A FORMAL PASSAGE FROM A SYSTEM OF BOLTZMANN
EQUATIONS FOR MIXTURES TOWARDS A VLASOV-EULER
SYSTEM OF COMPRESSIBLE FLUIDS

LAURENT DESVILLETTES, FRANCOIS GOLSE, AND VALERIA RICCI

ABSTRACT. A formal asymptotics leading from a system of Boltzmann equa-
tions for mixtures towards either Vlasov-Navier Stokes or Vlaov-Stokes equa-
tions of incompressible fluids was established by the same authors and Etienne
Bernard in [1] and [2]. With the same starting point but with a different scal-
ing, we establish here a formal asymptotics leading to the Vlasov-Euler system
of compressible fluids. Explicit formulas for the coupling terms are obtained in
two typical situations: for elastic hard spheres on one hand, and for collisions
corresponding to the inelastic interaction with a macroscopic dust speck on
the other hand.

1. BOLTZMANN EQUATIONS FOR MULTICOMPONENT (GASES

As in [1] and [2], we consider a binary mixture consisting of microscopic gas
molecules and much bigger solid dust particles or liquid droplets. For the sake of
simplicity, we assume from now on that the dust particles or droplets are identical
and that the gas is monatomic. We denote by F' = F(t,z,v) > 0 the distribution
function of dust particles or droplets, and by f = f(¢,z,w) > 0 the distribution
function of gas molecules. These distribution functions satisfy the system of Boltz-
mann equations

(0 +v- Vo) F = D(F, f) + B(F),

The terms B(F) and C(f) are the Boltzmann collision kernels for pairs of dust
particles or liquid droplets and for gas molecules respectively. The terms D(F, f)
and R(f, F) are Boltzmann type collision kernels describing the deflection of dust
particles or liquid droplets subject to the impingement of gas molecules, and the
slowing down of gas molecules by collisions with dust particles or liquid droplets
respectively.

Collisions between molecules are assumed to be elastic, and satisfy therefore
the usual local conservation laws of mass, momentum and energy, while collisions
between dust particles may be inelastic, so that B(F') satisfies only the local conser-
vation of mass and momentum. Since collisions between gas molecules and particles
preserve the nature of the colliding objects, the collision integrals D and R satis-
fiy the local conservation laws of particle number per species and local balance of
momentum. The local balance of energy is satisfied only if all collisions are elastic.

(1)
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1.1. Dimensionless Boltzmann systems. We assume for simplicity that the
aerosol is enclosed in a periodic box of size L > 0, (z € R3/LZ3). The system

of Boltzmann equations (1) involves an important number of physical parameters,
which are listed in the table below.

Parameter Definition ‘
L size of the container (periodic box)
N, number of particles/L?
N, number of gas molecules/L>
Vi thermal speed of particles
Ve thermal speed of gas molecules
Spp average particle/particle cross-section
Shpg average particle/gas cross-section
Sgg average molecular cross-section
n=mg/m, mass ratio (molecules/particles)
p= (mgNy)/(mpNy) mass fraction (gas/dust or droplets)
E=V,/V, thermal speed ratio (particles/molecules)

As in [1] and [2], we define a dimensionless position variable: & := x/L , together
with dimensionless velocity variables for each species: 0 = v/V,, W = w/V,.
We also define a time variable, which is adapted to the slowest species, t := tV,/L.
Finally, we define dimensionless distribution functions for each particle species:

F(t,,0) = V2F(t,z,0) /Ny,  f(t,2,9) = V2f(t,z,w)/N.

The definition of dimensionless collision integrals is more complex and involves
the average collision cross sections Spp, Spg, Sgq, Whose definition is recalled below.
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The collision integrals B(F'), C(f), D(F, f) and R(f, F') are given by expressions

of the form
v) = / / F') P, (v, dv’ dv’)
R3xR3

~P) [ Pl =S o= du.,

w) ://Rs><R3 Jw') f(w)yg(w, dw’ dw?)
—fw) [ o = gy (= w.])

N //Rsst F (") f(w") g (v, dv’ du’)

= P) [ )l = iy = w) du

w= [ Py du)

~ 1) | P@lo =l (o—uhds
([ P du)
—f(w) /RsF(”) [R I, (W, v,w) dWdv.

In these expressions, II,,, Hgg,Hpg,H gp are nonnegative, measure-valued measur-
able functions defined a.e. on R?, while ¥,,,%,,,%,, are nonnegative measurable
functions defined a.e. on Ry. ThlS setting is the same as in [1], and is taken from
chapter 1 in [8] (see in particular formula (3.6) there).

We refer to [1] and [2] for the relation between the quantities IT and X.

The dimensionless quantities associated to X, X4y and 3,, are (1,7 = p, g)
Yii(12]) = Zai(Vil2])/ S
Xij (12]) = Zi5(V5121)/Sij -

Likewise
I1,,(0, dd’ dd)) = I, (v, dv’ dv)) /Sy, Vil
Mg (W, d’ did,) = Mgy (w, dw' dw))/SegVy,
1,0 (0, d0" d’) = T (v, dv’ dw’) /Sy V!
[y (0, d0" dd') = gy (w, dv’ duw') /Sy Vy V) -
With the dimensionless quantities so defined, we arrive as in [1] and [2] at the
following dimensionless form of the multicomponent Boltzmann system:

OF + 0.V, F :Ngs,,gL%fa(ﬁ, £+ N, S, LB(E),
(3)

a£f+ W-Vif = NpSpyL gR(fF)+NSggL%CA(f).
p



4 L. DESVILLETTES, F. GOLSE, AND V. RICCI

Throughout the present study, we shall always assume that
(4) NpSppL <1,

so that the collision integral for dust particles or droplets Ay, S,, LB(F) is considered
as formally negligible (and will not appear anymore in the equations).

We now present the Euler scaling, which is significantly different from that of [1]
and [2].

We assume that the thermal speed V,, of dust particles or droplets is of the same
order of magnitude as the thermal speed V, of gas molecules, so that

Vi
5 E=-2_—-1
5) 7=t
and the scaled Boltzmann system (3) becomes
{agﬁ + - VoF = N,Sp LD(F, f),
Oif+ - Vif = NySpg LR(f, F) + Ny SggLC(F) .
Recalling that 7 is the mass ratio, we shall assume that

N, 1 1
N, Spg L =1, /\7;9»:5>>1’ NgSgngzg

so that we end up with the scaled system:

(6)

>> 1,

RE 4+ 0-ViF = 1p
(7 ) T
Of + 10 Vaf = R )+ 2C().
Note that the scaling above implies that p = 1. In the sequel, we shall let  and
0 tend to 0 without assuming any relationship between those two parameters.
Henceforth, we drop hats on all dimensionless quantities and variables introduced
in this section, and only dimensionless variables, distribution functions and collision
integrals will be considered.
We also use V, W as variables in the positive part of the collision operators D
and R, in order to avoid confusions.
We define therefore the (r-dependent) dimensionless collision integrals

// (W) gy (w, dw’ dw’,)

R3><R3

~ fw) / Fw)lw — w,[Sgq(|w — w,]) duw,
RS

_ / / F(V) (W)L, (v, dV dWW)
R3xR3
=P [ Fw) o=l Sy (o = wl) du.

w) = / /R WSy w0,V W)
— fw) [ Py o=l Sy (o = ul) do

D(F, f),

(8)

(10)
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With the notation defined above, the scaled Boltzmann system (7) is then recast
as:
1
0F +v-V,F =-D(F, f),
(11) !

0uf +w-Vuf = RIS, F) + 5C(1)

1.2. Explicit formulas for the collision integrals. In the previous section, we
have introduced a general setting for the various collisional processes involved in
gas-particle mixtures. The explicit formulas for the examples of collision integrals
considered in this work are given in the next three paragraphs.

1.2.1. The Boltzmann collision integral for gas molecules. The dimensionless colli-
sion integral C(f) is given by the formula

(12) C(f)(w)://Rgxsz(f(w’)f(w;)—f(w)f(w*))c(w—w*,w)dw*dw,

for each measurable f defined a.e. on R?® and rapidly decaying at infinity, where
a3) w' = w(w,we,w) == w — (w—w,) - ww,
wh, =W, (W, Wy, w) = wet (W — wy) - ww,

(see formulas (3.11) and (4.16) in chapter IT of [4]). The collision kernel ¢ is of the
form

(14) e(w —we,w) = [ — wilogy(jw —w.], | cos(w ~ww)]),

where o4, is the dimensionless differential cross-section of gas molecules. In other
words,

1
Sag(l2) =47r/0 Oog (2] 1) dit,

while
(15) gg(w // Awdw Oy (1,0, ) @ Ouw’ (1,1, ) (W — Wi, W).
R3x8S?

We recall that the collision integral C satisfies the conservation of mass, momen-
tum and kinetic energy — see formulas (1.16)-(1.18) in chapter II of [3].

Since our analysis is formal, we do not write down precise assumptions on oyg.
We shall in fact only use the fact that the solutions to C(f) = 0 are the maxwellian
functions of w. This is a direct consequence of Boltzmann’s H theorem, which holds
for all classical cross sections (cf. [3]).

1.2.2. The collision integrals D and R for elastic collisions. For each measurable

F and f defined a.e. on R3 and rapidly decaying at infinity, the dimensionless
collision integrals D(F, f) and R(f, F') are given by the formulas

//Rsxsz (F (") f(w") = F(v) f(w))b(v — w,w) dwdw,
F)(w) = //RSst (f(w"F@") = f(w)F(v))b(v — w,w) dvdw,
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where
" " 2n
v =0"(v,w,w) i=v — (v —w)- ww,
1+n
(16) :
w’'=w (v,w,w)i=w— —— (w—v) - ww,
1+n

(see formula (5.10) in chapter IT of [4]). The collision kernel b is that of hard spheres,
that is
(17) b(v — w,w) = [v — w| | cos(v = w,w)|),

while

g (v, ) = // dw dw [(v = w) - @| §orr(v,0,0) @ Owr(v,0,0)
3% Q2

ng(w7 ) = ﬁ dvdw |(v - w) ’ w| 511”(1177«0,01) ® 5w"(v,w,w) :
R3xS?

The reduced mass of the dust particles or droplets and gas molecules defined by
formula (5.2) in chapter II of [4] is

mpMg Mg _ Myl
my + my 1+n 1419

These formulas explain how the mass ratio n appears in the definition of v” and
w' above.

We recall that the operators D and R defined in this subsection satisfy sepa-
rately the conservation of the number of particles and molecules, and jointly the
conservation of momentum (involving both operators):

(19) D(Rf)(v)vdv—i—n/ R(f, F)(w)wdw =0.

These properties can be easily checked using the formulas
(20) V" =v+nqw, v —w’ = R,(v—w),

where R, is the reflection defined by R,w = w — 2(w - w)w for each w € S2.

1.2.3. An inelastic model of collision integrals D and R. Dust particles or droplets
are macroscopic objects when compared to gas molecules. This suggests using
the classical models of gas-surface interaction to describe the impingement of gas
molecules on dust particles or droplets. Perhaps the simplest such model of colli-
sions has been introduced by F. Charles in [5], with a detailed discussion in section
1.3 of [6] and in [7]. We briefly recall this model below.

First, the (dimensional) particle-molecule cross-section is

Spg =m(rg + rp)2>

where r, is the molecular radius and r, the radius of dust particles or droplets.
Then, the dimensionless particle-molecule cross-section is

Zpg(‘“ —w|) =1.

The formulas for S,4 and X,, correspond to a binary collision between two balls of
radius 7, and 7.
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Next, the measure-valued functions II,, and Ilg, are defined as follows:
Iy (v,dV dW) := Kpg(v, V, W) dVdW ,

21
2! I, (w,dV dW) := Kgp(w, V, W) dVdW,
where,
4 2 V+77W 2
Lo 1 (1dn 4 12 (149 VW
o= () o (- () -
(22)
V+aqW >)
x n-(V-W n:|———-—v dn,
Lo =we (- (52 )
VW |?
Kopl(w, VW) i= gk (147)* 5% exp <_552(1 S s )
(23) V+nW
+n
X (V —-W . oo rart d
Lo =wy. <n (w A ))+ .
In these formulas
_ Mg
B B kBTsqu
where kp is the Boltzmann constant and T,,s the surface temperature of the

particles.
For this inelastic model, the collision integrals are then:

D(F, f)(v) ://R3><R3 AVAW F(V) (W) 525 (1%)4

2 V+gW|?
ey

(24)
V4+qgW
X /Sz(n~(V -W))+ (n (1"‘77 —U>)+dn,
~Fw) [ fw)lo—ul du.
RUPYw) = [ avawrw) )z )’
2
x 3% exp (-552(1 +n)? jw — V4 )
(25) 1+

x/sz(n-(V—W))+ (n @-W)Lm

— f(w) F(v) v —w| dv,
R3

or, in weak form,

R D(F, f)(v)p(v) dv =
/ / / dvdWdVF(V)f(W)[p(v) — o(V)] 5= (%)4
R3 JR3 JRS3
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2 V4w
e (-4 (1) o 22

[ (o (S )

R(.F)(w)o(w) duw =

and

R
/R3 /R [R dwdWdV F(V) f(W)[p(w) — ¢(W)] 52 (1 +n)*
[0 =m0, (o (o= SE))

2. PASSAGE TO THE LIMIT.

V4+qW

w—
1+1n

x B* exp (—552(1 +1n)?

We denote here by (f%7, F%7) a solution to system (11).
Recalling that the Maxwellian functions of w are the only functions f such that
C(f) =0, we see that fo7 —s5_,o M[n,u,6/m,], where

n(t,x) —mg|lw—u(t,x)|?/20(t,x
Min,u,0/mgl(t, z,w) = i, x)/mg)3/26 glw—u(t,®)]*/20(t,2)

the quantities n, u, @ being identified as the respective (number) density, mean ve-
locity and temperature of the gas. In principle, these quantities still depend upon
7, but we do not write explicitly this dependence.

By integrating the equation for f%" in the space of velocities against m,, m, w
and 3 mg |w|?, we get the local (in time and space) conservations laws for the mass,
momentum and kinetic energy of the gas.

Mg Mg
O / mgw o dw + div, / w myw £ dw
B2\ 3mglwl® R 3y |w]?

Mg
[, mgw | RGP P @),
R? %mg\w|2

so that when 6 — 0, still at the formal level, we get

my Mg
825/ mgw M[mu,ﬁ/mg]dw—&—divx/ w| mgw | Mn,u,0/mgldw
B2\ g3my Jwl? R 3Mmglw]®
0
:/ mgw | R(M[n,u,8/mg], F)dw.
R3 1 2
3myg [w]

The computation of the two first terms is classical and leads to:
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mg p
/ mgw | M[n,u,0/mgldw = pU )
me \ L, fuf? Lolul? + 3n6
and
mg pu
/ w myw M(n,u,0/mgldw = pu®? 4 nfI )
R3 %mg |wl|? %pu|u|2 + gnuﬁ

where p :=mgyn.

Also, starting from the first equation in (11), we see that
OHFOT 4 v VPO = %D(F‘;’",f‘s’”),
so that letting 6 — 0, we end up (at the formal level) with the equation
OF + v -V, F = %D(F,/\/l[n,u,@/mg])7

where once again the quantities F', n,u, 0 still depend upon 1 (but we do not write
explicitly this dependence).

In order to go further in the computation, we need to let 7 — 0 in the term

mg p
/ mgw | M[n,u,0/mgldw = pU ,
R? %mg lwl|? %p|u\2 + %n@
and in the term )
— | ¢()D(F, M[n,u,8/m,])(v)dv
n Jrs

(or in a weak version of this term).
The result will however depend upon the type of collisions that we will consider.

2.1. Computation for the elastic model. We now specifically look to the case
of elastic hard spheres collisions. We start with the equation for the particles.

2.1.1. Equation for the particles. We compute (for a test function ¢)
1

5 R3 d)(U)D(F’ M[n, u, Q/mg])(v)dv
1 "
B E ///Rs [6(") = ¢(v)[M(n, u, Q/mg](w)F(v)Kw — ) - w|dwdvdw,

so that

) R ¢(v)D(F, Mn, u,0/my])(v)dv

n
= _2//RS><R3 /\/1[71,u79/mg](w)F(v)VU(b(U)/S2 w(v—w)w|(w—v)-w|dwdwdv+0(n)

~ _or //RR M, 8/my) () F(0) Vo (©) - (v — w)|w — v|dwdv + O(n)

— - [ P00) o S o+ 00
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with
. Jw|2
q(a) = (271')75/2/ e” 2 |a—w|(a—w)dw.
R3

Finally, at the formal level (that is, working with F, n,u, 8 as if they were not
depending on 7)),

lim 1 . d(v)D(F, Mn,u,0/mgy])(v)dv =

2m@ 00V {F@)%%) (v — u)} dv,

where ¢ is defined in Lemma A.3.

We now turn to the equation for the gas molecules.

2.1.2. Equation for the gas molecules. We observe that

L (it o) ROMbn .0l ) )

Mg |w|?

oy [T (st =S M0/ mal )P0 0= ) -l

where w” is defined in (16).
First, we see that

///R (w” — w)M]n, u, 0/my)(w)F(v)|(w — v) - wldwdvdw

:‘Qm//RW 1.0/ mgl(w) () [ (0 =) -wl(w = v) - wldadod

= —27r1 g //R3XR3 Mn,u,0/mgl(w)F(v)(w — v)|w — v|dwdv

com? [ po

Then, we also see that

(O

NG

)dv+0()

"] |w]* = — ((v+7w) - w)(w —v) - w

4
(14m)?
= 4w -w)(w—v) w4+ O(n).

AS a consequence
S w2 =1l Mins0/mg) )P0 0 = ) - e
=t [ sl ([ 0w 0w ) i) duior00)

_ 47mT:g /Rd Fv)v- q<\;9/%g) dv + O(n)

=47m\/m79 P - (\;T)dHO()
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Working once again at the formal level, we let 7 — 0 and end up with an Euler-
Vlasov system:

Orp + div,(pu) =0,

u
0 + div, (pu®? + nO I) = 2mn\/0m F*f « — u) duy
(pu) + div, (pu n ™ g (v q<\/9/7> (vs — u) dv

8t(%p|u|2 + %n@) + divg(u (§p|u|2 + fnﬁ))

f27rn\/97/ (v4) (W)(

OF +v -V, F = 27m\/m7gdivv (F(v) q(%) (v — u)) .

We recall that ¢ is defined in Lemma A.3. It can be expressed in terms of usual
functions (including the Erf function), as shown in Lemma A.3 and Lemma A .4.

—u) vy doy

2.2. Computation for the inelastic model.

The computations of the previous subsection can be reproduced in the case of
the inelastic model defined in paragraph 1.2.3.

As previously, we start with the computation of the equation for the particles.

2.2.1. Equation for the particles. Defining M (v) := M([n,u,8/m4](v), we look for

1 1
i = | DO M@)o do = T

/R3 /R3 /R3 dvdeVF(V)M(W)[¢(U)_(b(v)]#(1;;”)4
stem (4 () o=
[ = (o (GER L)

Defining z = %(v — Vf’ f:v) and letting n — 0, the previous formula becomes (at

the formal level)

i [ D@ AE)6() v =

/ , / / dzdWdV E(V)M(W)[Vv (V)] - [z + W = Vg2 5 exp (—36°%7)
R3 JR3 JR3
X/sa(”’ (V=W))s (—n-2), dn.

We now define cosd = % and, using Lemma A.1 of the Appendix and
spherical coordinates with polar axis (I“;:%I) (so that z = —rcosd (‘“;:VVK‘) +7sin & cos gpi+

rsindsin¢]), we get (after integrating in ¢ in (0,27)):

131}7 D(F, M)(v)(v) dv =

Lot [ avEwwven)- [

R3

dWM(W)/ der/ dd sin § exp (—%527“2)
0 0
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g[rm cosd + W = V]|V = Wlr[sind + (7 — 6) cos d]
=1pt [ AVF(V)[Vye(V)]- [ dWM(W)
R3 R3

oo 2 ™
{/ drr exp (—35%r?) §(W - V)/ ddsin 6 cos d[sind + (m — &) cos ]
0 0

+/ drr® exp (—18%r?) %(WfV)\WfW/ d5sin5[sin5+(ﬂ'5)cosé]}.
0 0

Thanks to the computations of Lemma A.2 in the Appendix, we get the following
formal limit:

lim © [ DE A @) o =

n—0mn
‘/ﬂ / AV E(V)[Vyé(V)] - / AWM (W) (W — V)
RS
[ AVEW)TvevV]- | WM - VW -V
\/ﬂ

mg /RngF vV(b( )]\/0/7
0 [V —-u
—n\/:g [ avro v M)'(V_“)’

where we recall that ¢ is defined in Lemma A.3 of the Appendix.

We finally compute the equation for the gas molecules, in the inelastic case.

2.2.2. Equation for the gas molecules.

We observe first that
mew
R F)w) (s ) du

R3 2 g

B mg(w — W)
_/m /R [ dwawavEv) W) ( Lo Chof? — ) )
2
X gha(1+ )5 exp (—;52<1+n>2 L )

></S2(n- (V—-W))4 (n (w_ V1++n:/>>+dn.

We get (at the formal level) that

iy [ RGFw) (gt ) du

n—=0 JRs mg|w|?

= o o Jy v wmeon (4 T e )

<abetesp (<35 0= VP) [ (0 (V = W) (n-(w=V)), dn

- /R 3 /R 3 /R dzdWaV (V)M (W) < ;mﬁﬂiz++vv2_—VIVV)Vl2> >
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xghabte (<5PLP) [ (0 (V= W) 2) dn
s
Then, using Lemmas A.1 and A.2 of the Appendix, we see that

iy [ RGFIw) (gt ) du

n—=0 JRs §mg|w|2

= / AWdV F(V)M(W)
R3 R3

(rcosé“‘f %‘ +V-w)
img(r? + V|2 - |I/V|2+2rc055‘v V)

x%ﬂ‘l exp(—lﬁ%z) |V - W\ = [(m — ) cosd + sin d] sin 6 dodr

/Rs /RddeVF MW )254

y (555 (V=W) + L2V - W[(V - W))
%mg(f%l‘/ W|+2"fﬁov W)V + 2V - W[(V]? = W)

_n My o= Q)2
dQAV F(V
2W3/QL3LJ QV

( VEW *u*\/iQ

3V —u— QA+ 3/EV —u- \[ZQ) -V
BV —u— [ QIV —u— /£ Q) )
BV —u— [ QUIVE = lu+ ;2 QP)

— %(2:;% 7 AVE(V)

52 EV —w) + B fgo eV —u— [T QUV —u - %Q)d@
X
s e @22V —u— 32 QIdQ + 5(27)* 2 /F(V — )

T OBV fps e—Q2/2|V —u— /i QldQ

0
=+ N2
B fs e @IV —u— L Qllut [ QPRdQ )

/) v -
=)

—n | aVFW) VERY +Fq<
e (BZF+FVU| ) (

0

%\/gmg(‘/— u) -V

- 2@6(%)(1/5)%9 nfng(\/vﬁ> )
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14
where we recall that ¢ is defined in Lemma A.3 of the Appendix, and, for ¢ = 0, 2,
(al) — —Q*121, _ o10i 99
e = [ PP QlQ G
We end up with an Euler-Vlasov system in the inelastic case, which writes there-
fore

Op + divy(pu) =0,

0y (pu) + divy (pu®? +nb 1)
=n+/0 / fu* {3,6\/> /mg+q< 0/ >} (U*fu)dv*,
O (Aplul® + 2nb) + div, (u(3plul® + 2n))

:n\/%/RSF(U*)Kﬂz+|v*—u|2>iI0< M)
+34ﬂ\/§\/?(v*—u)-v*+2q< ”T_m“g )(v*—u).u—nfqu< \U/ﬁ )} dv.,
8tF+v-VwF:n\/m79divv (F(v) [;ﬂ\/z\/?w(%ﬂ(v—u)),

where qg, g2 and ¢ are defined in Lemma A.3 of the Appendix. All those func-
tions can be expressed in terms of usual functions (including the Erf function), cf.

Lemmas A.3 and A.4 of the Appendix.

3. APPENDIX

We detail here some of the computations which are used in the Section 2 of this

paper.
Lemma A.1: For all a,b € S2,
2
/ (-a)y (R-b)ydin = 3 [(m — 8) cosd + sin d],
SZ

where ¢ € [0, 7], cosd =a - b.

Proof:

™ 2m
/Sz(ﬁ-a)+ (ﬁ~b)+dﬁ:/0 sin39d9/0 [cos(¢ + 6/2)]+ [cos(¢ — §/2)] do

m/2—68/2

= / (1 — cos? ) sin 6 db
0 —mw/246/2
™/270/2 ¢os(26) + cos b do

1
:/ (1—u2)du/
—r/245/2 2

—1

cos(¢ + 6/2) cos(¢p — §/2) dg

[(m — 0) cosd + sin d].

[SCRR )
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Lemma A.2: The following results hold for all 5 > 0:
7'2 8
-8 dr = —

° 2,2 2 > r2 3 o
/ 7’36732761’/’:7, / 7’46ﬁ22d’l"\/?5, / rde )
0 B 0 2 0 B

/ [cos 9(#—9)+sin6] sin 6 df = 3%, / [cos 0(7—0)+sin 9} cosf sinfdf =
0 0

Proof: All those formulas can be obtained thanks to suitable integrations by

™

parts.

Lemma A.3: For all a € R?,
qo(lal) \ _ / 1 R L
( o R3 |y‘2 |a yle (27r)3/2

g2(lal)
_ ! (QWVAMD+§M|UMMD+2%GM)+§MPLOG)>
V2r \ 2lalls(lal) + 5lal " Ts(|al) + 25(la]) + lal?J5(la]) )
where (for k € N, z € Ry)
In(z) = / P2 () = / 1 et/ gy,
0 T
Moreover
. _i? dy
Q(a') T ]R3(a_y) |a_y|e (271_)3/2 _Q(‘aDa?
where
+5alla) .

a(al) = = {2elralal gl Tx(la) = 5 Tl + 75 o e

Proof: We first notice that
1

d e’} 1

& / / ruﬁ (r2 +|a|> = 2r|alu)/? r? dudr

2m 0 -1 r2

1 _lwl?

/3 v la—yle 2
B\ |yl
Y(lal,r)

/ r i Z(lalr) | dr,
0 r2Y (|a|,7)

where (for r > 0)
1
Yol ) = a7 [+ la)* = Ir = 1alP|.

Zlll,r) = 3 sz |2+ 4 o = =l = 2 6+ a® = = ol

We see that when r > |al,
2 |a)? 2 2 |al?
Y(lal, ) =20+ 290 gl r) = 2Jal + 212
and when r < |al,
2 72 2 2
z Z -2
(|a\,r) 3T+ 15 |a|2

Y =2 .
(al, ) = 2lal + 5 o7
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2 2
Then we observe that using the change of variable w = T;wﬂ — u, one gets
) 2l
(% + |a)? — 2r|a|u)/? du = (2|alr)/? w'/? dw,
2|alr

_ 1 3 3
— g |+l = bl

and
! S 102 4 (o2
alr T a
/ (r? +|a)?® — 2r|alu)? wdu = (2|a\r)1/2/ { wh/? — w3/2} dw

-1 r2tlal 2)alr

3lalr

1
(2lalr)?

[SSER )
ol w

[(ﬂ FlaP) [+ lal)® — r — Jal) — 2 [(r + Ja])® — |r |a||51}

The result is obtained by cutting the integral between the part when r > |a| and
the part when r < |a|. In particular,

w2 d 2 2 2 2
[ la=sle™ " 52 = ol Salg(lal ol aTa(al -+ aPads () ~Fas(la)

Lemma A.4: We define for k € N the integrals:

Ik(as):/ tk 67t2/2dt, Jk(x):/ the=t"/2 gy
0 T

Then the following formulas hold:

(M)

x 332 x
Ji(z) =e 7, J3(z) = (22 +2)e” 7, Js = (2 +42® +8)e” T,
22 22 22
Iy(z) =Ip(z) —xe” 7, Li(x) =31(x) —23e” T —3ze 7,
2 2 2

Is(x) = 15Ig(z) — 2% e~ —523e™T — 15xe™ 2.

Proof: These formulas are directly obtained by successive integrations by parts.
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