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Abstract4

In this paper we study a degenerate parabolic system of reaction-diffusion equations arising5

in cellular biology models. Its specificity lies in the fact that one of the concentrations does6

not diffuse. Under realistic conditions on the reaction term, we prove existence and uniqueness7

of a nonnegative solution to the considered system, and we study its regularity. Moreover, we8

discuss the existence and linear stability of the steady solutions (equilibria), and give a sufficient9

condition on the reaction term for Turing-like instabilities to be triggered. These results are10

finally illustrated by some numerical simulations.11
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1 Introduction1

The study of the adhesion processes between cells is an active and complex research subject in bi-2

ology, leading to interesting questions in mathematics. The adhesion process plays a significant role3

in tissues organization, cancer growth, neuronal connections in embryos, etc., see for example [3],4

[5], [6], [8], [11] and [16]. The growth of adhesion junctions between cells is mediated by a class of5

molecules called cadherins, which diffuse on the membrane when they are free. Cadherins however6

can bind, thus stop to diffuse, and form intra-cellular contacts. If the contact force is not large7

enough, the bound may break up and cadherins turn back to the free state, and diffuse again. Oth-8

erwise, they form an aggregate which is itself linked to the actin cytoskeleton, but we do neglect9

this part of the modeling in this study. From now on, we consider cadherins as particles and we10

study their spatiotemporal dynamics on a substrate by means of a mathematical model defined at11

the macroscopic scale. The model describes the evolution of two particles densities : the first one12

concerns the diffusing particles, and the second one is related to the fixed ones. For a more detailed13

description we refer to [9].14

15

We perform the mathematical analysis in an n-dimensional space domain, although the biological16

problem as well as numerics are to be considered only in a 2-dimensional space. We define an open,17

bounded and regular domain Ω ⊂ Rn and two density functions u := u(t, x) ≥ 0 and v := v(t, x) ≥ 0,18

with x ∈ Ω and t ≥ 0, respectively representing the space distribution of the diffusing population19

of particles and of the fixed one. Particles in both populations may change their status from free20

(diffusing) to fixed and vice-versa. The space-time evolution of the densities u and v can then be21

described by the following system of reaction-diffusion equations :22 {
∂tu− σ∆xu = −Q(u, v),

∂tv = Q(u, v),
(1)

in ]0,+∞[×Ω, where σ > 0 is the diffusion coefficient, and Q(u, v) is the reaction term, describing23

how particles switch from one state to the other one. The reaction term Q(u, v) counts the gain24

and loss for each particle population, and is therefore defined as the difference between a gain term25

Q+(u, v) and a loss term Q−(u, v).26

27

Diffusing particles can bind only if targets are available on the domain Ω. Moreover, the proba-28

bility of adhesion of a diffusing particle to a target is increased by the local presence of other fixed29

particles. This effect is then taken into account by a monotonous (increasing) function F := F (v) ≥ 0.30

Thus, the gain term Q+(u, v) writes Q+(u, v) = u (ρ− v)F (v), where ρ > 0 is the target density.31

On the other hand, the loss term Q−(u, v) is only proportional to the unbinding rate G := G(v) ≥32

0, which depends only on the presence of other fixed particles, so that Q−(u, v) = v G(v). Note that33

the concentration u has no influence on the binding or unbinding rates.34

35

Finally, the reaction term Q := Q(u, v) reads :36

Q(u, v) := Q+(u, v)−Q−(u, v) = u(ρ− v)F (v)− vG(v). (2)
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Note that the fixed particles density v cannot be larger than the targets density ρ, so that we expect1

that 0 ≤ v(x, t) ≤ ρ for all x ∈ Ω and for all t ≥ 0.2

3

As we shall see, the definition of the rate functions F and G may radically change the behavior
of the solution to (1), leading or not to Turing like instabilities, see [13]. For the study of the time
dependent problem, we shall only assume that F and G are such that :

a) ∀v ∈ [0, ρ], 0 < F (v), G(v) ≤ 1,

b) v 7→ F (v) and v 7→ G(v) are Lipschitz-continuous on [0, ρ].

Assumption a) reflects the fact that F (v) and G(v) are bounded rates (the bound 1 can be obtained4

thanks to a simple rescaling in time from any other strictly positive bound), while b) is the minimal5

regularity assumption needed in the sequel.6

7

Moreover, when needed, we shall continuously extend the definition of F and G to the whole real
space R, thanks to the formulas:

c) ∀ v ≤ 0, F (v) = F (0) , G(v) = G(0),

d) ∀ v ≥ ρ, F (v) = F (ρ) , G(v) = G(ρ).

Although a large number of parabolic, degenerate or not, systems were already studied (see for ex-8

ample [1, 2, 10, 15, 14], as well as the references therein), the existing results do not directly apply to9

(1) because of the particular form of our reaction term Q(u, v), and of the degeneracy of the second10

equation. Note, in particular, that Q(u, v) given by (2) does not satisfy the bound of [2]. Therefore,11

under hypothesis a)-b), we are first interested in the theoretical study of the solution to (1)-(2) (en-12

dowed with suitable boundary conditions and initial data). Our main results in this direction concern13

the existence, uniqueness and smoothness of the solutions to the degenerate reaction-diffusion system14

(1)-(2).15

16

In order to shed light on aggregates formation, we also discuss the existence and stability of solu-17

tions to the stationary problem. We consider for this study that F and G are C1 by parts functions.18

We compute the stationary solutions to the problem, and give a criterion for the linear stability of19

a given spatially homogeneous equilibrium. We show examples in which this criterion is satisfied or20

not. When it is not satisfied, we study the appearance of Turing-like instabilities. From a biological21

point of view, this means that aggregates formation is possible in such a situation.22

23

The paper is organized as follows. In section 2, we detail the mathematical model describing the24

particles dynamics and we state the main results. Section 3 is devoted to the proofs of the Theorems25

concerning existence, uniqueness and smoothness of the solution to the evolution problem. In section26

4, we study the existence of solutions to the stationary problem and their stability. Finally, in section27

5, we illustrate by some numerical simulations the study of the stationary problem.28
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2 The model and main results1

The unknown of our problem is the couple of density functions (u, v) := (u(t, x), v(t, x)) of resp.2

diffusing and fixed particles, where x ∈ Ω is an n-dimensional vector point, and t ≥ 0 represents3

time. We assume that the targets density on the substrate is constant in time and space, and we4

denote it by ρ so that, up to a rescaling of the concentration v, 0 < ρ ≤ 1. Considering the model5

description detailed in Section 1, the density functions u and v are assumed to satisfy the degenerate6

system of reaction-diffusion equations (1)-(2).7

8

Since Ω is bounded, the first equation in (1) needs to be endowed with some boundary conditions.9

We consider here the homogeneous Neumann boundary condition:10

∀ (t, x) ∈ [0,+∞[×∂Ω,
∂u

∂ν
(t, x) = 0, (3)

where ν denotes the exterior normal to the boundary ∂Ω. It describes at the biological level a situ-11

ation in which one keeps a zero flux on the boundary of the space domain.12

13

Finally, we complete system (1) by the initial condition,14

∀ x ∈ Ω, (u(0, x), v(0, x)) = (uin(x), vin(x)), (4)

representing the initial distribution of both diffusing and fixed particles, and we assume that15

∀ x ∈ Ω, 0 ≤ uin(x) and 0 ≤ vin(x) ≤ ρ. (5)

In the following we shall prove that (5) holds for any time t ≥ 0 also for the solution (u, v) to (1)-(2)16

(see Prop. 1 below).17

18

Since particles are neither lost nor created, but just change their status from diffusing to fixed19

and vice-versa, we expect the following conservation property:20 ∫
Ω

(u(t, x) + v(t, x)) dx =

∫
Ω

(uin(x) + vin(x)) dx := C |Ω|, ∀ t ≥ 0. (6)

This identity is obtained at the formal level from (1)-(2), (3) by summing up the two equations and21

by integrating over Ω.22

We now state the results that will be proven in the next sections. We start with an a priori23

estimate that will be used in the proofs of existence:24

Proposition 1 Let Ω be a smooth bounded open subset of Rn, ρ, σ > 0, F and G satisfy a)-b), and25

assume that the initial data (uin, vin) satisfy (5) and are continuous on Ω. Then any classical solution26

(u, v) (that is, such that u, v, ∂tu, ∂tv, ∂xiu and ∂xixju are continuous on Ω for all i, j = 1, .., n) to27

(1), (2), (3) and (4) satisfies, ∀ t > 0 and x ∈ Ω:28

0 ≤ u(t, x) ≤ µ+ ρt , 0 ≤ v(t, x) ≤ ρ, (7)
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where1

µ := sup
x∈Ω

u(0, x). (8)

Our first main result is concerned with the existence of weak solutions to system (1)-(4) :2

Theorem 1 Let Ω be a smooth bounded open subset of Rn, ρ, σ > 0, F and G satisfy a)-b), and
assume that the initial data (uin, vin) satisfy (5) and uin ∈ L∞(Ω). Then there exist two nonnegative
functions u ∈ L2

loc([0,+∞[;H1(Ω)) ∩ L∞loc(R+;L∞(Ω)) and v ∈ L∞([0,+∞) × Ω) (more precisely
0 ≤ v ≤ ρ) which are weak solutions to system (1), (2), (3) and (4), in the following sense: Q(u, v) ∈
L∞loc(R+;L∞(Ω)), and for all φ, ψ ∈ C2

c ([0,+∞[×Ω) such that ∂φ
∂ν

= 0 on [0,+∞[×∂Ω, the following
identities hold:

−
∫ ∞

0

∫
Ω

u ∂tφ dx dt−
∫

Ω

uin φ(0, ·) dx− σ
∫ ∞

0

∫
Ω

u∆xφ dx dt = −
∫ ∞

0

∫
Ω

Q(u, v)φ dx dt,

−
∫ ∞

0

∫
Ω

v ∂tψ dx dt−
∫

Ω

vin ψ(0, ·) dx =

∫ ∞
0

∫
Ω

Q(u, v)ψ dx dt.

When the initial data are smooth enough, the solutions defined above are in fact strong (classical)3

and unique, as stated in the theorem below:4

Theorem 2 Let Ω be a smooth bounded open subset of Rn, ρ, σ > 0, F and G satisfy a)-b), and5

assume that the initial data (uin, vin) satisfy (5) and belong respectively to C2(Ω) and C0,α(Ω) for some6

α ∈]0, 1[. Then there exists a unique classical solution (u, v) of (1), (2), (3) and (4), that is a solution7

u, v ≥ 0 such that u, ∂tu, ∂xku, ∂xkxlu ∈ C([0,+∞[×Ω) for k, l = 1, .., n and v, ∂tv ∈ C([0,+∞[×Ω).8

We consider in section 4 the existence and stability of steady solutions (equilibria). We thus look9

for solutions to the associated stationary problem :10 

∆xu = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

Q(u, v) = 0 in Ω,

u ≥ 0, 0 ≤ v ≤ ρ,∫
Ω

(u(x) + v(x)) dx = C |Ω|.

(9)

We prove that there exists at least one homogeneous in space solution to (9), denoted by (U, V ).11

We also present a uniqueness result for such a stationary solution, under an extra condition. More12

precisely, we state the :13

Proposition 2 Let Ω be a smooth bounded open subset of Rn, and ρ, σ, C > 0. Let also F and G14

satisfy a)-b), and assume moreover that F and G are C1 by parts. Then all strong (that is, such15

that u ∈ C2(Ω) and v ∈ L∞(Ω)) solutions to (9), are such that u is spatially homogeneous (does not16
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depend on x). Moreover, at least one spatially homogeneous solution (that is, both u and v do not1

depend on x) exists. Finally, all spatially homogeneous solutions (U, V ) satisfy the strict inequality2

0 < U , 0 < V < ρ, and the system3

U =
V G(V )

(ρ− V )F (V )
, U + V = C. (10)

When the extra condition4

∀v ∈ [0, ρ],
ρF (v)G(v) + v(ρ− v) (F (v)G′(v)− F ′(v)G(v))

(ρ− v)2F (v)2
+ 1 ≥ 0 (11)

is satisfied (the derivative of F and G are replaced by both right and left derivatives at points of5

discontinuity of F ′ and G′), there is a unique spatially homogeneous solution (U, V ) to system (9).6

Note that condition (11) always holds if the following simpler condition is satisfied:7

∀v ∈ [0, ρ], F (v)G′(v)− F ′(v)G(v) > 0. (12)

Finally, if for some real number U > 0, there are at least two distinct real numbers V1 ∈]0, ρ[ and8

V2 ∈]0, V1[ such that9

U =
V1G(V1)

(ρ− V1)F (V1)
=

V2G(V2)

(ρ− V2)F (V2)
(13)

and C − U ∈]V2, V1[, then system (9) has an infinite number of spatially inhomogeneous solutions10

defined as (U, V1 1A + V2 1Ac), where A is a measurable subset of Ω (with |A| 6= 0 and |Ac| 6= 0) such11

that C − U = V1
|A|
|Ω| + V2

|Ac|
|Ω| (that is, |A| = |Ω| C−U−V2

V1−V2 ).12

We then discuss the linear stability of a given spatially homogeneous solution of (9), and give13

conditions for the appearance of Turing-like instabilities.14

Proposition 3 Let Ω be a smooth bounded open subset of Rn, and ρ, σ, C > 0. Let also F and15

G satisfy a)-b), and assume moreover that F and G are C1 by parts. We consider a spatially16

homogeneous solution of (9), that is a couple of real numbers (U, V ) such that 0 < U , 0 < V < ρ17

and (10) holds (according to Prop. 2, at least one such solution exists). Then if F and G are C1 at18

point V and19

ρF (V )G(V ) + V (ρ− V ) (F (V )G′(V )− F ′(V )G(V ))

(ρ− V )2F (V )2
+ 1 > 0, (14)

the equilibrium (U, V ) is linearly (and thus locally nonlinearly) stable for the ODE system20 {
u̇ = −Q(u, v),

v̇ = Q(u, v).
(15)

If F and G are C1 at point V and21

ρF (V )G(V ) + V (ρ− V ) (F (V )G′(V )− F ′(V )G(V ))

(ρ− V )2F (V )2
+ 1 < 0, (16)
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the equilibrium (U, V ) is linearly unstable for the ODE system (15).1

Note at this level that the stability condition (14) is always satisfied when the condition of unique-2

ness (11) holds.3

Moreover, if4

ρF (V )G(V ) + V (ρ− V ) (F (V )G′(V )− F ′(V )G(V )) > 0, (17)

the equilibrium (U, V ) is linearly stable for the PDE system (1), and if5

ρF (V )G(V ) + V (ρ− V ) (F (V )G′(V )− F ′(V )G(V )) < 0, (18)

the equilibrium (U, V ) is linearly unstable for the PDE system (1).6

Section 5 is devoted to the numerical simulations (when n = 2) illustrating the results on the7

large time behavior of our system.8

As in [9], we consider that the binding process is described by rate functions F and G defined as9

follows :10

F (v) =
a+ tanh(v)

a+ tanh(ρ)
, G(v) = 1− tanh(αv), ∀ v ∈]0, ρ[, (19)

with 0 < a ≤ 1 and α > 0 real parameters. Parameter a represents the rate at which a particle11

naturally binds on a target (i.e. if no other particle is fixed nearby), and α measures the influence of12

the unbinding. As we shall see, it is possible to find values a and α such that a stable homogeneous13

steady state exists for the system of PDEs, and other values a and α such that no such stable14

homogeneous steady state exists. In that last case, Turing-like patterns appear (that is, aggregation15

occurs).16

3 Existence, uniqueness and smoothness17

We first consider the positivity and boundedness of classical solutions (u, v) to (1), (2), (3) and (4),18

assuming that they exist. In a second time, we prove the existence of weak solutions by constructing19

two Cauchy sequences. And finally we deal with the existence, uniqueness, and smoothness of strong20

solutions.21

3.1 Proof of Proposition 122

We present below the proof of Prop. 1 and divide it in three steps. First we prove the upper bound23

for v. Second we prove the bound for u. Third we prove the nonnegativity of both u and v.24

25

Proof:
Step I. We first prove by contradiction the upper bound : v ≤ ρ. Let us define the set

A := {t > 0 : ∃ x ∈ Ω such that v(t, x) > ρ}.
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We now define (if A is not empty) t0 := inf A in R+.
Note that, by means of continuity arguments, t0 > 0. Indeed if v(0, x) = ρ, then ∂tv(t0, x) =
−G(ρ)ρ < 0. Then there exists a point x0 ∈ Ω such that v(t0, x0) = ρ.
Now, considering the equation for v in (1) and computing its value at the point (t0, x0), we get,
because of assumption a),

∂tv(t0, x0) = −G(ρ)ρ < 0.

Therefore, the function t 7→ v(t, x0) is strictly decreasing in a neighborhood of t0. Hence, there1

exists η > 0 such that for all t ∈ [t0 − η, t0], v(t, x0) > v(t0, x0) = ρ, and (using a point of Ω in a2

neighbourhood of x0 if x0 ∈ ∂Ω), t0 − η ∈ A. But t0 − η < t0, contradicting the fact that t0 = inf A.3

Hence, A is empty.4

5

Step II. We now consider the upper bound u(t, x) ≤ µ+ ρt (remembering that, ∀ t ≥ 0 and ∀ x ∈ Ω,
v(t, x) ≤ ρ).
We wish to prove that the function (u(t, x)− µ− ρt)+ = max(0, u(t, x)− µ− ρt) is equal to zero for
all time t ≥ 0 and all x ∈ Ω, where µ is defined by (8).
Note that if (u(t, x)−µ− ρt)+ 6= 0, then u(t, x) ≥ µ+ ρt, so that u(t, x) > 0. Using the equation for
u in (1), and since, from a), G(v) ≤ 1 and, from Step I, v ≤ ρ, we have :

∂t(u− µ− ρt)(u− µ− ρt)+ − σ∆x(u− µ− ρt)(u− µ− ρt)+

= (∂tu− σ∆xu)(u− µ− ρt)+ − ρ(u− µ− ρt)+

= −u(ρ− v)F (v)(u− µ− ρt)+ + (vG(v)− ρ)(u− µ− ρt)+ ≤ 0.

Hence, integrating over Ω, (and using [(x+)2]′ = 2x+ x′):

1

2

d

dt

∫
Ω

((u− µ− ρt)+)2 dx+ σ

∫
Ω

|∇x(u− µ− ρt)+|2 dx ≤ 0,

so that, for all t ≥ 0,
‖(u− µ− ρt)+‖2

L2 ≤ ‖(u(0, x)− µ)+‖2
L2 = 0,

which concludes the second step of the proof.6

7

Step III. Let (u, v) be a solution of (1), under hypothesis (5) we prove that v ≥ 0 and u ≥ 0 for
all times t ≥ 0. Multiplying equations of (1) respectively by u− = min(u, 0) and v− = min(v, 0),
integrating over Ω (and using [(x−)2]′ = 2x− x′), we obtain :

1

2

d

dt

∫
Ω

[(u−)2 + (v−)2]dx+ σ

∫
Ω

|∇x(u
−)|2dx

= −
∫

Ω

(u−)2(ρ− v)F (v)dx+

∫
Ω

v+G(v)u−dx+

∫
Ω

v−G(v)u−dx

+

∫
Ω

u+v−(ρ− v)F (v)dx+

∫
Ω

u−v−(ρ− v)F (v)dx−
∫

Ω

(v−)2G(v)dx,
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where we have used that u = u+ + u− and v = v+ + v−. Because of a), c) and d), of Step I, and
since u+v− ≤ 0 and u−v+ ≤ 0, we get :

1

2

d

dt

∫
Ω

[(u−)2 + (v−)2]dx

≤
∫

Ω

(ρ− v)F (v)[−(u−)2 + u−v−]dx+

∫
Ω

G(v)[−(v−)2 + u−v−]dx.

But u−v− ≤ [(u−)2 + (v−)2] implies :1

d

dt

∫
Ω

[(u−)2 + (v−)2]dx ≤
∫

Ω

(ρ− v)F (v)(v−)2dx+

∫
Ω

G(v)(u−)2dx. (20)

Recalling that v ∈ C([0,∞[×Ω), we denote, for any T > 0, by m := m(T ) the minimum of v on
[0, T ]× Ω, and using the upper bound in a), we deduce from (20) that the following estimate holds
on [0, T ]:

d

dt

∫
Ω

[(u−)2 + (v−)2]dx ≤ max(ρ−m, 1)

∫
Ω

[(u−)2 + (v−)2]dx.

Since u(0, ·) ≥ 0 and v(0, ·) ≥ 0, Gronwall’s Lemma allows us to conclude that :∫
Ω

[(u−)2 + (v−)2] ≤ 0.

Hence, u, v ≥ 0 on [0,+∞[×Ω . �2

3

3.2 Proof of Theorem 1 and Theorem 24

We prove here first the existence of weak solutions to (1), (2), (3) and (4) stated in Theorem 1, by5

constructing two Cauchy sequences (un)n≥0 and (vn)n≥0, converging in L∞loc(R+;L2(Ω)) towards u6

and v, weak solutions to our problem.7

8

Let σ, ρ > 0, let uin be a nonnegative initial datum in L∞(Ω), and vin be a nonnegative initial9

datum such that vin ≤ ρ. We first define uinn and vinn , a sequence of approximated nonnegative10

and C0,α (on Ω, for some α ∈]0, 1[) initial data satisfying 0 ≤ uinn ≤ µ := ||uin||L∞(Ω) and 0 ≤11

vinn ≤ ρ, and such that uinn and vinn converge towards uin and vin a.e. Moreover, we assume that12

||uinn −uin||2L2(Ω) + ||vinn −vin||2L2(Ω) ≤ 1/(n!). For all (t, x) ∈ [0,+∞[×Ω, we then define two sequences13

(un)n≥0 and (vn)n≥0 by:14 

∂tun+1 − σ∆xun+1 = −Q(un+1, vn) in ]0,+∞[×Ω

∂tvn+1 = Q(un, vn+1) in ]0,+∞[×Ω
∂un+1

∂ν
= 0 on ]0,+∞[×∂Ω

un+1(0, .) = uinn+1 in Ω

vn+1(0, .) = vinn+1 in Ω,

(21)
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with1

u0(t, x) = uin0 (x) and v0(t, x) = vin0 (x) ∀(t, x) ∈ (0, T )× Ω. (22)

Note that those functions are well defined and C0,α (on Ω, and for α ∈]0, 1[ introduced in the2

assumption of the theorem). Indeed, thanks to an induction, the first equation can be seen as a3

linear heat equation in un+1 with a C0,α coefficient (ρ− vn)F (vn) and a C0,α source term −vnG(vn),4

with un+1, ∂tun+1, ∂xiun+1, ∂xixjun+1 in C0,α, see [7], and the second one can be seen as a Riccati5

ODE in vn+1, where x is a (C0,α regular) parameter.6

As a consequence, using the properties of the heat equation, ∂tun+1, ∂xiun+1, ∂xixjun+1 are con-7

tinuous on [0,+∞[×Ω, and even C0,α on the same space. The same obviously holds for ∂tvn+1.8

9

We prove that (un)n≥0 and (vn)n≥0, defined by (21) and (22), are two Cauchy sequences in10

L∞loc(R+;L2(Ω)), converging to u and v (in the same space), which are weak solutions to (1), (2), (3)11

and (4). We first need some technical results.12

Proposition 4 Let un and vn be defined by (21) and (22). Then, under the assumptions of Theorem13

1, both functions un and vn satisfy the bound (7), that is:14

∀ (t, x) ∈]0, T [×Ω, 0 ≤ un(t, x) ≤ µ+ ρt and 0 ≤ vn(t, x) ≤ ρ. (23)

Proof:15

This proposition can be proven by induction using the same arguments as in the proof of Prop. 1. �16

17

18

We introduce now a final time T > 0 (the estimates that we shall present will all blow up when19

T → +∞). For the sake of simplicity, for n ∈ N∗ and t ∈]0, T [, we define by Un(t) and Vn(t)20

the following squares of L2-norms: Un(t) := ‖un+1(t, ·) − un(t, ·)‖2
L2(Ω) and Vn(t) := ‖vn+1(t, ·) −21

vn(t, ·)‖2
L2(Ω). Hence:22

Un(t) =

∫
Ω

|un+1(t, x)− un(t, x)|2dx , Vn(t) =

∫
Ω

|vn+1(t, x)− vn(t, x)|2dx. (24)

We first show the following technical estimate:23

Proposition 5 Under the assumptions of Theorem 1, there exists a constant k > 1 (depending only24

on F,G, ρ, T and µ), such that for all n ∈ N∗ and t ∈]0, T [ :25

U ′n(t) ≤ 3k Un(t) + k Vn−1(t), (25)

and26

V ′n(t) ≤ 3k Vn(t) + k Un−1(t). (26)
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Proof :
The assumption of Lipschitz-continuity of F,G on [0, ρ] implies that the function (r, s) 7→ Q(r, s)
(defined by (2)) is a Lipschitz-continuous function on [0, γ]× [0, ρ], where

γ = µ+ ρT.

Therefore there exists a constant k > 1 such that for all ((r, s), (r′, s′)) ∈ ([0, γ]× [0, ρ])2 :1

|Q(r, s)−Q(r′, s′)| ≤ k(|r − r′|+ |s− s′|). (27)

Since both functions un and un+1 satisfy (21), we have :2

∂t(un+1 − un)− σ∆(un+1 − un) = −Q(un+1, vn) +Q(un, vn−1) (28)

in ]0, T [×Ω. Multiplying (28) by (un+1 − un) and integrating on Ω, we obtain for all t ∈]0, T [ :3

1

2

d

dt

∫
Ω

(un+1 − un)2dx+ σ

∫
Ω

|∇(un+1 − un)|2dx (29)

=

∫
Ω

(Q(un, vn−1)−Q(un+1, vn)) (un+1 − un) dx.

Thanks to (27) and (24), we deduce from (29) that:

1

2
U ′n(t)≤ k

∫
Ω

(|un+1 − un|+ |vn − vn−1|) |un+1 − un|dx

≤ k

∫
Ω

|un+1 − un|2dx+
k

2

∫
Ω

(
|vn − vn−1|2 + |un+1 − un|2

)
dx

≤ 3k

2
Un(t) +

k

2
Vn−1(t),

which implies (25). The proof of estimate (26) is almost identical since the second term of the first4

member of (29) doesn’t play any role in the proof above. �5

6

7

The differential inequalities (25) and (26) yield upper bounds for Un and Vn thanks to a variant8

of Gronwall’s lemma explained below:9

Proposition 6 Under the assumptions of Theorem 1, we have for all n ∈ N∗ and t ∈]0, T [ :

(Un + Vn)(t) ≤
n−1∑
q=0

4 e3k T

q! (n− q)!
(k e3k T t)q + (2 ρ2 + 2 (µ+ ρ T )2) |Ω| (k e

3k T t)n

n!
,

where k ≥ 1 is the Lipschitz constant of Q defined in (27), and |Ω| is the Lebesgue’s measure of Ω.10
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Proof:1

We first treat the case when uin, vin ∈ C0,α(Ω) (for some α ∈]0, 1[), so that one can take uinn = uin,2

vinn = vin, and Un(0) = Vn(0) = 0.3

We observe that for t ∈ [0, T ], n ≥ 1,

(Un + Vn)′(t) ≤ 3k (Un + Vn)(t) + k (Un−1 + Vn−1)(t),

so that a first application of Gronwall’s lemma yields (for t ∈ [0, T ], n ≥ 1, and remembering that
Un(0) = Vn(0) = 0),

(Un + Vn)(t) ≤ k e3k T

∫ t

0

(Un−1 + Vn−1)(s) ds.

A direct induction shows then that

(Un + Vn)(t) ≤ (k e3k T t)n

n!
sup
s∈[0,T ]

(U0 + V0)(s).

Note finally that (for t ∈ [0, T ]),

(U0 + V0)(t) =

∫
Ω

(
|u1 − u0|2 + |v1 − v0|2

)
dx

≤ (2 ρ2 + 2 (µ+ ρ T )2) |Ω|.
We now briefly explain how to proceed when we don’t assume anymore the identity uinn = uin, vinn =
vin, but only the estimate ||uinn −uin||2L2(Ω) + ||vinn − vin||2L2(Ω) ≤ 1/(n!). Then Un(0) +Vn(0) ≤ 4/(n!),
so that

(Un + Vn)(t) ≤ 4 e3k T/(n!) + k e3k T

∫ t

0

(Un−1 + Vn−1)(s) ds.

A direct induction shows then that (for t ∈ [0, T ])

(Un + Vn)(t) ≤
n−1∑
q=0

4 e3k T

q! (n− q)!
(k e3k T t)q + (2 ρ2 + 2 (µ+ ρ T )2) |Ω| (k e

3k T t)n

n!
.

�4

5

We now can prove that (un)n≥0 and (vn)n≥0 are Cauchy sequences in L∞([0, T ];L2(Ω)), as well6

as Theorem 1.7

8

Proof of Theorem 1 :
Let t ∈]0, T [. We have for all (n,m) ∈ (N∗)2, n > m :

‖un(t, .)− um(t, .)‖L2(Ω) ≤
n−1∑
j=m

‖uj+1(t, .)− uj(t, .)‖L2(Ω) ≤
n−1∑
j=m

(Uj(t))
1/2.
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We deduce that (for some constant C > 0 depending on T and the data of the problem)

‖un(t, .)− um(t, .)‖L2(Ω) ≤ C

n∑
j=m+1

(
(max(1, ke3kTT ))j

([j/2]− 1)!

)1/2

.

Since
∑∞

j=2

(
(max(1,ke3kTT ))j

([j/2]−1)!

)1/2

converges, we see that (un)n≥0 is a Cauchy sequence in L∞([0, T ];L2(Ω)).

Similarly we get that (vn)n≥0 is a Cauchy sequence in L∞([0, T ];L2(Ω)). Therefore, there exist two
functions u and v in L∞loc(R+;L2(Ω)) such that for all T > 0 :

‖un − u‖L∞([0,T ];L2(Ω)) → 0 , and ‖vn − v‖L∞([0,T ];L2(Ω)) → 0.

Using now the boundedness and Lipschitz-continuity of F , G and v 7→ ρ − v on [0, ρ], we see that1

Q(un+1, vn) as well as Q(un, vn−1) converges to Q(u, v) in L∞loc(R+;L2(Ω)). It is then clear that one2

can pass to the limit in all the terms defining the weak solutions defined in Theorem 1. �3

4

We now present the5

Proof of Theorem 2 :6

We first prove uniqueness. Let (u1, v1) and (u2, v2) be two classical solutions (that is, such that7

ui, ∂tui, ∂xkui, ∂xkxl ∈ C([0,+∞[×Ω) for k, l = 1, .., n and vi, ∂tvi ∈ C([0,+∞[×Ω)) of:8 

∂tui − σ∆xui = −Q(ui, vi) in ]0, T [×Ω,

∂tvi = Q(ui, vi) in ]0, T [×Ω,
∂ui
∂ν

= 0 on ]0, T [×∂Ω,

ui(0, .) = uin in Ω,

vi(0, .) = vin in Ω,

(30)

for i = 1, 2. Then9

∂t(u1 − u2)(u1 − u2)− σ∆x(u1 − u2)(u1 − u2) = [Q(u2, v2)−Q(u1, v1)](u1 − u2),

and
∂t(v1 − v2)(v1 − v2) = [−Q(u2, v2) +Q(u1, v1)](v1 − v2)

on (0, T )× Ω. Integrating both equalities and using an integration par parts, we obtain

1

2

d

dt

∫
Ω

(u1 − u2)2dx+ σ

∫
Ω

|∇x(u1 − u2)|2dx+
1

2

d

dt

∫
Ω

(v1 − v2)2dx

=

∫
Ω

[Q(u1, v1)−Q(u2, v2)][(v1 − v2)− (u1 − u2)]dx.
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We recall (cf. proof of the previous theorem) that Q is Lipschitz-continuous on [0, umax] × [0, ρ] for1

all umax > 0, so that when t ∈ [0, T ], using umax := supt∈[0,T ] ||u(t, ·)||∞, we can write2

|Q(u1, v1)−Q(u2, v2)| ≤ K1(|u1 − u2|+ |v1 − v2|). (31)

Thus,
1

2

d

dt

∫
Ω

[(u1 − u2)2 + (v1 − v2)2]dx ≤ K1

∫
Ω

[(u1 − u2)2 + (v1 − v2)2]dx.

But u1(0, x) = u2(0, x) and v1(0, x) = v2(0, x) for all x ∈ Ω, so that thanks to Gronwall’s Lemma, we3

get the identities u1 = u2 and v1 = v2 on [0, T ]. Since T can be taken arbitrarily large, this concludes4

the proof of uniqueness.5

We now show that under the extra assumptions on the regularity of initial data, the weak solution6

(u, v) obtained in the previous theorem is in fact classical.7

Indeed, we already know that Q(u, v) ∈ L∞([0, T ]× Ω) for all T > 0. As a consequence, thanks8

to maximal regularity estimates, we get that ∂tu, ∂xiu, ∂xixju ∈ Lp([0, T ] × Ω) for all p ∈ [1,+∞[,9

T ≥ 0. Then u ∈ C0,α(Ω) for some α ∈]0, 1[. But v now solves for all x a Riccati equation, and10

the dependence of the parameters of the equation w.r.t. x is of class C0,α(Ω). Thanks to the as-11

sumption on the initial datum vin, we get that v ∈ C1(R+;C0,α(Ω)). As a consequence, we see that12

Q(u, v) ∈ C0,α(Ω), and finally thanks to Schauder’s estimates, we get that ∂tu, ∂xiu, ∂xixju ∈ C0,α(Ω),13

so that (u, v) is a classical solution of the system. �14

15

4 Stability of solutions16

We consider in this section the behavior of the stationary problem (9). In particular, we prove17

Propositions 2 and 3, concerning the existence of stationary solutions to (9) and their stability.18

Proof of Proposition 2 : Multiplying the first equation in (9) by u, integrating over Ω and applying19

Green formula, we obtain that its solution u must be spatially homogeneous : u(x) = U ∈ R, ∀ x ∈ Ω.20

21

Let us now define the following real-valued function h := h(v) for v ∈ [0, ρ[ :

h(v) =
v G(v)

(ρ− v)F (v)
.

Considering the behavior of the function v 7→ h(v) + v−C at the boundaries of the interval [0, ρ[, we22

have : h(0) + 0− C = −C < 0 and limv→ρ− [h(v) + v − C] = +∞. Thanks to the continuity of h on23

[0, ρ[, we conclude that there exists at least one V ∈]0, ρ[, such that : h(V ) + V = C. Remembering24

the definition of h and defining U := h(V ) = C − V , we end up with the sytem (10).25
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We now compute (remembering that F and G are assumed to be of class C1 by parts),

h′(v) =
ρF (v)G(v) + v(ρ− v) (F (v)G′(v)− F ′(v)G(v))

(ρ− v)2F (v)2
.

We see therefore that if (14) holds, then h′(v) + 1 > 0 for all v ∈ [0, ρ[, so that v 7→ h(v) + v − C is1

strictly increasing in ]0, ρ[, concluding the proof of uniqueness.2

Let us now assume that for some real number U > 0, there are at least two distinct real numbers
V1 ∈]0, ρ[ and V2 ∈]0, V1[ such that (13) holds and C − U ∈]V2, V1[. Then, for any A measurable
subset of Ω, the couple (u(x), v(x)) = (U, V1 1A(x) + V2 1Ac(x)) clearly satisfies ∆xu = 0 and ∂u

∂ν
= 0

on ∂Ω. It also satisfies Q(u, v) = 0 and, thanks to the assumption that C − U = V1
|A|
|Ω| + V2

|Ac|
|Ω| , one

can check that ∫
Ω

(u(x) + v(x)) dx = C |Ω|.

�3

4

5

In Proposition 3, we study the stability of a given spatially homogeneous stationary solution6

(U, V ). Its proof is detailed below.7

Proof of Proposition 3 : We first study the stability of a given couple of real numbers (U, V ) such
that U > 0, V ∈]0, ρ[ which is an equilibrium for the system of two ODEs (15), i.e. such that (10)
holds.

First, because of the conservation law
d

dt
(u+ v) = 0, we observe that the system (15) rewrites

v̇ = (C − v) (ρ− v)F (v)− v G(v) =: q(v),

where C = u(0) + v(0).
Computing

q′(v) = −(ρ− v)F (v)− (C − v)F (v) + (C − v) (ρ− v)F ′(v)− v G′(v)−G(v),

and observing that (C − V ) (ρ− V )F (V ) = V G(V ), we get

q′(V ) = V
F ′(V )G(V )− F (V )G′(V )

F (V )
− ρ

ρ− V
G(V )− (ρ− V )F (V ),

so that q′(V ) < 0 is equivalent to (14) (and q′(V ) > 0 is equivalent to (16)).8

We thus get the result of stability for the ODE system (15) stated in the proposition.9

We then turn to the linear stability of the system (1), at a given spatially homogeneous equilibrium10

(U, V ) such that U > 0, V ∈]0, ρ[ (that is, a couple satisfying (10)).11

12
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We first compute
A := ∂uQ(U, V ) and B := ∂vQ(U, V ),

remembering that U is related to V by (10). We get :

A = (ρ− V )F (V ) > 0,

B =
−V (ρ− V ) (F (V )G′(V )− F ′(V )G(V ))− ρF (V )G(V )

(ρ− V )F (V )
.

Denoting for k > 0 by λk > 0 the k-th eigenvalues of −∆ on Ω with homogeneous Neumann boundary
conditions, we see that the matrix associated to the k-th mode in the linearization of (1) around
(U, V ) is

Mk :=

(
−A− σ λk −B

A B

)
.

Note that its trace is Tr(Mk) = −A+B − σ λk and its determinant is Det(Mk) = −σ λk B.1

Assume now that (18) holds. Then if (16) also holds, we already know that (U, V ) is linearly unstable2

for the system of ODEs (15), so that it is a fortiori unstable for the system of PDEs (1). If (16) does3

not hold, we see that −A + B ≤ 0 (this is in fact equivalent). Thus, Tr(Mk) < 0 and, since (18) is4

equivalent to B > 0, Det(Mk) < 0 (for any k ≥ 1), so that (U, V ) is linearly unstable for the system5

of PDEs (1).6

Assume finally that (17) holds. This is equivalent to say that B < 0. Remembering that A > 0, we7

get that for any k ≥ 1, Tr(Mk) < 0 and Det(Mk) > 0, so that (U, V ) is linearly stable for the system8

of PDEs (1). �9

10

11

5 Numerical illustrations12

We present here a few simulations for equations (1), (2), (3), when the functions F and G are given13

by formulas (19). The numerical values of the parameters that we consider are σ = 3.3 · 10−2, ρ = 1,14

and15

• Case 1: a = 0.5, α = 1,16

• Case 2: a = 0.005, α = 1.8.17

We also use the domain Ω = [0, 10]× [0, 10] and the initial data18

vin(x) = V + 10−3

4∑
i=1

exp

(
(x− xi)2

10−4

)
, uin(x) = 1− 1

|Ω|

∫
Ω

vin(x) dx, (32)

with xi, for i = 1, . . . 4, approximatively the following points : (2.5, 2.5), (2.5, 7.5), (7.5, 2.5) and19

(7.5, 7.5), and so that the parameter C defined by (6) is C = 1.20



[Degenerate parabolic system and aggregation]

We use an explicit centered discretization for the Laplace operator, choose a space step ∆x = 0.051

on both directions x1 and x2, and define the time step ∆t =
0.1∆x2

4σ
, so that the CFL condition is2

satisfied.3

We start with Case 1. We look for the solutions of (10). We find U ∼= 0.5964596 and V ∼=4

0.4035404. Then we check the condition (17), and see that it is fulfilled.5

We present the results obtained numerically in this case. More precisely, we present the curves6

w.r.t. time of t 7→ minx∈Ω u(t, x) and t 7→ maxx∈Ω u(t, x) in figure 1, and the curves w.r.t. time7

of t 7→ minx∈Ω v(t, x) and t 7→ maxx∈Ω v(t, x) in figure 2. As can be seen, one can conjecture that8

exponential convergence towards (U, V ) holds in this case.9

Figure 1: Time evolutions of minx∈Ω u(t, x) and maxx∈Ω u(t, x). Both curves converge to the value
0.5943519.
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Figure 2: Time evolutions of minx∈Ω v(t, x) and maxx∈Ω v(t, x). Both curves converge to the value
0.4015822.

Moreover, since in figure 1 the curves showing max(u(t)) and min(u(ut)) are almost indistinguish-1

able in figure 3, we show the difference max(u(t))−min(u(t)) (this difference is in fact smaller than2

1.3 · 10−5).3
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Figure 3: Time evolution of maxx∈Ω u(t, x)−minx∈Ω u(t, x).

Case 1 corresponds to a situation in which a (linearly) stable homogeneous steady state exists for1

the system of PDEs. The numerical simulation illustrates this fact, and suggests that this stability2

is also nonlinear, global, and exponential.3

We now turn to Case 2. We look for the solutions of (10). We find U ∼= 0.4496058 and V ∼=4

0.5503942. Then we check the condition (17), and see that it is not fulfilled. In fact, two others5

equilibria appears for V , V ∗1
∼= 0.0073564 and V ∗2

∼= 0.7526096, with a corresponding U∗ ∼= 0.45369216

for both case. One can check that (13) holds for these values.7

We present the results obtained numerically in this case. More precisely, we present the curves8

w.r.t. time of t 7→ minx∈Ω u(t, x) and t 7→ maxx∈Ω u(t, x) in figure 4 and the curves w.r.t. time of9

t 7→ minx∈Ω v(t, x) and t 7→ maxx∈Ω v(t, x) in figure 5.10



[L. Desvillettes, M. Grillot, P. Grillot. S. Mancini]

Figure 4: Time evolutions of minx∈Ω u(t, x) and maxx∈Ω u(t, x). Both curves converge to the value
U∗ ∼= 0.4536921.

Figure 5: Time evolutions of minx∈Ω v(t, x) and maxx∈Ω v(t, x). The minx∈Ω v(t, x) curve converges
to the value V ∗1

∼= 0.0073564, while the maxx∈Ω v(t, x) one converges to V ∗2
∼= 0.7526096.

We clearly see in figure 6 that a pattern appears for v when t → ∞, corresponding to a state1
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described at the end of Prop. 2, with U∗, V ∗1 , V
∗

2 described above. Thus, the numerical simulation1

illustrates the theoretical results showing the linear instability of homogeneous steady states in this2

case. We recall, see [9] for more details, that the patterns that are observed are coherent with the3

experiments in which aggregation of cadherines occurs.4

Figure 6: The bi-dimensional distribution v(T, x) for T very large. Patterns induced by the initial
data defined by (32) clearly appear.

In conclusion, the numerical tests that we present are in agreement with the linear stability study5

described by Propositions 2 and 3. Moreover, various numerical tests (not presented in this work)6

show that the kind of patterns that we get strongly depends on the initial data (uin(x), vin(x)).7
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