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ABSTRACT. In this work, we are interested in a complex fluid-kinetic model that aims to take
into account the compressibility of the droplets of the spray. The ambient fluid is described
by Euler-like equations, in which the transfer of momentum and energy from the droplets is
taken into account, while the spray is represented by a probability density function satisfying
a Vlasov-like equation. Implicit terms crop up because of the compressibility of the droplets.
After having derived the model, we prove that global conservations are satisfied. Then we
present two numerical tests. The first one enables to validate the numerical code, while the
second one is performed in a physically realistic situation.
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1. INTRODUCTION

Complex two-phase fluids can be modelled in many different ways. The model known as
(fully) Eulerian gives a description of both phases by physical quantities only depending on
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the variables ¢ and z (typically, for example, the density, flow velocity and energy of each
phase [RavSa]).

We are here interested in a mixed fluid-kinetic modeling (a.k.a. particle-gas or Eulerian-
Lagrangian), where the particles (or droplets) are described by a probability density function
(PDF) solution of a kinetic equation in a phase space (including at least the variables ¢,
x and the velocities u, of the particles), whereas the continuous fluid satisfies traditional
fluid equations. This type of model was introduced by Williams [Wi] (see also [Ce]). It is
particularly suited to polydispersed flows, i.e. flows in which the size of the droplets can vary
in a wide range. The same framework was used, for instance, by O’Rourke [ORo] (and his
team in the Los Alamos National Laboratory), to develop the Kiva code [Kiva2], [Kiva3], and
by many other authors (for example, Sainsaulieu [Sa], Domelevo [Do] or Massot and Villedieu
[MasVi]).

This work is an attempt to take into account the compressibility of the droplets in a
fluid-kinetic model at both modeling and numerical levels. This question has arisen in the
framework of the study of a spray, in the context of the French military nuclear agency
(CEA-DAM), after Motte’s first approach [Mo]. The droplets remain spherical but their
radii can vary. Note that, in some papers, e.g. [Kiva2], the assumption of sphericity is not
systematically made. Moreover, we do not take into account the exchanges of mass between
a particle and the ambient medium (vaporization, chemical reactions, etc.) or between two
(or several) particles (collisions, coalescence, breakup [Ba]...). That implies, in particular,
that each particle has a constant mass. Moreover, at a thermodynamic level, we shall use
the density p and the specific internal energy e as state variables, as in [Mo].

Note that we shall not tackle the problem of boundary conditions in this work.

In section 2 we derive the equations of our model and give some elements showing its
coherence. Then, in section 3, we briefly discuss the numerical method and present some
numerical results.

2. PRESENTATION OF THE MODEL

2.1. The unknowns of the problem. We consider a complex two-phase flow made up
of a fluid and droplets (or particles). The unknowns for the fluid are the volume fraction
a(t,z), the density p,4(t,z), the flow velocity ug(t, ), the mass internal energy e, (¢, ), the
temperature T,(t,z) and the fluid pressure p(t, x).

The particles are described by the PDF f. The value f(¢,z,up,ep,my) is the number
density of particles of mass m, located at coordinate x at time ¢, moving with the velocity
up and having the internal energy e,. Afterwards, since m, is a parameter which does
not change, we shall write f(¢,z,up,,e,) instead of f(t,z,up,e,,my). We also assume the
equality of pressures inside and outside a droplet, so that we do not introduce an extra
quantity p,. This assumption is classical (see [LanLi] p.57 or [Dr]): the pressures between
two phases reaching an equilibrium is a very fast (mechanical) phenomenon with respect to
the (thermodynamical) phenomenon of temperatures equilibrium. That implies in particular
that the radius 7, of a droplet and its density p, are not variables of the PDF, as in [Kiva2],
but are functions of ey, m, and the pressure p(¢,z). It is a significant difference compared to
other already existing models (e.g. [Kiva2], [Sa]), in which one considers mass transfers, but
not the compressibility of the particles, and where r, is a variable of the PDF.

2.2. Equation of state. The two equations of state for the fluid make it possible to obtain
two algebraic relations between p, p,, e, and Ty, that is to say

(2'1) p(t,ﬂj) = Pl(pg(tvw)veg(tvx))a
(2.2) Ty(t,z) = Ti(pg(t,x),eq(t,x)).
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Moreover, one can define p,(t,z,¢e,) by the formula

(23) p(t7$) = P2(pp(taxaep)7ep)a
which is the pressure equation inside the droplet. Finally, one defines the temperature 7),
inside the droplet by

(24) Tp(taxaep) = Tg(pp(t,g:,ep),ep).

That implies that p, does not depend on the variables u, and m,. Moreover, since the
mass of each droplet is invariant, r, is obviously a function of ¢, z, e, and m,,. More precisely,
we have

m 4
2.5 2 = —qp 3.
( ) Pp 3 p
2.3. The compressible model. The model considered here is an extension of the already
existing model with incompressible droplets used by Motte in [Mo], in which we add the
terms due to the compressibility of the particles.

2.3.1. Equations of the model. We propose the following system closed by the equations of
state (2.1)—(2.4) :

(2.6) d(apg) + V- (apgug) =0,

(2.7) F(apgug) + Vg - (apgug ® ug) + Vep = —/ mpl'f,
Up,Ep

(2.8) Oi(apgeq) + Vo - (apgegug) +p[Oha + Vo - (ouy)]

= / [(mpF + @pr) (ug —up) —4rrpANW(T, — Tp) | f,
UP,BP p

p
(2.9) azl—/ Ty s

pep Pp
m my d
(2.10) mpl = ==L Vyp — Dy(up — ug) + nga—’;ﬁ(up — Ug),
Pp pp” dt
d
(2.11) my® = drr, \Nu(T, — T,) + Iﬂ;’%,
Pp
(2-12) o f + Up * Vaf + VUp : (fF) + 86;; (f(I)) =0,
where J 5 5
Pp _ 9Pp . 9Pp
- ot + up Vzpp-l-'i)aep.

Let us comment the choices carried out in (2.6)—(2.12).

Equations (2.6)-(2.8) come from the local conservation of mass, momentum and internal
energy for the fluid. The right-hand sides model the feedback (transfer of momentum and
energy) of the droplets on the fluid (we shall later detail their meaning while commenting
equations (2.10)-(2.11)) and their form is usual [ORo], [Kiva2], [Mo]. One can recognize in
the left hand sides of the equations the usual terms of the two-phase flow equations. Note
that (2.7) can be rewritten, thanks to (2.9)-(2.10), under the more usual form

my dp
[Dp(up —tg) — pgCa PP

Or(apgug) + Vg - (apgug @ ug) + aVyp = / Fﬁ(up —ug)| f.
p

Up,ep

Equation (2.9) expresses the fact that the total volume is the sum of the volume of the fluid
and the volume of the droplets. Moreover, thanks to this equation (2.9) and the fact that
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f >0 (since f is initially nonnegative and satisfies a Vlasov equation), it is clear that o < 1.
Although it is not obvious to mathematically prove that a > 0, such models are assumed to
be reliable only when a remains close to 1 (the volume of the droplets remains negligible to
the volume occupied by the fluid). In the computations shown later, this is always verified.

Equations (2.6)—(2.9) together with (2.12) are more or less standard (cf. [ORo] for example).

The Vlasov equation (2.12) is obtained by writing down the conservation of the number of
particles in a volume of the phase space (in ¢, z, u, and ep). Note that one does not take into
account the abrasion of the droplets and the mass transfers between both phases, whereas it
is done in the Kiva code [Kiva2], for instance.

The form of relations (2.10) and (2.11) is specific to the case of compressible droplets. The
quantities I' and ® appear as the variations of u, and e, in the phase space, and are thus
respectively given by the fundamental relation of dynamics (2.10) and by the equation of
energy transfer (2.11) applied to a given particle.

In (2.10), the first two terms already appear when the droplets are incompressible: they
represent the pressure force and the drag force. The last term is specific to the compressible
case, and models an effect of mass addition. As a matter of fact, the volume variation of
the droplet implies some local movenbents of the fluid which are very similar to a classical

myp @pPp

added mass force. The main term ool dt represents the volume variation of the droplets due

to their compressibility and the remaining terms are obtained by analogy with the standard
added mass force [Cl1GrWe], [RanMa]. Note that in the computations shown here, this term
is very small with respect to the drag force.

In the equation of energy transfer (2.11), the term 47, A\Nu(7T, — T,) is already taken into
account when the droplets are incompressible. It represents the heat transfer between both
phases. The term with dp,/dt models the mechanical work due to the compressibility of the
particles.

Eventually, the various physical coefficients (Nu, D,, etc.) which appear here are defined
in the appendix. They depend on the various quantities of the problem, such as u,, ug4, etc.

Remark 1. The system (2.1)—(2.12) is implicit in the sense that there are time derivatives
(of pp) in right hand sides of some equations. Those can be written in terms of d;p because
of (2.3), then in terms of J;py, Oy because of (2.1), of J;x because of (2.6)—(2.8), and finally
of 0;p, itself because of (2.9) (and (2.10)—(2.11)). Thus one can prove that

(2.13) Oipp(t,m,€p) = F(t,z,up, ep, €) Opp(t,z,ep) f(t,2,up, ep) dupde, + G(t,z,6p),
Up,Ep
where there are no time derivatives in the expressions of F and G.
We only detail the expression of F in the one-dimensional case (the expression of G is even
more intricate than the one of F, so we choose not to write it down). We introduce the state
equations derivative coefficients

ayea) = (3) b, Byita) = () (oot

o op

(2.14)  A,(t,z,ep) = (8p>dmp(p(t,x),ep), By(t,z,ep) = <8e>dmp(p(t,x),ep),

and the following coefficient (which equals v when the droplets constitute an ideal gas)

~1
p(t,7) 5 By(t, x, ep)> .

) = (1- 550
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For the sake of simplicity, we do not write the dependence of the functions in the variables
t and x. We can then write down

Ap(ép) mpGp(ep)
a  pplep)?

F(upvepvép) = -

p
[ 20 (3 e =) |
Y

We shall explain in Section 3 how this difficulty is tackled at the numerical level.

2.3.2. Global conservations. First note that the system (2.1)-(2.12) is closed. Like for most
of the systems describing complex fluids, we verify that the properties of conservation holds.

Proposition 1. The total energy, momentum and mass of the system (2.1)-(2.12) are con-
served.

Proof. For the convenience of the proof, we set

_ oy dpy
M=

so that equation (2.11) writes

(2.15) my® = dnrp ANu(Ty — Tp) + Hp.

We successively verify the conservations of the total energy, momentum and mass of the
system. We first notice that

(2.16) apgOiug = —apy(Vy - ug)ug — Vap — / mpl f

by using (2.6) and (2.7) together. Moreover, by using (2.12) and (2.14), the derivation of
(2.9) with respect to t gives

0 1
o — / iy (t—”;’f - —atf>
Up,Ep IOP pp

0, 1
= [ [P v, () 0, )
Up,Ep Pp Pp
o o
(2.17) = / mpt_Ppr + / %“p Vaf + / me -Byf.
Up,ep Pp up,ep Pp up,ep PP

Now let us compute the variations of the total energy E of the system

@ — i o e _|_|U9|2 _I_i/ m e _I_|U’P|2 f
at — oar ), P\ dt Jyu e, PN 2

1 1
= /Bt(apgeg) + 3 / Or(apgug) - ug + 3 /ongug - Oytug

x
2
U
()
I,UP,BP
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By using (2.8), (2.7), (2.16) and (2.12) and by directly eliminating the integrated conservative
terms, one obtains

dFE
E = —/pata—/pvx-(aug)
x xr

m
-I-/ mpI‘-(ug—up)f-l-/ —LVp - (ug —up) f
TyUp,ep TyUp,€p pp

—/ dmr, ANu(Ty — T),) f
T,Up,ep
1
+§ N Ug -
1
+§ ug - | —apg(Vy - ug)ug — Vyp — mpl' f
T Up,€p

—Vao - (apgug @ ug) — Vup — / mpr]
upzep

With (2.16)—(2.17), we find

dE m m m,® [ dp
— = —/ P—5hppf — p—Lup - Vo f — p—5 (a—p> f
dt Z,Up,Ep Pp T,Up,ep Pp Z,Up,ep Pp €p
-I-/ozug-VIp-l-/ mpl" - (ug — up) f
T T,Up,ep
myp
+ —Vap - (ug —up) f — dnrp, ANu(T, — Tp,) f
T, up,ep D T,up,ep

—/ug-pr—/ mpF-ugf—i—/ mpF-upf+/ mp®f.
xT ZyUp,Ep Ty Up,Ep Z,Up,ep

Thanks to an integration by parts in the second integral, and using (2.9) and (2.15), we get

dE m p
— = —/ p—gatppf +/ mpUy - Ve (_> f
dt Z,Up,Ep pp TyUp,ep pp
p 9 m
[ e (a_pp> 1= [ S af
T up,ep Pp €p ,upep Pp

m
+/ _pvxp_ (Ug - Up)f +/ pra
T, pp T,Up,€p

UP,CP
hence
dE m
- oS + [ Vot
dt T up,ep Tup,ep Pp
15)
/ wy - Vopof — P m,® <ﬁ> f
T up,ep T,Up,Ep Pp 8619

/ _Up zpf-"/ pr
T, Up,ep TyUp,Ep
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The total mass conservation holds

i/ +i/ f
it L, T e

:/Bt(ong)-l-/ mpO f

T / Vi - (apgug) — mp(up - Vaf + Vu, - (fT) + 0, (f®))

=0,
and so does the total momentum conservation
d / n d / f
— [ ap,u — Myl
dt J, 0 dE Je,
= [ d(apguy) + mplp0y f
T T,Up,ep
=—/pr+V$-(apgug®ug)—/ mpL f
I,UP,BP
—/ (mp(up - Vg fup +mpoe, (fP)) —i—/ mpl f
I,UP,CP I,UP,BP
= 0.
That ends the proof of Proposition 1. O

3. NUMERICAL TESTS

3.1. Numerical method. Our method is close to that of [Mo] and was originally developped
for a simulation code in the context of the nuclear industry. We use a splitting of the fluid
part (2.6)—(2.8) of the model and of its kinetic part (2.10)—(2.12). We refer to [BDM-proc]
for more details about the scheme.

3.1.1. Solving the fluid equations. The numerical method for solving (2.6)—(2.8) is time-split
into two steps, respectively called Lagrange and “re-map” (or transport). In the first step
(Lagrange), we solve a system which is quite similar to the Lagrange reformulation of (2.6)-
(2.8) (see [GoRav]): that means that we solve these equations in a referential which follows
the fluid flow. The second step (re-map) gets us back from the Lagrange referential to the
fixed one. The reader will find the study of a similar scheme for the compressible Euler
equations (without source term) in [DeLag].

We here use a finite volume method to discretize this system. This method is space-
split itself: every fluid quantity is computed at the center of each volume, except the fluid
velocities, which are computed at the borders of each volume.

3.1.2. Solving the kinetic equation. We use a particle method to solve the Vlasov equation
(2.12): the PDF f is discretized by a sum of Dirac masses. Consequently, when we need to
compute some quantity at point z, we are led to use control volumes. The whole physical
space is divided into such control volumes that do not depend on the droplets but are a priori
defined. For the sake of simplicity, in this code, control volumes are chosen to coincide with
the finite volumes used in the solving of the fluid equations.

For instance, if we want to compute the fluid volume fraction at time ¢ and position z, we
consider the control volume V' which contains z. Then we replace the Dirac masses (with
respect to position) by characteristical functions. Hence, the discretized value of the fluid
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pressure (x10° Pa) | temperature (K) | density (kg.m™=3)
fluid 1.00 1000 0.388
droplet 1.00 100 12.1

TABLE 1. Thermodynamic state of the fluid and the droplets

volume fraction at time ¢ and position z writes

My
ay(t) =1- Z LIV Mg evys
» Pr

where one sums over all the droplets inside the computation domain.

3.1.3. Implicit in time feature of the equations. As we already pointed out in Remark 1, the
system (2.1)-(2.12) is time-implicit. We noticed that we had to first solve the implicit integral
equation (2.13). In theory, (2.13) should be solved by a fixed point method: more precisely,
at each time step, this fixed point method should be implemented. However, since we are
only interested in weakly compressible droplets, we are led to replace this (very expensive)
procedure by the simple approximation

(tn+17$76~p) = f(tnvwaupaepae})) atpp(tnawaep) f(tnawaupaep) dupdep + g(tnvxaé}))'
Up,Ep

Py

3.2. Droplets in thermal imbalance with the fluid. In order to test the validity of our
code, we consider a situation in which the initial datum does not depend on the variable x
(uniform medium): inside each mesh (the volume of which equals to V' = 0.025 m?), there are
n = 5000 droplets. Both phases are supposed to be ideal gases. The thermodynamic states
of the fluid and each droplet are given in table 1. Note that the fluid and the droplets have
the same pressure because of the isobaric equilibrium assumption.

In this particular case, there exists a semi-explicit solution. As a matter of fact, first,
the uniformity with respect to z implies that there is no dependence on x for every studied
quantity. Next, since there is initially no motion inside both the spray and the fluid, it is clear
that we can take u, = 0 and that the spray has only one celerity u, = 0. Then f now only
depends on t and e, so that we can choose f as a Dirac mass: f(t,e,) = Oc,=e,(t)- Finally,
we have to note that the equations of state are very simple because both phases are ideal
gases. Consequently, all the quantities are algebraic functions of e, and e,, which satisfy the
following system of ordinary differential equations

! 1 n e e
=y, -1 — 4mr, ANu [ =L L4
% S A TR e PR
/ '
e e €, «
myYpe, = 4mrpANu (i - i) + (7p — D)mpe, (é - E) ,

where ¢, (resp. c¢,,) is the fluid (resp. droplets) isochoric (that is, when the volume is fixed)
specific heat, v, (resp. 7,) the ratio of the fluid (resp. droplets) specific heats, M, is the
constant value of apy, and where o and 7, are given by
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FIGURE 2. Temperature and density of a droplet.

Two physical phenomena happen almost simultaneously:

e the temperatures of both fluid and droplets are well-balanced (see fig. 1);

time ()

1.2e-05
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e to balance the increasing of the temperature, each droplet density decreases to reach an
equilibrium value (see fig. 2).

Fig.2 also shows that the numerical results obtained thanks to our code fit very well to
the semi-explicit solutions (computed by Maple).

This test was very accurate to get both mathematical and programming validations of the
model. Still the thermodynamics leads to very important and unrealistic variations of the
densities of each droplet. The following computation has been performed in a more realistic
thermodynamical setting.

3.3. Hollow-cone spray. This second numerical test has been set in [Du] and allows us
to compare the numerical results for both compressible and incompressible droplets. The
droplets are injected with the same velocity 100 m.s~! in a fluid following the border of a
hollow-cone (with angle 45°). The fluid is initially not moving and has a higher temperature
than the droplets (500 K for the fluid, 300 K for the spray). Both phases satisfy realistic
equations of state (stiffened gas for the fluid, standard tin for the spray).

TEMP

5.019e+02
4.990e+02
| 4.960e+02
| 4.930e+02
4.901e+02
4.871e402
| 4.841e402
4.812e+02
4.782e+02
4.752e+02
4.722e+02
4.693e+02
4.663e+02
4.633e+02
4.604e+02
4.574e+02
4.544e402
4.514e+02
4.485e402
4.455e+02
4.425e+02
4.396e+02
4.366e+02
4.336e+02
4.307e+02
4.277e+02
4.247e402
4.217e+02
4.188e+02
4.158e+02
4.128e+02
4.099e+02

4.069¢+402

FIGURE 3. Evolution of the fluid temperature due to the droplets.

Fig. 3 describes the occurring phenomenon: the droplets make the fluid move and cool
down. We here propose the evolution of a sample droplet: densities (see fig.4) and tem-
peratures (see fig.5). In fig.4, the density of the incompressible droplet remains constant,
whereas the one of the compressible droplet decreases to balance the increasing of the droplet
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FIGURE 4. Density of the sample droplet.
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FI1GUrE 5. Temperature of the sample droplet.

temperature. The analysis of fig.5 is a bit more intricate: the curve for the compressible
droplet is behind the one for the incompressible droplet. As a matter of fact, since there is
first the mechanical reaction of the compressible droplet (increasing radius), its temperature
does not increase as fast as the temperature of the incompressible droplet. And we already
pointed out in subsection 2.1 that mechanical phenomena occur faster than thermodynamical
ones. But eventually, we note that for both figures, there is approximately a 1% difference
between the incompressible and compressible curves.

In fact, we noticed in other numerical tests that, in the context of the nuclear industry,
the density of a given droplet typically varies of 1% during the evolution of the spray, so
that we can state that the effects of the compressibility of the droplets seem to be small for
a realistic thermodynamics. Therefore, the intricate model studied here should be used only
when very precise results are needed. On the other hand, the numerical comparison is not
much more expensive when the compressibility is taken into account, because of thi small
variation of the density of a droplet. As a matter of fact, one solves the implicit equations
only approximately, and with a fine accuracy.
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APPENDIX: VALUE OF THE PHYSICAL COEFFICIENTS

To complete our modeling, we give the value of every coefficient which appears in (2.8)—
(2.11). The physical justifications of our choices can be found in [RanMa], for instance.

First of all, let us give some precisions about the drag coefficient Cy, the added mass
coefficient C', and the Nusselt number Nu.

We empirically fix the coefficient C, = 0.5.

To write Cy and Nu, let us begin to recall the definition of some standard coefficients, such
as the Reynolds, Mach and Prandtl numbers
(3.1) Re = Zobolto “tal gy, Jup =l - 1O

n c A

where the fluid viscosity 7 is a given constant, c¢ is the local sound velocity in the fluid and
the fluid specific heat C and thermal conductivity A are given.

We then take for C; the formula

(3.2) Cy = Cyq(Re)f(Ma),
with
5 24 965, 1o o3 17sy
Cy= ﬁ(a o gRe a %) si Re < Re. := 1000,
24 1
= g(ofz65 + EReQ/?’of”S) si Re > Reg,
C
and ~
0 =1 si Ma < 0.5,

= 2.22 si Ma > 1,
= 244Ma —0.22 si 0.5 <Ma < 1.

We also take for the Nusselt number the formula
Nu = o~ % +0.3Re'/2Pr!/3071/2,

Finally, the term D), in the expression of the drag force is fixed by the expression

1
D, = §7Trz%pgod|up — Ug).
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