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t. In this work, we are interested in a 
omplex 
uid-kineti
 model that aims to takeinto a

ount the 
ompressibility of the droplets of the spray. The ambient 
uid is des
ribedby Euler-like equations, in whi
h the transfer of momentum and energy from the droplets istaken into a

ount, while the spray is represented by a probability density fun
tion satisfyinga Vlasov-like equation. Impli
it terms 
rop up be
ause of the 
ompressibility of the droplets.After having derived the model, we prove that global 
onservations are satis�ed. Then wepresent two numeri
al tests. The �rst one enables to validate the numeri
al 
ode, while these
ond one is performed in a physi
ally realisti
 situation.Contents1. Introdu
tion 12. Presentation of the model 22.1. The unknowns of the problem 22.2. Equation of state 22.3. The 
ompressible model 33. Numeri
al tests 73.1. Numeri
al method 73.2. Droplets in thermal imbalan
e with the 
uid 83.3. Hollow-
one spray 10Appendix: value of the physi
al 
oeÆ
ients 12Referen
es 121. Introdu
tionComplex two-phase 
uids 
an be modelled in many di�erent ways. The model known as(fully) Eulerian gives a des
ription of both phases by physi
al quantities only depending on1



2 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDthe variables t and x (typi
ally, for example, the density, 
ow velo
ity and energy of ea
hphase [RavSa℄).We are here interested in a mixed 
uid-kineti
 modeling (a.k.a. parti
le-gas or Eulerian-Lagrangian), where the parti
les (or droplets) are des
ribed by a probability density fun
tion(PDF) solution of a kineti
 equation in a phase spa
e (in
luding at least the variables t,x and the velo
ities up of the parti
les), whereas the 
ontinuous 
uid satis�es traditional
uid equations. This type of model was introdu
ed by Williams [Wi℄ (see also [Ce℄). It isparti
ularly suited to polydispersed 
ows, i.e. 
ows in whi
h the size of the droplets 
an varyin a wide range. The same framework was used, for instan
e, by O'Rourke [ORo℄ (and histeam in the Los Alamos National Laboratory), to develop the Kiva 
ode [Kiva2℄, [Kiva3℄, andby many other authors (for example, Sainsaulieu [Sa℄, Domelevo [Do℄ or Massot and Villedieu[MasVi℄).This work is an attempt to take into a

ount the 
ompressibility of the droplets in a
uid-kineti
 model at both modeling and numeri
al levels. This question has arisen in theframework of the study of a spray, in the 
ontext of the Fren
h military nu
lear agen
y(CEA-DAM), after Motte's �rst approa
h [Mo℄. The droplets remain spheri
al but theirradii 
an vary. Note that, in some papers, e.g. [Kiva2℄, the assumption of spheri
ity is notsystemati
ally made. Moreover, we do not take into a

ount the ex
hanges of mass betweena parti
le and the ambient medium (vaporization, 
hemi
al rea
tions, et
.) or between two(or several) parti
les (
ollisions, 
oales
en
e, breakup [Ba℄...). That implies, in parti
ular,that ea
h parti
le has a 
onstant mass. Moreover, at a thermodynami
 level, we shall usethe density � and the spe
i�
 internal energy e as state variables, as in [Mo℄.Note that we shall not ta
kle the problem of boundary 
onditions in this work.In se
tion 2 we derive the equations of our model and give some elements showing its
oheren
e. Then, in se
tion 3, we brie
y dis
uss the numeri
al method and present somenumeri
al results. 2. Presentation of the model2.1. The unknowns of the problem. We 
onsider a 
omplex two-phase 
ow made upof a 
uid and droplets (or parti
les). The unknowns for the 
uid are the volume fra
tion�(t; x), the density �g(t; x), the 
ow velo
ity ug(t; x), the mass internal energy eg(t; x), thetemperature Tg(t; x) and the 
uid pressure p(t; x).The parti
les are des
ribed by the PDF f . The value f(t; x; up; ep;mp) is the numberdensity of parti
les of mass mp lo
ated at 
oordinate x at time t, moving with the velo
ityup and having the internal energy ep. Afterwards, sin
e mp is a parameter whi
h doesnot 
hange, we shall write f(t; x; up; ep) instead of f(t; x; up; ep;mp). We also assume theequality of pressures inside and outside a droplet, so that we do not introdu
e an extraquantity pp. This assumption is 
lassi
al (see [LanLi℄ p. 57 or [Dr℄): the pressures betweentwo phases rea
hing an equilibrium is a very fast (me
hani
al) phenomenon with respe
t tothe (thermodynami
al) phenomenon of temperatures equilibrium. That implies in parti
ularthat the radius rp of a droplet and its density �p are not variables of the PDF, as in [Kiva2℄,but are fun
tions of ep, mp and the pressure p(t; x). It is a signi�
ant di�eren
e 
ompared toother already existing models (e.g. [Kiva2℄, [Sa℄), in whi
h one 
onsiders mass transfers, butnot the 
ompressibility of the parti
les, and where rp is a variable of the PDF.2.2. Equation of state. The two equations of state for the 
uid make it possible to obtaintwo algebrai
 relations between p, �g, eg and Tg, that is to sayp(t; x) = P1(�g(t; x); eg(t; x));(2.1) Tg(t; x) = T1(�g(t; x); eg(t; x)):(2.2)



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 3Moreover, one 
an de�ne �p(t; x; ep) by the formulap(t; x) = P2(�p(t; x; ep); ep);(2.3)whi
h is the pressure equation inside the droplet. Finally, one de�nes the temperature Tpinside the droplet by Tp(t; x; ep) = T2(�p(t; x; ep); ep):(2.4)That implies that �p does not depend on the variables up and mp. Moreover, sin
e themass of ea
h droplet is invariant, rp is obviously a fun
tion of t, x, ep and mp. More pre
isely,we have mp�p = 43�rp3:(2.5)2.3. The 
ompressible model. The model 
onsidered here is an extension of the alreadyexisting model with in
ompressible droplets used by Motte in [Mo℄, in whi
h we add theterms due to the 
ompressibility of the parti
les.2.3.1. Equations of the model. We propose the following system 
losed by the equations ofstate (2.1){(2.4) :�t(��g) +rx � (��gug) = 0;(2.6) �t(��gug) +rx � (��gug 
 ug) +rxp = �Zup;ep mp�f;(2.7) �t(��geg) +rx � (��gegug) + p [�t�+rx � (�ug)℄(2.8) = Zup;ep �(mp� + mp�p rxp) � (ug � up)� 4�rp�Nu(Tg � Tp)� f;� = 1� Zup;ep mp�p f;(2.9) mp� = �mp�p rxp�Dp(up � ug) + �gCamp�p2 d�pdt (up � ug);(2.10) mp� = 4�rp�Nu(Tg � Tp) + pmp�p2 d�pdt ;(2.11) �tf + up � rxf +rup � (f�) + �ep(f�) = 0;(2.12)where d�pdt = ��p�t + up � rx�p +���p�ep :Let us 
omment the 
hoi
es 
arried out in (2.6){(2.12).Equations (2.6){(2.8) 
ome from the lo
al 
onservation of mass, momentum and internalenergy for the 
uid. The right-hand sides model the feedba
k (transfer of momentum andenergy) of the droplets on the 
uid (we shall later detail their meaning while 
ommentingequations (2.10){(2.11)) and their form is usual [ORo℄, [Kiva2℄, [Mo℄. One 
an re
ognize inthe left hand sides of the equations the usual terms of the two-phase 
ow equations. Notethat (2.7) 
an be rewritten, thanks to (2.9){(2.10), under the more usual form�t(��gug) +rx � (��gug 
 ug) + �rxp = Zup;ep �Dp(up � ug)� �gCamp�p2 d�pdt (up � ug)� f:Equation (2.9) expresses the fa
t that the total volume is the sum of the volume of the 
uidand the volume of the droplets. Moreover, thanks to this equation (2.9) and the fa
t that



4 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDf � 0 (sin
e f is initially nonnegative and satis�es a Vlasov equation), it is 
lear that � � 1.Although it is not obvious to mathemati
ally prove that � � 0, su
h models are assumed tobe reliable only when � remains 
lose to 1 (the volume of the droplets remains negligible tothe volume o

upied by the 
uid). In the 
omputations shown later, this is always veri�ed.Equations (2.6){(2.9) together with (2.12) are more or less standard (
f. [ORo℄ for example).The Vlasov equation (2.12) is obtained by writing down the 
onservation of the number ofparti
les in a volume of the phase spa
e (in t, x, up and ep). Note that one does not take intoa

ount the abrasion of the droplets and the mass transfers between both phases, whereas itis done in the Kiva 
ode [Kiva2℄, for instan
e.The form of relations (2.10) and (2.11) is spe
i�
 to the 
ase of 
ompressible droplets. Thequantities � and � appear as the variations of up and ep in the phase spa
e, and are thusrespe
tively given by the fundamental relation of dynami
s (2.10) and by the equation ofenergy transfer (2.11) applied to a given parti
le.In (2.10), the �rst two terms already appear when the droplets are in
ompressible : theyrepresent the pressure for
e and the drag for
e. The last term is spe
i�
 to the 
ompressible
ase, and models an e�e
t of mass addition. As a matter of fa
t, the volume variation ofthe droplet implies some lo
al movements of the 
uid whi
h are very similar to a 
lassi
aladded mass for
e. The main term mp�p2 d�pdt represents the volume variation of the droplets dueto their 
ompressibility and the remaining terms are obtained by analogy with the standardadded mass for
e [ClGrWe℄, [RanMa℄. Note that in the 
omputations shown here, this termis very small with respe
t to the drag for
e.In the equation of energy transfer (2.11), the term 4�rp�Nu(Tg �Tp) is already taken intoa

ount when the droplets are in
ompressible. It represents the heat transfer between bothphases. The term with d�p=dt models the me
hani
al work due to the 
ompressibility of theparti
les.Eventually, the various physi
al 
oeÆ
ients (Nu, Dp, et
.) whi
h appear here are de�nedin the appendix. They depend on the various quantities of the problem, su
h as up, ug, et
.Remark 1. The system (2.1){(2.12) is impli
it in the sense that there are time derivatives(of �p) in right hand sides of some equations. Those 
an be written in terms of �tp be
auseof (2.3), then in terms of �t�g, �teg be
ause of (2.1), of �t� be
ause of (2.6){(2.8), and �nallyof �t�p itself be
ause of (2.9) (and (2.10){(2.11)). Thus one 
an prove that�t�p(t; x; ~ep) = Zup;epF(t; x; up; ep; ~ep) �t�p(t; x; ep) f(t; x; up; ep) dupdep + G(t; x; ~ep);(2.13)where there are no time derivatives in the expressions of F and G.We only detail the expression of F in the one-dimensional 
ase (the expression of G is evenmore intri
ate than the one of F , so we 
hoose not to write it down). We introdu
e the stateequations derivative 
oeÆ
ientsAg(t; x) = ��p���
uid(�g(t; x); eg(t; x)); Bg(t; x) = ��p�e�
uid(�g(t; x); eg(t; x));Ap(t; x; ep) = ����p�drop(p(t; x); ep); Bp(t; x; ep) = ����e�drop(p(t; x); ep);(2.14)and the following 
oeÆ
ient (whi
h equals 
 when the droplets 
onstitute an ideal gas)�p(t; x; ep) = �1� p(t; x)�p(t; x; ep)2Bp(t; x; ep)��1 :



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 5For the sake of simpli
ity, we do not write the dependen
e of the fun
tions in the variablest and x. We 
an then write downF(up; ep; ~ep) = �Ap( ~ep)� mp�p(ep)�p(ep)2 �Ag�g +Bg� p�g + Cajup � ugj2��:We shall explain in Se
tion 3 how this diÆ
ulty is ta
kled at the numeri
al level.2.3.2. Global 
onservations. First note that the system (2.1){(2.12) is 
losed. Like for mostof the systems des
ribing 
omplex 
uids, we verify that the properties of 
onservation holds.Proposition 1. The total energy, momentum and mass of the system (2.1){(2.12) are 
on-served.Proof. For the 
onvenien
e of the proof, we setHp = pmp�p2 d�pdt ;so that equation (2.11) writesmp� = 4�rp�Nu(Tg � Tp) +Hp:(2.15)We su

essively verify the 
onservations of the total energy, momentum and mass of thesystem. We �rst noti
e that��g�tug = ���g(rx � ug)ug �rxp� Zup;ep mp�f(2.16)by using (2.6) and (2.7) together. Moreover, by using (2.12) and (2.14), the derivation of(2.9) with respe
t to t gives�t� = Zup;ep mp��t�p�p2 f � 1�p�tf�= Zup;ep mp ��t�p�p2 f + 1�p �up � rxf +rup � (f�) + �ep(f�)��= Zup;ep mp�t�p�p2 f + Zup;ep mp�p up � rxf + Zup;ep mp��p2 Bpf:(2.17)Now let us 
ompute the variations of the total energy E of the systemdEdt = ddt Zx ��g �eg + jugj22 �+ ddt Zx;up;ep mp�ep + jupj22 � f= Zx �t(��geg) + 12 Zx �t(��gug) � ug + 12 Zx ��gug � �tug+Zx;up;ep mp� jupj22 + ep� �tf:



6 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDBy using (2.8), (2.7), (2.16) and (2.12) and by dire
tly eliminating the integrated 
onservativeterms, one obtainsdEdt = �Zx p�t�� Zx prx � (�ug)+Zx;up;ep mp� � (ug � up)f + Zx;up;ep mp�p rxp � (ug � up)f�Zx;up;ep 4�rp�Nu(Tg � Tp)f+12 Zx ug � "�rx � (��gug 
 ug)�rxp� Zup;ep mp�f#+12 Zx ug � ���g(rx � ug)ug �rxp� Zup;ep mp�f!�Zx;up;ep mp� jupj22 + ep� (rup � (f�) + �ep(f�)):With (2.16){(2.17), we �nddEdt = �Zx;up;eppmp�p2�t�pf � Zx;up;eppmp�p up � rxf � Zx;up;eppmp��p2 ���p�ep� f+Zx �ug � rxp+ Zx;up;epmp� � (ug � up)f+Zx;up;ep mp�p rxp � (ug � up)f � Zx;up;ep4�rp�Nu(Tg � Tp)f�Zxug � rxp� Zx;up;epmp� � ugf + Zx;up;epmp� � upf + Zx;up;epmp�f:Thanks to an integration by parts in the se
ond integral, and using (2.9) and (2.15), we getdEdt = �Zx;up;ep pmp�p2�t�pf + Zx;up;ep mpup � rx� p�p� f�Zx;up;ep p�p2mp����p�ep� f � Zx;up;ep mp�p rxp � ugf+Zx;up;ep mp�p rxp � (ug � up)f + Zx;up;ep Hpf;hen
e dEdt = �Zx;up;ep pmp�p2 �t�pf + Zx;up;ep mp�p up � rxpf�Zx;up;ep pmp�p2up � rx�pf � Zx;up;ep p�p2mp����p�ep� f�Zx;up;ep mp�p up�xpf + Zx;up;ep Hpf= 0:



A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID 7The total mass 
onservation holdsddt Zx ��g + ddt Zx;up;ep mpf= Zx �t(��g) + Zx;up;ep mp�tf= �Zxrx � (��gug)� Zx;up;ep mp(up � rxf +rup � (f�) + �ep(f�))= 0;and so does the total momentum 
onservationddt Zx ��gug + ddt Zx;up;ep mpupf= Zx �t(��gug) + Zx;up;ep mpup�tf= �Z rxp+rx � (��gug 
 ug)� Zx;up;ep mp�f� Zx;up;ep(mp(up � rxf)up +mp�ep(f�)) + Zx;up;ep mp�f= 0:That ends the proof of Proposition 1. �3. Numeri
al tests3.1. Numeri
al method. Our method is 
lose to that of [Mo℄ and was originally developpedfor a simulation 
ode in the 
ontext of the nu
lear industry. We use a splitting of the 
uidpart (2.6){(2.8) of the model and of its kineti
 part (2.10){(2.12). We refer to [BDM-pro
℄for more details about the s
heme.3.1.1. Solving the 
uid equations. The numeri
al method for solving (2.6){(2.8) is time-splitinto two steps, respe
tively 
alled Lagrange and \re-map" (or transport). In the �rst step(Lagrange), we solve a system whi
h is quite similar to the Lagrange reformulation of (2.6){(2.8) (see [GoRav℄): that means that we solve these equations in a referential whi
h followsthe 
uid 
ow. The se
ond step (re-map) gets us ba
k from the Lagrange referential to the�xed one. The reader will �nd the study of a similar s
heme for the 
ompressible Eulerequations (without sour
e term) in [DeLag℄.We here use a �nite volume method to dis
retize this system. This method is spa
e-split itself: every 
uid quantity is 
omputed at the 
enter of ea
h volume, ex
ept the 
uidvelo
ities, whi
h are 
omputed at the borders of ea
h volume.3.1.2. Solving the kineti
 equation. We use a parti
le method to solve the Vlasov equation(2.12): the PDF f is dis
retized by a sum of Dira
 masses. Consequently, when we need to
ompute some quantity at point x, we are led to use 
ontrol volumes. The whole physi
alspa
e is divided into su
h 
ontrol volumes that do not depend on the droplets but are a prioride�ned. For the sake of simpli
ity, in this 
ode, 
ontrol volumes are 
hosen to 
oin
ide withthe �nite volumes used in the solving of the 
uid equations.For instan
e, if we want to 
ompute the 
uid volume fra
tion at time t and position x, we
onsider the 
ontrol volume V whi
h 
ontains x. Then we repla
e the Dira
 masses (withrespe
t to position) by 
hara
teristi
al fun
tions. Hen
e, the dis
retized value of the 
uid



8 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUIDpressure (�106 Pa) temperature (K) density (kg.m�3)
uid 1:00 1000 0:388droplet 1:00 100 12:1Table 1. Thermodynami
 state of the 
uid and the dropletsvolume fra
tion at time t and position x writes�V (t) = 1�Xp mp�p jV j�11fxp2V g;where one sums over all the droplets inside the 
omputation domain.3.1.3. Impli
it in time feature of the equations. As we already pointed out in Remark 1, thesystem (2.1){(2.12) is time-impli
it. We noti
ed that we had to �rst solve the impli
it integralequation (2.13). In theory, (2.13) should be solved by a �xed point method: more pre
isely,at ea
h time step, this �xed point method should be implemented. However, sin
e we areonly interested in weakly 
ompressible droplets, we are led to repla
e this (very expensive)pro
edure by the simple approximation�t�p(tn+1; x; ~ep) = Zup;epF(tn; x; up; ep; ~ep) �t�p(tn; x; ep) f(tn; x; up; ep) dupdep + G(tn; x; ~ep):3.2. Droplets in thermal imbalan
e with the 
uid. In order to test the validity of our
ode, we 
onsider a situation in whi
h the initial datum does not depend on the variable x(uniform medium): inside ea
h mesh (the volume of whi
h equals to V = 0:025m3), there aren = 5000 droplets. Both phases are supposed to be ideal gases. The thermodynami
 statesof the 
uid and ea
h droplet are given in table 1. Note that the 
uid and the droplets havethe same pressure be
ause of the isobari
 equilibrium assumption.In this parti
ular 
ase, there exists a semi-expli
it solution. As a matter of fa
t, �rst,the uniformity with respe
t to x implies that there is no dependen
e on x for every studiedquantity. Next, sin
e there is initially no motion inside both the spray and the 
uid, it is 
learthat we 
an take ug = 0 and that the spray has only one 
elerity up = 0. Then f now onlydepends on t and ep, so that we 
an 
hoose f as a Dira
 mass: f(t; ep) = Æep=ep(t). Finally,we have to note that the equations of state are very simple be
ause both phases are idealgases. Consequently, all the quantities are algebrai
 fun
tions of eg and ep, whi
h satisfy thefollowing system of ordinary di�erential equationse0g = �(
g � 1)�0� eg � 1Mg nV 4�rp�Nu� eg
vg � ep
vp� ;mp
pe0p = 4�rp�Nu� eg
vg � ep
vp�+ (
p � 1)mpep�e0geg � �0� � ;where 
vg (resp. 
vp) is the 
uid (resp. droplets) iso
hori
 (that is, when the volume is �xed)spe
i�
 heat, 
g (resp. 
p) the ratio of the 
uid (resp. droplets) spe
i�
 heats, Mg is the
onstant value of ��g, and where � and rp are given by
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Figure 2. Temperature and density of a droplet.Two physi
al phenomena happen almost simultaneously:� the temperatures of both 
uid and droplets are well-balan
ed (see �g. 1);



10 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID� to balan
e the in
reasing of the temperature, ea
h droplet density de
reases to rea
h anequilibrium value (see �g. 2).Fig. 2 also shows that the numeri
al results obtained thanks to our 
ode �t very well tothe semi-expli
it solutions (
omputed by Maple).This test was very a

urate to get both mathemati
al and programming validations of themodel. Still the thermodynami
s leads to very important and unrealisti
 variations of thedensities of ea
h droplet. The following 
omputation has been performed in a more realisti
thermodynami
al setting.3.3. Hollow-
one spray. This se
ond numeri
al test has been set in [Du℄ and allows usto 
ompare the numeri
al results for both 
ompressible and in
ompressible droplets. Thedroplets are inje
ted with the same velo
ity 100m:s�1 in a 
uid following the border of ahollow-
one (with angle 45Æ). The 
uid is initially not moving and has a higher temperaturethan the droplets (500K for the 
uid, 300K for the spray). Both phases satisfy realisti
equations of state (sti�ened gas for the 
uid, standard tin for the spray).

Figure 3. Evolution of the 
uid temperature due to the droplets.Fig. 3 des
ribes the o

urring phenomenon: the droplets make the 
uid move and 
ooldown. We here propose the evolution of a sample droplet: densities (see �g. 4) and tem-peratures (see �g. 5). In �g. 4, the density of the in
ompressible droplet remains 
onstant,whereas the one of the 
ompressible droplet de
reases to balan
e the in
reasing of the droplet
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Figure 4. Density of the sample droplet.

Figure 5. Temperature of the sample droplet.temperature. The analysis of �g. 5 is a bit more intri
ate: the 
urve for the 
ompressibledroplet is behind the one for the in
ompressible droplet. As a matter of fa
t, sin
e there is�rst the me
hani
al rea
tion of the 
ompressible droplet (in
reasing radius), its temperaturedoes not in
rease as fast as the temperature of the in
ompressible droplet. And we alreadypointed out in subse
tion 2.1 that me
hani
al phenomena o

ur faster than thermodynami
alones. But eventually, we note that for both �gures, there is approximately a 1% di�eren
ebetween the in
ompressible and 
ompressible 
urves.In fa
t, we noti
ed in other numeri
al tests that, in the 
ontext of the nu
lear industry,the density of a given droplet typi
ally varies of 1% during the evolution of the spray, sothat we 
an state that the e�e
ts of the 
ompressibility of the droplets seem to be small fora realisti
 thermodynami
s. Therefore, the intri
ate model studied here should be used onlywhen very pre
ise results are needed. On the other hand, the numeri
al 
omparison is notmu
h more expensive when the 
ompressibility is taken into a

ount, be
ause of thi smallvariation of the density of a droplet. As a matter of fa
t, one solves the impli
it equationsonly approximately, and with a �ne a

ura
y.
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al 
oeffi
ientsTo 
omplete our modeling, we give the value of every 
oeÆ
ient whi
h appears in (2.8){(2.11). The physi
al justi�
ations of our 
hoi
es 
an be found in [RanMa℄, for instan
e.First of all, let us give some pre
isions about the drag 
oeÆ
ient Cd, the added mass
oeÆ
ient Ca and the Nusselt number Nu.We empiri
ally �x the 
oeÆ
ient Ca = 0:5.To write Cd and Nu, let us begin to re
all the de�nition of some standard 
oeÆ
ients, su
has the Reynolds, Ma
h and Prandtl numbersRe = 2rp�gjup � ugj� ; Ma = jup � ugj
 ; Pr = �C� ;(3.1)where the 
uid vis
osity � is a given 
onstant, 
 is the lo
al sound velo
ity in the 
uid andthe 
uid spe
i�
 heat C and thermal 
ondu
tivity � are given.We then take for Cd the formula Cd = ~Cd(Re)~�(Ma);(3.2)with ~Cd = 24Re(��2:65 + 16Re2=3��1:78) si Re < Re
 := 1000;~Cd = 24Re
 (��2:65 + 16Re2=3��1:78) si Re > Re
;and ~� = 1 si Ma < 0:5;= 2:22 si Ma > 1;= 2:44Ma � 0:22 si 0:5 < Ma < 1:We also take for the Nusselt number the formulaNu = ��7=4 + 0:3Re1=2Pr1=3��1=2:Finally, the term Dp in the expression of the drag for
e is �xed by the expressionDp = 12�r2p�gCdjup � ugj:Referen
es[Kiva2℄ A.A. Amsden, P.J. O'Rourke, T.D. Butler. A 
omputer program for 
hemi
ally rea
tive 
ows withsprays. Report #LA-11560-MS, Los Alamos National Laboratory, 1989.[Kiva3℄ A.A. Amsden. Kiva-3V, release 2, improvements to Kiva-3V. Report #LA-UR-99-915, Los AlamosNational Laboratory, 1999.[Ba℄ C. Baranger. Modelling of os
illations, breakup and 
ollisions for droplets: the establishment of kernelsfor the T.A.B. model. Preprint CMLA, 2003.[BDM-pro
℄ L. Boudin, L. Desvillettes, R. Motte. A parti
le-gas model for 
ompressible droplets. In thepro
eedings of the 
onferen
e \Trends in numeri
al and physi
al modeling for industrial multiphase
ows", Carg�ese, Fran
e, 2000.[Ce℄ C. Cer
ignani. The Boltzmann equation and its appli
ations. Applied Mathemati
s, vol. 67, Springer-Verlag, 1988.[ClGrWe℄ R. Clift, J.R. Gra
es, M.E. Weber. Bubbles, drops and parti
les. A
ademi
 Press, 1978.[DeLag℄ B. Despr�es, F. Lagouti�ere. Conta
t dis
ontinuity 
apturing s
hemes for linear adve
tion and 
om-pressible gas dynami
s. J. S
i. Comput. 16(4) : 479{524, 2002.[Do℄ K. Domelevo. Mathemati
al and numeri
al analysis of a kineti
 modeling of a spray. PhD thesis, �E
olePolyte
hnique, 1996.[Dr℄ D.A. Drew. Mathemati
al Modeling of Two-Phase Flow. Ann. Rev. Fluid Me
h. 15 : 261{291, 1983.[Du℄ J.K. Dukowi
z. A parti
le-
uid numeri
al model for liquid sprays. J. Comp. Phys., 35 : 229{253, 1980.
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