-one (with angle 45Æ). The uid is initially not moving and has a higher temperaturethan the droplets (500K for the uid, 300K for the spray). Both phases satisfy realistiequations of state (sti�ened gas for the uid, standard tin for the spray).

Figure 3. Evolution of the uid temperature due to the droplets.Fig. 3 desribes the ourring phenomenon: the droplets make the uid move and ooldown. We here propose the evolution of a sample droplet: densities (see �g. 4) and tem-peratures (see �g. 5). In �g. 4, the density of the inompressible droplet remains onstant,whereas the one of the ompressible droplet dereases to balane the inreasing of the droplet
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Figure 4. Density of the sample droplet.

Figure 5. Temperature of the sample droplet.temperature. The analysis of �g. 5 is a bit more intriate: the urve for the ompressibledroplet is behind the one for the inompressible droplet. As a matter of fat, sine there is�rst the mehanial reation of the ompressible droplet (inreasing radius), its temperaturedoes not inrease as fast as the temperature of the inompressible droplet. And we alreadypointed out in subsetion 2.1 that mehanial phenomena our faster than thermodynamialones. But eventually, we note that for both �gures, there is approximately a 1% di�erenebetween the inompressible and ompressible urves.In fat, we notied in other numerial tests that, in the ontext of the nulear industry,the density of a given droplet typially varies of 1% during the evolution of the spray, sothat we an state that the e�ets of the ompressibility of the droplets seem to be small fora realisti thermodynamis. Therefore, the intriate model studied here should be used onlywhen very preise results are needed. On the other hand, the numerial omparison is notmuh more expensive when the ompressibility is taken into aount, beause of thi smallvariation of the density of a droplet. As a matter of fat, one solves the impliit equationsonly approximately, and with a �ne auray.



12 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDAppendix: value of the physial oeffiientsTo omplete our modeling, we give the value of every oeÆient whih appears in (2.8){(2.11). The physial justi�ations of our hoies an be found in [RanMa℄, for instane.First of all, let us give some preisions about the drag oeÆient Cd, the added massoeÆient Ca and the Nusselt number Nu.We empirially �x the oeÆient Ca = 0:5.To write Cd and Nu, let us begin to reall the de�nition of some standard oeÆients, suhas the Reynolds, Mah and Prandtl numbersRe = 2rp�gjup � ugj� ; Ma = jup � ugj ; Pr = �C� ;(3.1)where the uid visosity � is a given onstant,  is the loal sound veloity in the uid andthe uid spei� heat C and thermal ondutivity � are given.We then take for Cd the formula Cd = ~Cd(Re)~�(Ma);(3.2)with ~Cd = 24Re(��2:65 + 16Re2=3��1:78) si Re < Re := 1000;~Cd = 24Re (��2:65 + 16Re2=3��1:78) si Re > Re;and ~� = 1 si Ma < 0:5;= 2:22 si Ma > 1;= 2:44Ma � 0:22 si 0:5 < Ma < 1:We also take for the Nusselt number the formulaNu = ��7=4 + 0:3Re1=2Pr1=3��1=2:Finally, the term Dp in the expression of the drag fore is �xed by the expressionDp = 12�r2p�gCdjup � ugj:Referenes[Kiva2℄ A.A. Amsden, P.J. O'Rourke, T.D. Butler. A omputer program for hemially reative ows withsprays. Report #LA-11560-MS, Los Alamos National Laboratory, 1989.[Kiva3℄ A.A. Amsden. Kiva-3V, release 2, improvements to Kiva-3V. Report #LA-UR-99-915, Los AlamosNational Laboratory, 1999.[Ba℄ C. Baranger. Modelling of osillations, breakup and ollisions for droplets: the establishment of kernelsfor the T.A.B. model. Preprint CMLA, 2003.[BDM-pro℄ L. Boudin, L. Desvillettes, R. Motte. A partile-gas model for ompressible droplets. In theproeedings of the onferene \Trends in numerial and physial modeling for industrial multiphaseows", Carg�ese, Frane, 2000.[Ce℄ C. Cerignani. The Boltzmann equation and its appliations. Applied Mathematis, vol. 67, Springer-Verlag, 1988.[ClGrWe℄ R. Clift, J.R. Graes, M.E. Weber. Bubbles, drops and partiles. Aademi Press, 1978.[DeLag℄ B. Despr�es, F. Lagouti�ere. Contat disontinuity apturing shemes for linear advetion and om-pressible gas dynamis. J. Si. Comput. 16(4) : 479{524, 2002.[Do℄ K. Domelevo. Mathematial and numerial analysis of a kineti modeling of a spray. PhD thesis, �EolePolytehnique, 1996.[Dr℄ D.A. Drew. Mathematial Modeling of Two-Phase Flow. Ann. Rev. Fluid Meh. 15 : 261{291, 1983.[Du℄ J.K. Dukowiz. A partile-uid numerial model for liquid sprays. J. Comp. Phys., 35 : 229{253, 1980.
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