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Abstract

We deal in this work with an asymptotics of the Boltzmann equa-
tion leading to the Fokker—Planck-Landau equation. We pr ove its
mathematical validity in the context of linearized equations and give
an extension to the Kac equation.

1 Introduction

The dynamics of a rarefied monoatomic gas is usually described by the

of B
o 0V = QU ), 1)

where f(t,z,v) is the density of particles which at time ¢ and point  move
with velocity v, and Q is a quadratic collision kernel taking in account any

Boltzmann equation,

collisions preserving momentum and kinetic energy.

When almost all collisions are grazing (i.e., when the difference between
velocities before and after all collisions is very small), phenomenological
arguments intoduced by Landau in [Li, Pi] or by Chapman and Cowling in
[Ch, Co] ensure that the solution of 1 tends to the solution of the Fokker—
Planck—Landau equation,

of



where

—v1) ® (v—11)
v — vy |?

PUD =% [ Eo-uh - )

{f(0)Vof(v) = f(0)Ve, f(v1)} dur, (3)

and I" is a nonnegative function depending only on the form of Q).

In section 2, we shall introduce an asymptotics of 1 leading to 2. More-
over, we shall compute the function I' of 3 in some simple cases.

Section 3 is devoted to the mathematical proof of the above asymptotics,
within the context of linearized equations.

Finally, we extend the previous results in section 4 to the case of the
Kac equation.

2 Grazing collisions

According to [Ce], [Ch, Co] or [Tr, Mu], the Boltzmann equation writes

of B
0Vl = QUL )

where @ is a quadratic collision kernel acting only on the velocity variable,

Q= | - @ m)@) e - e)w)

v —0

1
v — vy

—f () f(v1)} B(fv — o1, [w - |) dwdvy, (5)

and B is a nonnegative cross section.

Note that R. Illner and M. Pulvirenti have proved the validity of this
equation in the case of a two—dimensional rare gas (Cf. [Il, Pu]).

R.J. DiPerna and P-L. Lions have recently proved in [DP, L 1] that 1
admits a nonnegative global renormalized solution under suitable assump-
tions on B, including the angular cut—off of Grad (Cf. [Gr]), as soon as the
initial datum fy satisfies

[ [ b1l + ol 4 log fol dude < +ox. (6)
z€IR3 JvelR3



From now on, we shall not write down the dependance of f or ) upon ¢ and
x, since these variables play no role in the computation. We shall introduce
in (5) the following change of variables,

vV — U1 v — U1
c=2(w- w — . 7
( |v —vq] |v —v1] (7)
Its Jacobian is 1
v — U1
J =" |w- . 8
O R )

Therefore, the collision kernel () can be recast in these new variables,

Q(f, f)(v) :/UGIRB/UES2 {f(v—;m n ’v—2?)1\0)f(v—;v1 B \0—21)1]0)
—f() f(v1)} C(|v —v1l, o - ﬁ\ ) doduvy, (9)
where
4 1+Y
C(X,Y)= — B( X, T) (10)

The angle ¢ measures the deflection of the velocities after the collision in
barycentric coordinates. It can be written under the form,

s Ry (cos @ hyp, +sin @iy, )sinb, (11)

o =
|v — v

where

v — U1 .
(_ hv,vl ) Zv,vl) (12)

v =1’

is an orthonormal basis of IR?. Therefore, we shall write

arnw=[ [ ["

{ flv— %(v —v1)(1 —cosh) + %\v — 1](cos ¢ hy y, + SIN P iy, ) sin )

x f(v1 + %(v —v1)(1 —cosf) — %|v — v1[(cos @ hyy, +SiN Py, ) sinG)
—f(v) f(v1) } D(|v — v1],0) dpdfdoy, (13)



where
D(X,Y)=sinY C(X,cosY). (14)

We shall from now on concentrate on grazing collisions. A collision is said
to be grazing if the angle 6 in (13) is small (i.e., when the difference between
velocities before and after the collision is small). Therefore, we shall consider
an asymptotics of 1 when the cross section D in (13) concentrates around
the value 0 of 6.

For a given nonnegative cross section D defined on IRy x [0, 7], we shall
extend D to IR, x IR; by setting,

D(X,Y) = D(X,Y) whenY €0, (15)
D(X,Y) = 0 elsewhere. (16)

Then, we define the family of cross sections,

Y

D(X,Y) = E%E(X, >), (17)

and the collision kernel

ano=[ [

1 1
{ flv— 5(1} —v1)(1 —cosh) + 5\?) — v1](cos ¢ hy y, + SIN P iy, ) sinb)

x f(vr + %(v —v1)(1 —cosf) — %]v — v1|(cos @ hy y, + sin P iy, ) sinb)

— f(v) f(v1)} D¥(Jv — v1], 8) dpdOdv, . (18)

The main result of this section is the following;:

Theorem 1: We assume that f is in C3(IR?) and has a compact sup-
port. Moreover, we suppose that the cross section D and its derivative V x D
belong to L}OC(IRJr x [0,7]). Then, the (L}Oc) limit of the Boltzmann kernel
Q°(f, f)(v) defined in (18) when € goes to O is the Fokker—Planck—Landau
collision kernel P(f, f) defined in (3), where

T(z) = %2 - 02D(z,0) do. (19)



Remark: Note that I'(z) has to be in 22 D(z,0) to preserve for P the
homogeneity of @ in v (at least if D is homogeneous in its first variable).

Proof of theorem 1: We denote
A(v,v1, X, ¢) = —(v—v1)(1—cos(ex))+|v—v1|(cos Phy v, +8in Piye, ) sin(ex),
(20)

and begin the proof of theorem 1 with the following lemma:

Lemma 1: The operator Q°(f, f)(v) defined in (18) satisfies the follow-
ing asymptotic development,

QCUNW =5 [ AT =Tu) (@) 01)

™ 271— 1 .
. /X=0 /(;5:0 §A (v,v1, X, @) D(lv — v1], x) depdx
+ (Vo = Vo )2 (f(0) f(v1))

T 2m
:/ / éAe(”’”hX"?)®A€(v7vl,x,¢)D(\v—vl\,x)d¢dx}dv1+O(e)7

x=0J¢=0
(21)
where O(e) may depend on v.

Proof of lemma 1: We make in (18) the following change of variables:

X:E. (22)

anw=5[ [ [

{ flv— %(v —v1)(1 — cos(ex)) + %\v — 01](co8 @ hyp, + SIN Py, ) sin(ex))

18 becomes:

x f(v1 + %(v —v1)(1 —cos(ex)) — %|v — v1[(cos @ hyp, + 8D Py, ) sin(ex))
— f () f(v1)}D(Jv — vi], x) dpdxdu

1 T2 1., 1.
- E—Q/UIGBSAZO/Q&:OU@WA ) (0 = 5 A)
—f(v) f(1) } D(Jo — v1], x) dbdxdvy (23)



But
|AS (v, v1, X, )| < €Ry(v,v1), (24)

where R; is a polynomial in v, v; of degree 1.

Then, we expand (23) up to the second order (note that this is possible
since f is assumed to be in C3(IR?)).

For e small enough,

T 2
CUrnw=g[ [ [ A (T = V) () )

x=0 J¢$=0
+%AE®A€ F (Vo=Vu,)? (F(0) f(01)) + 75 (v, 01, X, 8) }D(Jo—v1], x) dpdxdor,
(25)
with
7 (v, 01, X, 0)| < € Ra(v,01) L2 Supp f)(v1)s (26)

where Ry is a polynomial in v, v;.
Therefore, formula (21) holds, and lemma 1 is proved. According to
lemma 1, we now have to compute:

™ 2T ]
T -v)= [ [ A Do - wil,x) dody, 1)
x=0J¢=0 2
and S
Uc(v — 1) :/ / —A°® A°D(|lv — v1], x) dpdx. (28)
x=0J¢=0 8

Lemma 2: The function T€ satisfies the following asymptotic develop-
ment,

T(v = v1) = =5 (v = v) C(Jv — va]) + 75 (v, v0), (20)
with .
)= [ WD) dx (30)
and
[rS(v,v1)| < ERy(v,v1), (31)
where Ry(v,v1) € L}OC(JR?’ x IR3).

Proof of lemma 2: According to (20) and (27),
™ 2m 1
T = [ [ (=5 w0 cos(en)
x=0J¢=0
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1
+ §|v — v1[(cos @ hyp, +8in Py, ) sin(ex) FD(|v — v1], x) dodx

s 2 1 62X2
= [ [ = e (S5 e x 8) ) Do il ) dédx (32
x=0 J¢p=0

and
r5(v,v1, X, )| < €Rs(v,v1), (33)

where R3 is a polynomial in v,v;.
Therefore, denoting

™ 2T
o) = [ [ a0 0) D=l ) dody, (34

we obtain lemma 2.

Lemma 3: the function U€ satisfies the following asymptotic develop-
ment,

Us(v—vy) = %ez{lv—mlzfd—(v—v1)®(v—vl)} C(jlo—w1]) + ri(v,v1), (35)

with

s

ri(v o) = =)@ =) [~ wi() Do =l x) dx
x=0

™

t{lo-nPld=@-v)o@-v)} [ w500 D - uil,x)dx. (36)
x=0

where w§ and w§ are bounded in L>([0,]).

Proof of lemma 3: According to (20) and (28),

U(v—u1) = /;0 /:7; %{ — %(v —v1)(1 — cos(ex))

1 . . .
+ 3 |v — v1|(cos @ hy y, + Sin @iy 4, ) sin(ex) }

®{ - %(v —v1)(1 —cos(ex)) + %|v — v1|(cos @ hyp, +Sin Py, ) sin(ex) }
D(Jv — v1l, x) dpdx

= % (v—v1)® (v—1) /XTFO(I — (:os(ex))2 D(Jv — 1], x) dx



1 m e . ) )
+ 3 lv — v1|2 / / Sln2(EX) { cos? Ghyv, @ hyy + sin® DUy & Gy,

+ cos @sin @ (hyy, @ty + v © hyw) } D(Jv —v1], x) dodx. (37)
But

(v—21)® (v—1)

v — v |2 + hy vy @ hypy + tyw @ty = Id, (38)
since
v—v ‘
(m’ hU7U1 Y 2’07’[}1) (39)
is an orthonormal basis of IR3. Therefore, Defining
w§(x) = e {1 — cos(ex)}”, (40)
and _
wh(x) = 3 673{ Sin2(ex) _ 62X2 1, (41)

we get lemma 3.
In order to go on, we need the following lemma:

Lemma 4: If u belongs to L}OC(BJ’_), then

V- A(l2PId -z @ @) u(lz*)} = —2zp(]2f). (42)

Proof of lemma 4: We first assume that u € C1(IR,). We compute

A=V {(|zId - z @ z) p(|=[})} |s

3
0
- 1; a—wk{ 2?6k — zra] p(lz)?) M
3 ) 3
= > ull2?) 5= {lePPor — apai 3o +2 ) wp ' (J2]?) {J* 0 — zpai} i
k=1 D k=1

3 3
= u(l2?) D {2000 — 201 =220 Yo+ ) {221 (|2]?) — 2|24 (|27},
k=1 k=1

= —2ap(|2]*)|;- (43)



But this formula does not take in account the derivative of p, and therefore
it remains valid in the sense of distributions when p € Llloc (Ry).

Coming back to the proof of theorem 1, we apply lemma 4 to U¢(v — v1)
(with u(z) = ¢((y/z)). Lemma 3 ensures that

(Vo=Vy) U (v=v1) = =Z€ (v=01) ((Jo—v1]) + (Vo= Vo )75 (v,01). (44)

But since D and Vx D are in LIIOC(IR+ x [0, 7)),

|(Vv - vvl) : T’Z(U, vl)| < €3R5(’U, vl)’ (45)

where R5 € Llloc(]R3 x IR3).
According to (44), (45) and lemma 2,

(Vo = Vi, ) - US(v = v1) = T%(v — 01) +75(v,v1), (46)

with
7€ (v,v1)] < € R (v, v1), (47)

where Rg € LllOC(IR3 x IR3).

Finally, the previous lemmas and formula (46) ensure that

QUNW =5 [ | (T0= Vo) () f(0)

A (Vo= V) US(w—01) =15 (0, 01) } + (Vo= V) (F(0) £ (01)) U (v—v1) } doy
= Eig Ulems(V” = V) AU = 01) (Vo = Vo, ) (f(0) f(v1)) } dvr + Oe)
= SV [ U= o) L)l @)~ F0)T0 (1) ey + O
=V [ §o =D {v-nfld- @ -v) e o -n)

{F)Vof () = F(0) Vo, f(01) vt + O(e), (48)
where O(€e) may depend on v.
Denoting

D(z) = 5 2 C(2), (49)



formula (48) becomes

QU N =V [ T —u)){ra- WO,
v ER v — v
{f(vl)vvf(v) - f(v)vvlf(vl) } dvi + O(e)v (50)
and identity (30) ensures that
P(z) = 52 ;O 6% D(z,0) b, (51)

which concludes the proof of theorem 1.

We now give two computations of I' when the cross section B in the
Boltzmann equation is simple. In the case of hard—sphere gases, the cross
section B writes

B(X,Y)=XY. (52)
Therefore,
D(X,Y)=4X sinY, (53)
and -
I(z) = T2 0% 4z sin 6 df
8  Jo=o
= g (r2 — 4) 25, (54)

We now look to the case of repulsion between two particles depending only
on the distance r between them, the interaction coming out from a potential

of the type
k

T.sfl’

U(r) = (55)

where k is a strictly positive number, and s is a real number. According to
[Ce], the cross section B writes,

B(X,Y) = X1 ((Y), (56)

where ( is a function defined implicitly.

Therefore,
4sinY 1+ cosY s=5
D(X,)Y) = \/ X1
2

10




and

3s—7 [T 9 . 0 0
[(z) =21 / w07 sin = ((cos =) df. (58)
=0 2 2

Note that the function ¢ given by the physics is locally bounded on [0, 5[
and as a singularity in 6 = 7 of the form,

(@)~ (E—a) (59)

Therefore, the previous analysis makes sense as soon as s > 2. However,
when s = 2 (that is in the case of coulombian repulsion between the parti-
cles), this analysis yields

M(z)=2"" / 76% sin b ((cos Q) e, (60)

6=0 2 2
and the integral over € in formula (60) does not converge (Cf. [Li, Pi]). A
physical analysis is then required in order to give a sense to 60. Note that
in this case, a more precise asymptotics of the Boltzmann kernel can be
performed. This is done by P. Degond and B. Lucquin—Desreux in [Dg, Lu].

3 The case of linearized equations

We proved in the previous section that for f regular enough, the family
of Boltzmann kernels Q¢(f, f)(v) converges towards the Fokker—Planck—
Landau kernel P(f, f)(v).

However, it is not easy to prove rigorously the convergence of a solution
f€ of the Boltzmann problem,

ofe

VL = QU S (o)
fe(O,SC,’U) :fO(:Ua/U)a (62)
towards a solution f of the Fokker—Planck—Landau problem
af B
AV = PG, (63)
f(0,2,0) = fo(z,v), (64)

since global existence for those equations needs a renormalization (Cf. [DP, L]
and [L]). Note also that the results on the Boltzmann equation obtained by

11



R. Illner and M. Shinbrot (Cf. [Il, Shi]) cannot be easily extended to the case
of the Fokker—Planck—Landau equation since they are based on the facts that
the collision term of the Boltzmann equation includes no derivatives and has
some properties of monotony. Therefore, we shall concentrate in this section
on the linearized problems associated to (61) — (64). Following a classical
technique, we linearize 61 and 63 around a given Maxwellian

‘U - u’2}
2T ’

M(v) = P exp{ ~

(27T)3/2 (65)

where the averaged velocity u belongs to IR?, and the density and temper-
ature p and T belong to IR” . Note that p, u and T do not depend on ¢ and
T.

Then, we write f€ and f under the form:

fO= M1+ g), (66)

f=M1+g), (67)

where ¢¢ and g are assumed to be small. Casting the second order terms in
g¢ and g, equations (61) — (64) become

dg°

9 o Vg = M QO M), (69
9°(0,z,v) = go(z,v), (69)
O v Vag = M P(M, M), (70)

where Q¢ and P are considered as symmetric bilinear operators.
We shall from now on denote

Le=M"1Q(M,M-), (72)

and
K=M"1P(M,M-). (73)

We now give for the sake of completeness some classical results (at least for
the Boltzmann equation).

12



Lemma 5: For all h in L2(M%(v)dv),

L) =5 | | M) (@ 0m)@) + A (-0 w)
—h(v) — h(v1) } B¢(Jv — v1], |w ‘Z : Zi, |) dwdvy, (74)
and
Khw) =2 [ M) (Vo=V} (Do) (1= ) E 0 Z01) gy
2 Ju el ‘U Ul’
{Vy =V Hh(v) + h(vy)} doy. (75)

Proof of lemma 5: According to 72,

Leh(v) = M~ (v) Q(M, Mh)(v)

) | | I @ 00O+ - (0= 0))

Xh(v1+ (w-(v—v))w) + M1+ (w-(v=—2v1))w)M(v — (w- (v —101))w)
X (o — (@ (0 —01))w) — M(0)M)h(n) — M(o)M@)h(v) )

vV — U1

v — 1]

X B(Jv — v1], |w - | Y dwdvy . (76)
But
M+ w-(v=—v)w)M@w—(w-(v—21))w) = M(v)M(vy) (77)

since M is a Maxwellian, and therefore

Leh(v) = %/Ulems [ M) (o= (- (0=00)) + o1+ (v=00) )

vV — U1

—h(v) = h}B (v = vil, lw -

| ) dwdvy . (78)

Moreover,

Kh(v) = M~ Y(v) P(M, Mh)(v). (79)

13



Therefore,

Kh(v) = %M_l(v) Vo / D(jo—wv]) {1 — (v—21)® (v—11) )

v1€R3 ’U - 01‘2
{ M(v1) Vo(M(v)h(v)) + M(vi) h(vi) VoM (v)
=M (v) Vo, (M (v1)h(v1)) = M(v) h(v) Vo, M(v1) } dvy

Ly i @) @@ =)
=M Ve [ T (-

{ (h(v) + h(v1)) (M (01)Vo M (v) = M (0)Vy, M(v1))
+ M(v) M (v1){Vyh(v) — Vy, h(v1)} } dvy. (80)

}

But

{1-

(v—21)® (v—11)
v —wv|?

H M (v1)VyM(v) = M(v)Vy, M(v1) } =0, (81)
since M is a Maxwellian and therefore

Kh(v) = ;M7 (0) V. [ M) M@)T(w =)
(v—201)® (v—11)
v —wv|?

{1~

H Ve = Vo F{A(v) + h(v1) } doy

1

B (
- 5/1)1%3 M(v1) Vo - {T(Jo —oa){ T -

v—21)® (v—11)
lv—v1f?

}

V—1Uu

(V0= Vo (o) + () Yaon + M) [ -

ems T M (v) M (v1)

(v—21)® (v—11)

Dl = i) {1 = 5= 5= H{ Vo = Yo} (R(0) + h(wn) Yo
1 y (o — (=) ® (v —u)
= 5y MO0 Ve AT =) {1~ i

_vl—u

{Vy =V }(h(v) + h(v1)) Fdvr + % wems T

M(v1) T(Jv — 1)

(v—201)® (v—11)
v —wv|?

{1-

H Vo = Vo JH{h(v) + h(v1) } doy

(v—201)® (v—11)
v —wv|?

v1 — U

1
+ =

M I'(jlv — I-—
5] M) T = vl

}

14



{Vyo =V H{A(v) + h(v1) } doy

1 y (o — (=) ® (v —u)
=5 ) M@)o (=i (1 -
(Vo=V} (h0) + ) Yo = 5 [ M) Ty {T (0 =)

(v—201)® (v—11)
|v — vy |?

{1-

which ends the proof of lemma 5.

H Ve = Vo, }(h(v) + h(v1)) } doy (82)

Lemma 6: For every function h in LQ(M%(v)dv) and for every test
function b in D(IR?),

1
/uelR3 Leh(v)(v) M{v)dv = 3 /velR3 /me!R3 /w65’2 M(v) M(v1)
{h(v—(w-(v=wv))w) +h(vr + (W (v=v1))w) = h(v) = h(v1) }
{0 —(w- (v =v))w) + (o1 + (W (v —v1))w) = ¥(v) = P(v1) }

B (jv— vy, o — 2

PE— | ) dwdvydv, (83)

and
/ Kh(v) () M(v) dv
velR3

- _i /velRS /v1€IR3 M(v) M(v1) T(Jv = v1]) { Vo = Vi, } (1(v) +1b(v1))

(v—v1)® (v—01)
|lv —wvp]?

{I - H Vo — Vo, }(R(v) + h(v1)) dos. (84)

Proof of lemma 6: According to lemma 5, formula (83) is obtained
after the changes of variables (v,v1) — (v1,v) and (v,v1) — (v — (w - (v —
v))w, v — (w- (v —11))w).

Formula (84) is simply obtained after the change of variables (v,v;) —
(v1,v).

Lemmas 5 and 6 immediately yield the following results,

15



Corollary 1: For every function h in LQ(M%(v)dv) and for every test
function 1 in D(IR?),

A€R3Leh(v)¢(v)M(v)dv: / h(v) Le ¥(v) M(v)dv,  (85)

velR3

and

[J o FEh() ¥() M) dv = / h(v) Ko(v) M(v)dv.  (86)

velR3

Corollary 2: For every function h in L2(M%(v)dv),

/ Leh(v) h(v) M(v) dv < 0, (87)
veIR3

It is now classical that under reasonable assumptions on the collision
cross section B of @) (for example, if B belongs to L110C(1R+ x [0, 7]) and
is at most quadratic in the first variable), 68 admits a unique solution

g¢ belonging to L>([0, +oo[; L?(dz ® M%(v)dv)) as soon as go belongs to
L?(dx @ M 3 (v)dv). The main result of this section is the following:

Theorem 2: We assume that gy belongs to L2(dx®M%(v)dv), and that
B and Vx B belong to L}OC(IRJr x [0,7]). Moreover, we suppose that

M(v) M(vy) 9:0 B(jv — v1],6) d6 (88)
and .
M(v) M(v1) /H VxB(jv — v1,0) do (89)

have superalgebraic decay (i.e., decrease faster than the inverse of any poly-
nomial in v,vy) when v,v1 go to infinity.

Then, if g¢ is the solution of 68 belonging to L>([0, +oo[; L? (dw@M% (v)dv)),
it 1s possible to extract from g a subsequence still denoted by g¢ converging
weakly * in L>([0, +ool; L? (dw@M% (v)dv)) to a function g satisfying 70.

Remark: The assumptions of theorem 2 are satisfied by all hard poten-
tials with the angular cut—off of Grad or by hard—spheres.

16



Proof of theorem 2: Multiplying each term of 68 by g. and integrating
the result over IR? x IR? against M (v)dvdz, corollary 2 of lemma 6 ensures

that
2 9', /GIRS/U IRS , T v) (v) dvdx 0. (90)

Therefore, initial data (69) ensure that

9 O monr ey < 1902 aeonr ormy (o1
According to estimate (91), the family ¢¢ is uniformly bounded in

L (dt; L2 (dx ® M3 (v)dv)), and we can extract from ¢¢ a subsequence still
denoted by g¢ which converges weakly * in L (dt; L?(dz ® M%(v)dv)) to-
wards a function denoted by g. But corollary 1 of lemma 6 ensures that for
every test function ¢ in D([0, +-o0[x IR? x IR?),

/t /:relR3 /velR3 ot

+oo
/ / O b= L} g (b @, v) M(v) dvdadt. (92)
=0 z€IR3 JvelR3 8t

295 — Leg® Y (t, z,v) M (v) dudzdt

2 (dt; L*(dx ® M2 (v)dv)) and
since corollary 1 holds, we only have to prove that L.y converges towards
K1 strongly in L} (dt; L?(dz ® M2( )dv)).

loc
According to lemma 5,

Therefore, since g¢ converges to g weakly in L?

(Ld/} - Kw)(t7 Z, U)

1 1 /™ o 1 )
= — M —_— t _AE t o _Ae
2 Juiems ({3 /xo /¢o (W(t, 2, v+ A% +9(t 2,01 = 5 A9

—¢(t,x,v) - 7/)(75,33,”1) ) D(|U - v1|aX)d¢dX - {vv - vvl }
(v—1v1)® (’UQ— v1) 1)

{Vy—=Vy FW(t,z,v) +¢Y(t,x,v1)) } dvy
1

:_AleBSM(vl){;( —A-{V, =V } @(t,z,v) + (t,z,v1))

(T(lv =) {1 -

v — v1]

2

+ - AE®AE (Vo — Vo, V2 (@(t,z,0) + 0(t,z,v1)) + A (t, 2,0, 01, €))
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(v—2v1)® (v—11)

{0 = T N0 - {1 - Oy
{VU - vvl } (7/)(75,33,”) + w(t’x’vl))}dvl’ (93)
with
A (42, 0,01, €)| < 6337@,@1)/ D(lv — w1, x) dx, (94)
x=0

Rz being a polynomial in v,v;. Therefore, 44, 46 and estimates (93), (94)
ensure that

1
(Lot — Ko (v) < —e/ M(v1) Mo (t, 2,0, 01, €) do, (95)
2 v1€IR3
where
)‘Z(tvxvv7vlve) < RS(U77}1) /—O(D + ‘VXDD(‘U - U1‘7X) an (96)

Rg being a polynomial in v,v;. According to estimates (95) and (96),

/+OO/ M(’U) |(L67,Z) - KT,Z))(U)|2 dvdzdt
t=0 JzelR3 JvelR3

2
<< // M (v)
2 (t,x)e Supp ¢ Jvelr?

|/ Rg(v,vl){/ (D + [VxD|)(|v —vi], x) dy } M(v1) dor |2 dvdadt
v1€IR3 x=0

< Cé, (97)

where C' is a strictly positive constant, since the decay at infinity of

M) M) [~ (D+VxDI)(lo - vil. 0 dx (98)

is superalgebraic. Therefore, L.y tends to K1 strongly in Lfoc(dt; L?(dr ®
M3 (v)dv)), which ends the proof of theorem 2.
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4 The case of Kac equation

A simplified model of the Boltzmann equation was introduced by Kac in [K],
and deals with a gas evolving in a one-dimensional space. In this model,
kinetic energy is conserved, but not momentum. Moreover, all collisions
conserving kinetic energy have the same probability to appear. Therefore,
the form of the equation is

of . 9f

E*'U%:Q/(faf)a (99)

where

Q(f, ft,z,v) = / /W { f(t,x,vcos0—vysinb)f(t,x,vsin O4v; cos )
v1€R JO=—7

— flt,z,v) f(t,x,v1) } %dvl. (100)

The physics underlying this model is described in [MK].

We shall concentrate here on a slightly different model. We assume no
longer that all collisions conserving kinetic energy have the same probability
to appear. Therefore, we introduce a collision cross section B(#) and denote

Qo Nty = [ [ (fitavcos0—vising)

X f(t,x,vsinf + vy cos@) — f(t,x,v) f(t,x,v1) } B(0) %dvl. (101)

From now on, we shall not write down the dependence of f or Q’; upon t
and x, since these variables play no role in the computation. In this model,
the grazing collisions are those for which 6 is near 0. Therefore, we define:

B) = B(9) whenfec |- ], (102)
B(#) = 0 elsewhere. (103)
Then, we denote:
. 1 _.6
Bi(0) = 5 B (101
. 1 .6
B3(0) = 3 B(2), (105)
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and

ngi(f,f)(v) = /vleIR/eiﬂ{f(vcosH — vy sinf) f(vsinf + vy cos @)

dé

— f(v) f(v1) } Bi(0) %dvla (106)

ngs(f,f)(v) :/vem/ﬂ_ﬂ{f(vcosﬁ—vlsin9)f(vsin9+v10059)

~ () F(0) ) B3(6) o (107)

The main result of this section is the following;:

Theorem 3: Let f be in C3(IR) with a compact support and B be in
LY([—m,7]). Then, when € goes to 0,

if
" do
A= /9:493(9) = #0, (108)

the collision kernel QlBi(ﬁ f)(v) tends (in L}oc) to

AUNE) =4 [ o fon)dn S (109
if A =0, the collision kernel Q%;;(f, f)(w) tends (in L}OC) to
10 16
@ =4 (XS opan [t e ),
(110)
where i 50
’_ 2 ad
A _/9249 BO)5 . (111)

Proof of theorem 3: We compute:

/ / {f(vcos® — vy sinf) f(vsinb + vy cos )
v1€IR JO=—m

— 1w £} B L,

€’ 2w
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= / /ﬂ { f(vcos(ef) — vy sin(eh)) f(vsin(ed) + vy cos(eh))
v1€ER JO=—7

de

— 1(0) J(v1) } BO) g dv

— / /ﬂ {f(v—€bv; — %62922} + O(e ) f(v1 + €bv — %6292’01 + 0(63))
v1€IR JO=—7
—f(v) f(v1) } B(# )—de

m of 0% f
_ Lo 207 3
= /Ulem/—n{(f(v) —efvy e 0°v )(% e 20203 902 + O(¢e”))
O | L0t
81)1 8@%

— F() f(01)} B >ﬁdm

(f(0) + (b — 5e0%0) 5T +O()

0
—ea [ (s g — v se) L yan

vieR vy
%62 A /Ulem {vlf(v)g—gl v vzf(v)ging
0t @) 2~ 20 1) 2L 4 2 g0 3Ly + 0
= A [ o) do %
e (3200 [ aan + 3 O [ e + o),

(112)
and therefore, theorem 3 holds.
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