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ABSTRACT. In the continuation of [DF05], we study reversible reaction-diffusion
systems via entropy methods (based on the free energy functional). We show
for a particular model problem with two reacting species in which one of the
diffusion constants vanishes that the solutions decay exponentially with explicit
rate and constant towards the unique constant equilibrium state.

1. Introduction. This work contributes to a quantitative analysis of the large-
time behaviour of diffusive and reversible chemical reactions (on bounded domains
Q C RN, N > 1) of the type

a1 Ay 4t aghy = P+ 4 B Ay i, i €Ly

Our method quantifies the decay of an entropy functional (here the physical free-
energy) in terms of a relative entropy (with respect to the entropy minimising
equilibrium state). This method, frequently called entropy method, is an alterna-
tive to the linearisation around the equilibrium, and has the advantage of being
quite robust. This is due to the fact that it mainly relies on functional inequalities
which have no direct link with the original PDE. We refer to [DF05, DF06] for com-
ments and links to the vast literature on reaction-diffusion systems e.g. [Zel, CHS,
Mas, Rothe, Ama, Web, Mor, FMS, HY88, HY94, FHM, MP] and for references
concerning the entropy method e.g. [Gro, GGH, GH, CJMTU, DV01, DV05, FNS].

Here in particular, we study a nonlinear model problem consisting of two dif-
fusive chemicals reacting like 2.4 = B (according to the principle of mass action
kinetics) within a smoothly bounded domain €2, and subject to homogeneous Neu-
mann boundary conditions: Denoting by a,b the concentrations of 4 and B, our
scaled model system (see [DF03]) reads (after adimensionalizing) as

3a—daA£a = —2a2_b
5tb—dbeb = az(_b )} zeQ, [Q=1, (1)
n(z)-Voa=0, n(z)Vzb=0 x € 09Q. (2)
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The diffusion rates d, > 0, dp, > 0 are nonnegative constants.
As initial data, we take two nonnegative L (Q) functions ag(z) > 0, bg(z) > 0.
The flow of equations (1) — (2) conserves the total mass (assumed positive)

0< M :/ﬂ(a(t,r)—i—?b(t,m)) de = /ﬂ(ao(m)—}—Qbo(CL‘))dCL‘. (3)

Under the assumption that either d, > 0 or dp > 0, the conservation law (3) deter-
mines the unique positive equilibrium state (@, boo) as the nonnegative constants
satisfying ao, + 2boo = M and ago = beo, 1.€.

oo = (1 + VIF8M)/4, by = (M —am)/2. (4)

Global existence of a unique classical solution to (1) — (3) is well known and is a
consequence of the following L°°-bound : for all ¢ > 0 and z € ,

L
0<a(tz) <L, 0<b(ta)<5, L= laolls +2[bollc (5)

This is shown either by the maximum principle applied to the single equations (see
e.g. [Kir]) or by comparison with the diffusionless system (see e.g. [BH]).
We consider as entropy functional the physical free energy of (1) — (2):

E(a,b):/(a(lna—1)+b(lnb—1)) dz . (6)
Q
Assuming positive diffusion rates, we have shown in [DF05, theorem 1.1]:

Proposition 1. Let Q be a smoothly bounded domain in RN (N > 1), and d, > 0,
dy > 0. Let the initial data ag, by € L () be nonnegative functions with positive
mass fﬂ(ao +2bg)dz = M > 0 and denote L = ||ao||co + 2||b0||cc. Then, the unique
nonnegative solution in L (R x Q)? of equations (1) — (3) decays exponentially
in L toward the equilibrium state (4) :

1
g lla(t, ) = acollL ) + 115t ) = beollZsq (7)

41 H dg
< Cy M (B(a, bo) — B(azo, b)) ¢ ot min{t prestiraeran )

where P(Q) denotes the Poincaré constant of Q, Cq(L, M) is stated explicitly in
(13), C5(M,dy/dp) in the appendiz, and Cy ~ 1.51.

Remark 1. In fact, exponential decay in all Sobolev norms follows from the smooth-
ing properties of the heat kernel after interpolating the exponential L' decay with
polynomially growing in time estimates of a and b in H® with s large enough (see

[DF06] ).

The aim of this work is to show exponential decay to equilibrium state (4) in the
cases of degenerate diffusion rates d, > 0,dp, = 0 or d, = 0,dp > 0. We obtain this
result by deriving functional inequalities (lemma 3 and lemma 4) which quantify
how the reaction term transfers diffusion from one specie to the other.

We remark that these functional inequalities are not linked to the considered
particular system, and are thus expected to be applicable for more general systems.
It is for the sake of clarity that we present them in the context of the particular
system (1)—(2).

We prove the two following theorems:
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Theorem 1 (Degenerated Diffusion dp, = 0). Let the assumptions of proposition 1
hold except that dy = 0. Then,

1
3 lla(t, ) = acoll sy + 1Bt ) = beoll1sq)

_ COs(da,L,P) ,
< ClM(E(ao,bo) _E(aoo;boo))e C3(L, M) (8)
where Cy = 1.51, Cy is stated in (13) and C' is estimated explicitly in the appendiz.

Theorem 2 (Degenerated Diffusion d, = 0). Let the assumptions of proposition 1
hold except that d, = 0. Then,

1
2 la(t, ) = acollZ1(qy + [16(t,-) = bos |21 ()
_ Celdp/P(Q),M) ,
S ClM(E(ao,bo) _E(aoo,boo))(:’ Co(L,M) (9)
where Cy = 1.51, Cy is stated in (13) and Cs is estimated explicitly in the appendiz.

Notation: We shall indifferently denote A; for A and As for B whenever it is
convenient and use capital letters for writing the square roots, i.e. A; = \/a;,
i=1,2.

2. Sketch of the proof of proposition 1. We recall here briefly the proof of
proposition 1, detailed in [DF05].

Proof of proposition 1. For (1)-(2), we calculate readily that

%(E(a(t): b(1)) = E(deo, boo)) = — D(a(?), b(1)) , (10)

with D(a, b) denoting the nonnegative entropy dissipation functional

2 B2 2
D(a,b):dafmdx—kdb/mdr—i—/(aQ—b)lna—dr. (11)
a a o b Q b
Then, the following entropy entropy-dissipation lemma holds

Lemma 1. For all (measurable} functions a,b : Q — R, which satisfy 0 < a < L,
0<h<i andfﬂ(a+2b):M,

27

D) > oty {1 gy entagayar | (FleD) — Blass b)), (12

where P(Q) is the Poincaré constant of , the equilibrium states ac, boo are given
by (4), and the constant Cay(L, M) is defined as follows: we introduce the function

®(z,y) = (z (In(x) — In(y)) — (= — v))/ (V& — \/¥)?, which is continuous on (0, c0)?
with ®(z,z) = 2. [DF05, lemma 2.1]. Then

CQ(L,M):max{q)(i%.:w,q) <§bw>} . (13)

Moreover, C3(M,d,/dy) = Cs(y) with C3(vy) as define in (17) and for v chosen
below in (18). C3(M,dy/ds) is stated explicitly in (35) in the appendiz.
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Proof of lemma 1. The proof is outlined in three steps : Firstly, we estimate below
the entropy dissipation D(a, b) using the identity |V a;|?/a; = 4 |V, A;|? (with 4; =
Vai, i = 1,2) and Poincaré’s inequality as well as the inequality (a — b)(In(a) —
In(b)) > 4(A — B)?. We obtain in this way the estimate:

4dg7

D<a,b>z4||A2—B||§+%||A—Zn§ als-3lL.

where A(t) = [, A(t,z) dz and B(t) = [, B(t, ) dz (recall that |Q| = 1).
Secondly, the continuity of the functlon (I)(.Z‘ ) (see [DF05, lemma 2.1]) and the
L* bound (5) imply an upper bound for the relative entropy

B(a,b) = E(aeo, boo) < Ca(L, M) (A% |4 = Aol + 1B = Beoll3) (15)

with Cy(L, M) given in (13). Finally, using crucially the conservation of mass (3),
equation (15) can be estimated further as (see [DF05, lemma 2.2])

1 — _
G, (P(@:b) = Blac, beo)) < 4% = BI3 + CsllA = Al + Cul| B~ B3, (16)
with the constants (for some v > 0 to be chosen)
Aco
Cs(y) = Ay, Caly) =4Bo +1+ - (17)
Finally, we choose v such that C5/C4 = d4/dp which matches (16) to (14), i.e. we
set
d, 1 dz 1\ d,
2Ac0 + ——— 200 + ——— — 18
7= db< SRy )+\/d2< +2A)+db’ (18)
and the constant Cs(M,d,/dy) (see (35) in the appendix) as used in the lemma is
Cs(7) with (18). O

Then, lemma 1 together with the entropy relation (10) implies exponential con-
vergence of the relative entropy, i.e.

E(a(t), b(t)) = B(deo, beo) < (E(ao, by) — E(ace, boo)) e~ 22 mnllmtizs) (1)

Finally, the statement of proposition 1 is a consequence the following analog
to the Cziszar-Kullback-Pinsker inequality ([Csi] and [Kul]) in information theory
(which we do not prove here):

Lemma 2. For all (measurable) functions a,b:Q — R such that 0 < a, 0 < b and
Jola+2b) =M

1
CoM (Bl )~ Blaw b)) 2 (G la=amlf 40 -balf), (20)

where C1 = (6 4+ 2v/2)/(3 + 2v2) ~ 1.51, and a,, boo are defined in (4).
This completes the sketch of the proof of proposition 1. O

Obviously the above argument fails if either d, = 0 or dp = 0, since the right-hand
side of (14) lacks a term to match (16). In the following, we fix that by deriving
functional inequalities, which - colloquially speaking - produce spatial diffusion in
terms of ||A; — A;||2, i = 1,2 lacking in (14) at the costs of the reaction dissipation
term ||A? — B||2 and the spatial diffusion ||A; — A;||2, j # i present in (14).
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In the sequel, we first consider the case d, = 0 and then the case d, = 0. For the
first case, we show a short proof using the L*°-bounds (5) available for this model.
But since L°°-bounds are not available in general, we show for the second case a
proof using only the conservation of mass (3). This proof is somewhat lengthy but
uses only elementary tools.

3. Proof of theorem 1. We begin by proving the

Lemma 3. Let A, B denote the square roots of (measurable) nonnegative functions
a, b satisfying the global bound (5). Then,

Cr||A* — B3 + Cs[|A = A3 > ||B - B3 (21)
for all 6 € [0,1) and with the constants
2 16L
C7;(0) = —— Cs(L,0) = . 22
0= g Galld) = (22)

Proof of lemma 3. For 0 € [0,1), we expand ||A% — BJ|3 as

|A?~B+B-B|} = ||A2—§||§+29/(A2—§)(B—B)dx
Q
+2(1—9)/Q(A2 _T)B-B)de+|F-BI.

where we have used that [, B(B - B)dx = fa i (B — B)dz = 0. Estimating both

integrals with Young’s inequality (i.e. 2zy > —y~'2? — yy? with y = @ for the first

integral, and y = (1 + 0)/2 for the second), and comparing the coefficients with

(21), the following inequalities have to be satisfied:

2C7(1 - 0)
146

1+0

Csl[ — All3 - 42 =20, Co(-0* —(1-0)—" 1) > 1.

Using the global bound (5) to obtain [|A? — Zzng < AL||A — Al|2, we are led to use
the constants (22). O

Continuation of the proof of theorem 1. Let assume firstly that %a < 8L, which

means that (for § = gfﬁlja and therefore C7 = %ﬁ) the fraction C7/Cs of

the constants (22) matches with the coefficients of
dg —
D > 4]|A* - B3 + 454~ All3.

Then, we may estimate (for all u € (0, 1))

d — (8L P)? -
D > 4u||A?— B||2 +4u—2||A — A2 +4(1 — p)——L||B — B||?
> 4llA* = BIE + 4|4 = Al + 401~ ) g7 55318 — Bl
Cs
> 2(FE-E.).

In the second case %‘1 > 8L, we estimate instead as follows :

d, -
D > 4p||A” = Bl3 +4(5 — (1 - p8L)[|A - All3
+4(1 = p)[|A” = BJ3 + 4(1 — p)8L||A - A3,
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and the second line is bounded below by 2(1—pu)||B— B||2 via lemma 3 (with 6 = 0),
which leads to the constant (36) in this case.

In order to conclude, it remains to apply Gronwall’s lemma and the Cziszar-
Kullback inequality. O

4. Proof of theorem 2. We now consider the case d, = 0:

Lemma 4. Let A, B denote the square roots of (measurable) nonnegative functions
a, b satisfying the conservation law (3). Then, for all n < 1,

n+1

1
anllAz—BH%Jr ——Col|B - Bl > [|[A- 4|3, (23)

1—

with the constant Co(M) defined by (here, one can take any v > 1 in order to
optimise this constant):

v 2 v

1 2
— - = 2 _ - = _ -
Cg(M)_max{y 1’ » 1,21/ M+v 7’ 41/ +1/ }

PT‘OOf_Of lemma 4. The proof deals with th_ree cases: 1) s ”big” Qa) is ”small”
and A2 is “small”, 2b) B is "small” and A? is ”big”.

1) For B ”big”, we apply the ansatz (pointwise for all z € Q)
A%(z) = B(146(x)), dz)e[-1,00), VzeqQ. (25)
Then, after expanding ||A? — B||2 as

B—B+Bo|2=B-B|2+ QE/ 5(B = B)de + B9,
Q
and using Young’s inequality for the above integral:
23/6(B—B)d;r2—< )||B—B||§—3762,
Q

l+n—n?
we get for the left hand side of (23) the following estimate

— — — 95— —
£5Co (1B = B3+ 2B fﬂa (B - B)de +B°57) + 104 || B - B

> (g

1B’ > CB 97, (26)

since (1+n)/(1+n—n?) > 1. Next, for the right hand side of (23), we Taylor-expand
A=VBJT1+3dforall z€Q as

Vi SRR R(:):ﬁ, (@) e0.6()],  (27)

and observe that R({(d)) is monotone decreasing on § € [—1,00) with R(—1) = 4
and R(oo) = 0. We obtain therefore for the right hand side of (23) that

=2
JT_7A: _ |/ T _ R = 0 loe 1o 1 ==
AZ-4° = B(1+9) B(1—|—6+4 JPR— 3R+ R
B-—— B —— Bé— —(—- BS
< =42 —§42 < Bé24+—02<62 | B+ —
= 7oty = Tt s < + 2)
—2 —
_M-B'+B
e (28)
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since R < 4 and since Bd = A2— B=M — B2 - B < M-B — B by Jensen’s
inequality. Finally, by (26) and (28), equation (23) holds for

1M —-B +B
C19 Z o —9 + 3 (29)
2 B
and we have to find a different way of estimating in the case that B is small.
2) As a preliminary step, we see that
|4* = Bll; = |l4°> =Bl + 2/ (A* = B)(B - B) dx +||B - Bl
Q
— 1 —
> (-l - B (5 -1) 15 - Bl
by Young’s inequality, and, hence, that it is sufficient to show that
Col|A* = Bll3 + Co||B = B3 > [|A — AJl3. (30)

Expanding and estimating further by Jensen’s inequality (A% > A2"), it is sufficient
that

A?
Cy >

2 - (31)
A2° 9B A? 4 B?

2a) Let us firstly assume that A% < M/2. Then, in (31), we may neglect the
quadratic term F2 > 0 and use the conservation law B2 = M — A? to estimate
(assuming B < 1/2v)
A? 1 1 v
S— — < — < <
—9BAZ4+ M —A?2 ~ —1/v+MJ/A2 -1~ —1/v+1 - v-1

for B<1/2v.
(32)

2b) In the case when A% > M/2, we neglect B2 > 0 and estimate (assuming
2B < M/2v < A?/v)
1 1 2 v
== < = < ==
AT 9B A2(1—1/v)  Mv—1
Combining the cases, we obtain from (32) and (33) the first two contributions
for the constant Cy (24), which covers the case B < min{1/2v, M/4v}. In the other

case, inserting B > min{1/2v, M/4v} into (29) leads to the last two terms in (24).
This concludes the proof of lemma 4. O

for B < M/4v. (33)

Continuation of the proof of theorem 2. By lemma 4, we have

1—n? — 1—n —
1A% = B3 + 1B =Bl > —5—Il4 = Al
9
Then, if we chose 7n; such that %b = 1;—??, ie.

dy &
=2l 4
mE=Tgp Vit (34)
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we obtain, for any p € (0, 1),

D

v

I1—m — dy —
4ul|A* — B3 4+ 4(1 — p) c 14— A3 + g B~ B3

v

Cs (147 — BIJ5 + Csl|A - All3 + C4l|B - BJJ3) ,

and estimate (15) completes the proof.
Once again, it remains to use Gronwall’s lemma and the Cziszar-Kullback in-
equality. O

5. Appendix: explicit formulas for the decay rates. In favor of the readabil-
ity of the theorems, we collect here the explicit expressions of complex constants.

5.1. add proposition 1. The constant C5(M,d,/dp) = Cs3(7) as defined in (17)
with v given in (18) and using (4), i.e.

dg \/1-}-8 d21—|—8M dg V1 +8M —1 _
@ +db 1 (35)

C3(M, dy/dy) =

5.2. add theorem 1. The constant C’5(da,L,P(Q)) is defined for all 4 € (0,1)
and vy € (0,00) as

da S8LP(Q))? 4(1-—
min {4“’ @ LR ém’ﬁ)} wy < 8L,
Cs(dg, L, P(Q)) =
T . (5 —(1-p)8L 9(1— a
mm{4,u, )C o) ’ C('4(vl3)} % > 8L,
(36)

where the constants Cs(y) and C4(7y) are defined in (17) and C; &~ 1.51. Here,
v € (0,00) and p € (0, 1) can be chosen in order to maximise C'.

5.3. add theorem 2. The constant Cs(dp/P(2), M) is defined for all u € (0, 1),
v € (0,00) and v € (1,00) as
. 1-— m 1 db }
Ces(dp/P(Q), M) = min < 4p,4(1 — 4 , 37
o(do/P(). M) = min {4 401 = ) g T Sk )

where 11 (dp/P(€2)) is the constant given in (34) and Cy ~ 1.51. Here, p € (0, 1),
v € (0,00) in C3(y) and Cy(y) defined in (17), and v € (1,00) in Cy(v) defined in

(24) can be chosen in order to maximise Cs.
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