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Abstract: In this work, we consider the smoothness of the solutions to the full Landau equation.
In particular, we prove that any classical solutions (such as the ones obtained by Guo in a “close to
equilibrium” setting) become immediately smooth with respect to all variables. This shows that the
Landau equation is a nonlinear and nonlocal analog of an hypoelliptic equation.

1 Introduction

In this paper, we study the smoothness of the solutions to the Landau equation of plasma physics:





∂tf + v · ∇xf = ∇v ·
{∫

R3 a(v − v∗)[f(v∗)∇vf(v) −∇vf(v∗)f(v)]dv∗

}
,

f(0, x, v) = f0(x, v),
(1)

where f(t, x, v) ≥ 0 is the (spatially periodic) distribution function in the phase space of charged
particles which at time t ≥ 0 and point x ∈ T3 = [−π, π]3 move with velocity v ∈ R3. The
nonnegative matrix a is given by the formula

aij(v) =

(
δij −

vivj

|v|2
)
|v|γ+2, γ ∈ [−3, 1]. (2)

The original (and most important) Landau collision operator is obtained when γ = −3 and
corresponds to the Coulomb interaction (Cf. [20] and [8]). For γ ∈]−3, 1], equation (1) is a limit model
(when collisions become grazing) of the Boltzmann equation (Cf. [11], [2] and [9]). Traditionally, one
calls hard potentials the case when γ ∈]0, 1], Maxwellian molecules the case when γ = 0, moderately
soft potentials the case when γ ∈] − 2, 0[, and very soft potentials the case when γ ∈] − 3,−2]. The
range γ ∈]1, +∞[ does not correspond to a physical situation, so we do not consider it in this paper.
However, the results presented in this work still hold in this case (the proof being the same as that of
the case γ ∈ [−2, 1]).
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The smoothness of the solutions to the spatially homogeneous Landau equation (that is, the
solutions of equation (1) which do not depend on x) has been investigated by Arsen’ev and Buryak
(Cf. [3]) in the Coulomb case and by Desvillettes and Villani (Cf. [13]) in the case of hard potentials.
In those works, it is shown that the Landau equation behaves (from the point of view of smoothness) as
a nonlinear and nonlocal version of the heat equation : roughly speaking, smoothness (in the variable
v) is immediately produced even if it does not exist initially. This behavior is close to that of the
(spatially homogeneous) Boltzmann equation without angular cutoff, but radically different from that
of the Boltzmann equation with angular cutoff (see for example [10] and the references therein for
precise statements). In this last case, propagation of regularity as well as singularities (in the variable
v) occurs, thanks to the properties of the positive part of Boltzmann operator (Cf. [21], [25], [5] and
[22]).

We are now interested in the solutions to the full (that is, spatially inhomogeneous) Landau
equation (1), which is much closer to the real physics than the spatially homogeneous one. However,
there is a new and important difficulty: for general initial data, the solutions to the full Boltzmann and
Landau equations which have been builded up to now are very weak. They are called renormalized
for the cutoff Boltzmann equation (Cf. [15] and [21]), and renormalized with a defect measure for the
non cutoff Boltzmann or Landau equation (Cf. [24], [1] and [2]). As a consequence, it is difficult to
study the smoothness of their solutions, though strong compactness and strong stability properties
can sometimes be proven (Cf. [21], [1] and [2]).

This obstruction has been overcome in [7] in the case of the cutoff Boltzmann equation, thanks
to the use of “close to vacuum” solutions corresponding to “small” initial data (Cf. [19], [23] and the
references therein for the description of such solutions). It is proven that the solution f(t, ·) at time
t has exactly the same regularity as the initial datum f(0, ·), as a function of both variables x and v.
The proof uses a combination of the properties of regularization of the positive part of Boltzmann’s
operator and of averaging lemmas (Cf. [17]). Note that a recent extension of this work to solutions of
the Vlasov-Poisson-Boltzmann equation (Cf. [4]) exists. Note also that a corresponding theorem for
solutions close to Maxwellian could certainly be obtained.

In [18], Y. Guo presented the global existence of classical solutions to (1) in the case of initial
data near Maxwellians. Thanks to this breakthrough, it is now possible to improve our knowledge of
the smoothness of the solutions to eq. (1); this is what we do in this work.

We now explain our method of proof and what makes it original. By using an energy method
on the equation satisfied by some (higher order) derivative of the solution of the Landau equation,
it is possible to prove that one derivative with respect to the variable v is gained (such an estimate
exploits the “elliptic part” of the equation, and is close to the estimates obtained in [13] for the
spatially homogeneous equation). Then, instead of using a technique directly based on the brackets
[v · ∇x, ∂vj ], we use an averaging lemma and keep track of the dependance of some fractional norm
of an average (with respect to v) of f in terms of the averaging function. An interpolation enables
to gain a fractional derivative (more precisely, 1/20 of a derivative) with respect to the variable x
for the function itself (and not its average). This method has already been used for example in [7].
However, there is now a new difficulty, and its resolution is the main originality of this paper: since
only fractional derivatives are gained, one has to perform the energy estimates (and the estimates
based on the averaging lemmas) for weighted finite differences of derivatives of f . As a consequence,
one has to add a new (space) variable and to perform L2 estimates with respect to it.

For notational simplicity, we omit the integrating domains T3 and R3, which correspond to
variables x and variable v respectively. For example, we write L2

x,v instead of L2
x(T3; L2

v(R
3)). For

any integer N ≥ 0, we define the Sobolev space

HN
x,v =

{
f(x, v) :

∑

|α|+|β|≤N

‖∂α
x ∂β

v f‖L2
x,v

< +∞
}

,
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and for N, s ≥ 0, we define the weighted Sobolev space

HN,s
x,v =

{
f(x, v) :

∑

|α|+|β|≤N

‖(∂α
x ∂β

v f) (1 + |v|2) s
2 ‖L2

x,v
< +∞

}
,

where the multi-index α = (α1, α2, α3), |α| = α1 +α2 +α3 and ∂α
x = ∂α1

x1
∂α2

x2
∂α3

x3
with x = (x1, x2, x3).

The notations for β are the same. It is obvious that HN,0
x,v = HN

x,v. We also define H∞
x,v and H∞,s

x,v by

H∞
x,v =

⋂

N≥0

HN
x,v, H∞,s

x,v =
⋂

N≥0

HN,s
x,v .

The conservation of mass, momentum and energy in equation (1) can be formulated (at the formal
level) as

d

dt

∫

T3 ×R3

f(t, x, v)




1
v
|v|2



 dxdv ≡ 0. (3)

We introduce the normalized Maxwellian µ = e−|v|2 , and the standard perturbation F := F (t, x, v)
with respect to µ as

f = µ +
√

µF. (4)

By assuming that f0(x, v) has the same mass, momentum and energy as the Maxwellian µ, we
can rewrite the conservation laws as

∫

T3 ×R3

F (t, x, v)
√

µ




1
v
|v|2



 dxdv ≡ 0. (5)

The result of [18] can be summarized as follows

Theorem 1.1 (Y. Guo) Let γ ∈ [−3, 1] and N ≥ 8. Assume that F0 := F (0, ·, ·) satisfies (5) and
that f0 := µ+

√
µ F0 is nonnegative. There exists a constant κ0 > 0, such that if ‖F0‖HN

x,v
≤ κ0, eq. (1)

has a unique (global) nonnegative classical solution f := f(t, x, v). Moreover, using the notation (4),
there is a constant C0 (depending on γ, N and κ0) such that

1. if γ ∈ [−2, 1],
‖F‖L∞

t ([0,+∞[;HN
x,v) ≤ C0 ‖F0‖HN

x,v
, (6)

2. if γ ∈ [−3,−2[,

sup
t∈[0,+∞[

∑

|α|+|β|≤N

‖(∂α
x ∂β

v F ) (1+ |v|)(γ+2)|β|‖L2
x,v

≤ C0

∑

|α|+|β|≤N

‖(∂α
x ∂β

v F0) (1+ |v|)(γ+2)|β|‖L2
x,v

.

(7)

Note that from (4), (6) and (7), we can easily get that for any s ≥ 0, there exist constants C1 > 0
(depending on C0 and s) and C2 > 0(depending on s) such that

‖f‖L∞
t ([0,+∞[;HN,s

x,v ) ≤ C1‖F0‖HN
x,v

+ C2. (8)

Our main result shows that (up to some weights in the velocity variable), any (bounded below)
classical solution to eq. (1) belonging to H8

x,v lies in fact in C∞
x,v for any time t > 0. More precisely,

we shall suppose that our solution f to eq. (1) satisfies the
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Assumption A : We suppose that f : R+ × T3 ×R3 → R+ lies in L∞
t ([0, +∞[;∩s≥0H

8,s
x,v).

Moreover, we assume that f is bounded below in the following weak sense:

∃K > 0, ∀(t, x, v) ∈ R+ × T3 ×R3, inf
ξ∈S2

∑

ij

[aij ∗v f(t, x, ·)](v) ξiξj ≥ K (1 + |v|2)γ/2. (9)

Then, our main result reads:

Theorem 1.2 Let γ ∈ [−3, 1], and f : R+ × T3 ×R3 → R+ be a (classical) solution of eq. (1)
satisfying assumption A. Then, for any τ > 0,

f ∈ W∞,∞
t ([τ, +∞[;∩s≥0H

∞,s
x,v (T3 ×R3)). (10)

Next, we notice that this result can be applied to the solutions of the Landau equation obtained
by Guo thanks to Theorem 1.1 (provided that κ0 > 0 is small enough). In particular, this shows that
the result of Theorem 1.2 is not empty. More precisely, we have the

Theorem 1.3 Let γ ∈ [−3, 1]. Assume that F0 := F (0, ·, ·) satisfies (5) and that f0 := µ +
√

µ F0 is
nonnegative. Then, there exists a constant ǫ0 ∈]0, κ0[ such that if ‖F0‖H8

x,v
≤ ǫ0, the unique classical

nonnegative solution to equation (1) given by Theorem 1.1 satisfies (for any τ > 0):

f ∈ W∞,∞
t ([τ, +∞[;∩s≥0H

∞,s
x,v (T3 ×R3)). (11)

This result shows that the smoothing effect proven (for example in [13]) for the spatially ho-
mogeneous Landau equation extends to the full (spatially inhomogeneous) Landau equation, for all
variables t, x, v. Theorem 1.2 can be understood in this way: equation (1) is a nonlocal and nonlinear
version of hypoelliptic Fokker-Planck equations such as those described in [14]. This behavior was also
observed (though only for a marginal gain of smoothness) for a toy model of the Boltzmann equation
without angular cutoff (Cf. [12]). We finally emphasize that the smoothing property which is shown
in Theorems 1.2 and 1.3 holds uniformly when the time goes to infinity.

The rest of the paper is devoted to the proof of Theorems 1.2 and 1.3. In section 2, we prove
that Theorem 1.3 is a consequence of Theorem 1.2. Section 3 is devoted to the establishment of a
few lemmas which shall be used systematically in the sequel. Then, Theorem 1.2 is proven in sections
4 and 5 in the case when γ ∈ [−2, 1]. Section 4, in which one step of the main induction argument
for Theorem 1.2 is proven, is itself divided in four subsections in which one “elementary” estimate
is proven, and a subsection into which those estimates are combined. Section 6 deals with the case
γ ∈ [−3,−2[.

2 A weak lower bound

We begin this section with a few definitions.
Let bi(v) =

∑
j ∂vj aij(v). In the sequel, we shall systematically write

āij(t, x, v) = [aij ∗v f(t, x, ·)](v), and b̄i(t, x, v) = [bi ∗v f(t, x, ·)](v).

Then, equation (1) can be rewritten as

∂tf + v · ∇xf = ∇v · (ā∇vf + b̄f), (12)

where ā (resp. b̄) is the matrix (resp. the vector) with coefficients (āij)ij (resp. (b̄i)i).

We then show that the lower bound (9) of assumption A is satisfied by the solution of the Landau
equation given by Theorem 1.1, provided that κ0 is small enough. Indeed, we state the
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Proposition 2.1 Let γ > 0, N ≥ 8 and f be a nonnegative classical solution of equation (1) given
by Theorem 1.1. If ||F0||HN

x,v
≤ ǫ0 for ǫ0 small enough, there exists a constant K > 0, depending on

N, ǫ0 and γ, such that for any t ∈ R+, x ∈ T3, v ∈ R3 and ξ ∈ R3,

∑

ij

āij(t, x, v)ξiξj ≥ K (1 + |v|2) γ
2 |ξ|2. (13)

As a consequence, Theorem 1.3 is implied by Theorem 1.2.

Proof of Proposition 2.1 We use the method of proof of Proposition 4 in [13]. From (4), (6), (7)
and the assumption ‖F0‖H8

x,v
≤ ǫ0, we get by Sobolev’s embedding that there is a constant S > 0,

depending on C0 (and thus on γ, N and ǫ0), such that

‖√µF‖L∞
t ([0,+∞[;L∞

x,v) ≤ Sǫ0, (14)

which implies that for |v| ≤ R (R will be chosen later),

f ≥ e−R2 − Sǫ0.

Choosing ǫ0 < (S + 1)−1 and R = R0 =
√
− log ((S + 1)ǫ0), we get

f(t, x, v) ≥ ǫ0, for |v| ≤ R0. (15)

For ξ ∈ R3, |ξ| = 1 and 0 < θ < π
2 , let us set

Dθ,ξ(v) =

{
v∗ ∈ R3 :

∣∣∣∣
v − v∗
|v − v∗|

· ξ
∣∣∣∣ ≥ cos θ

}
.

Note that Dθ,ξ(v) is the cone centered at v, of axis directed by ξ, and of angle θ.
For all v∗ ∈ R3 \Dθ,ξ(v),

∑

ij

aij(v − v∗)ξiξj = |v − v∗|γ+2
∑

ij

[
δij −

(v − v∗)i(v − v∗)j

|v − v∗|2
]

ξiξj ≥ |v − v∗|γ+2 sin2 θ.

Then from (15) we have that for all v ∈ R3 and θ ∈]0, π
2 [,

∑

ij

āij(t, x, v)ξiξj ≥
∫

R3 \Dθ,ξ(v)

1|v∗|≤R0
f(t, x, v∗)

∑

ij

aij(v − v∗)ξiξjdv∗

≥ ǫ0

∫

B\Dθ,ξ(v)

|v − v∗|γ+2dv∗ sin2 θ, (16)

where B = B(0, R0).
When |v| ≥ 2R0, we have (when γ + 2 ≥ 0 as well as when γ + 2 < 0) the estimate 1|v∗|≤R0

|v −
v∗|γ+2 ≥ C|v|γ+2. Then, we get

∑

ij

āij(t, x, v)ξiξj ≥ ǫ0 (C|v|)γ+2 sin2 θ

(
|B| − |B ∩ Dθ,ξ(v)|

)
.

According to (46) of [13], we have

|B ∩ Dθ,ξ(v)| ≤ 2πR0(|v| + R0)
2 tan2 θ, (17)

so that ∑

ij

āij(t, x, v)ξiξj ≥ ǫ0 (C|v|)γ+2
sin2 θ

(
4

3
πR3

0 − 2πR0 (C|v|)2 tan2 θ

)
.
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We finally choose θ in such a way that tan2 θ =
R2

0

(C|v|)2·3

(
≤ 1

27

)
. Then,

∑

ij

āij(t, x, v)ξiξj ≥ ǫ0 (C|v|)γ+2
cos2 θ

[
R2

0

(C|v|)2 · 3

]
2

3
πR3

0

≥ Cǫ0R
5
0|v|γ . (18)

On the other hand, when |v| ≤ 2R0, we observe that

∫

B\Dθ,ξ(v)

|v − v∗|γ+2dv∗ ≥
∫

B\Dθ,ξ(v)

1|v−v∗|≥λ|v − v∗|γ+2dv∗

≥ inf(λγ+2, (3R0)
γ+2)

∣∣∣∣ |B| − |B(v, λ)| − |Dθ,ξ(v)|
∣∣∣∣.

According to (16), choosing λ and θ small enough, we see that

∑

ij

āij(t, x, v)ξiξj ≥ C > 0. (19)

Estimates (18) and (19) together yield (13).

We conclude by noticing that thanks to estimates (8) and (13), assumption A is satisfied by the
solutions of the Landau equation given by Theorem 1.1 (for κ0 small enough). As a consequence,
Theorem 1.3 is a consequence of Theorem 1.2, which concludes Proposition 2.1.

3 Estimates on the diffusion coefficients

In this section, we present an estimate for the coefficients āij and b̄i which will be used repeatedly in
the proof of Theorem 1.2:

Lemma 3.1 Let γ ∈ [−3, 1]. Then, there exists a positive constant C which depends only on γ such
that for all nonnegative f := f(t, x, v) for which the derivatives are defined,
1). for any multi-indices α, β and Ω interval included in [0, +∞[, we have

‖∂α
x ∂β

v āij(t, x, ·)‖L∞
t (Ω;L∞

x )(v) ≤ C(1 + |v|2) γ+2

2 ‖(∂α
x ∂β

v f)(1 + |v|2) γ+4

2 ‖L∞
t (Ω;H2

x,v),

if γ ∈ [−2, 1], (20)

‖∂α
x ∂β

v āij(t, x, ·)‖L∞
t (Ω;L∞

x )(v) ≤ C‖(∂α
x ∂β

v f)(1 + |v|2)‖L∞
t (Ω;H2

x,v),

if γ ∈ [−3,−2[; (21)

2). for any multi-indices α, β and Ω interval included in [0, +∞[, we have

‖∂α
x ∂β

v b̄i(t, x, ·)‖L∞
t (Ω;L∞

x )(v) ≤ C(1 + |v|2) γ+2

2

∑

|σ|=1

‖(∂α
x ∂β+σ

v f)(1 + |v|2) γ+4

2 ‖L∞
t (Ω;H2

x,v),

if γ ∈ [−2, 1], (22)

‖∂α
x ∂β

v b̄i(t, x, ·)‖L∞
t (Ω;L∞

x )(v) ≤ C
∑

|σ|=1

‖(∂α
x ∂β+σ

v f)(1 + |v|2)‖L∞
t (Ω;H2

x,v),

if γ ∈ [−3,−2[. (23)
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Proof of Lemma 3.1 We first prove (20) and (21). Write

∂α
x ∂β

v āij(v) = ∂α
x ∂β

v (aij ∗v f)(v) = aij ∗v (∂α
x ∂β

v f)(v).

By Sobolev’s embedding and Minkowski’s inequality, we get

‖∂α
x ∂β

v āij‖L∞
t (Ω;L∞

x )(v) =

∥∥∥∥
∫

R3

aij(v − v∗)∂
α
x ∂β

v f(v∗)dv∗

∥∥∥∥
L∞

t (Ω;L∞
x )

≤ C sup
t∈Ω



∑

|σ|≤2

∫

T3

(∫

R3

aij(v − v∗)∂
α+σ
x ∂β

v f(v∗)dv∗

)2

dx




1/2

≤ C sup
t∈Ω

∫

R3

|aij(v − v∗)|



∑

|σ|≤2

∫

T3

|∂α+σ
x ∂β

v f(v∗)|2dx




1/2

dv∗. (24)

If γ ∈ [−2, 1], we see that

|aij(v − v∗)| ≤ 2|v − v∗|γ+2 ≤ C(1 + |v|2) γ+2

2 (1 + |v∗|2)
γ+2

2 ,

so that

‖∂α
x ∂β

v āij‖L∞
t (Ω;L∞

x )(v)

≤ C(1 + |v|2) γ+2

2 sup
t∈Ω

∫

R3

(1 + |v∗|2)
γ+2

2



∑

|σ|≤2

∫

T3

|∂α+σ
x ∂β

v f(v∗)|2dx




1/2

dv∗

≤ C(1 + |v|2) γ+2

2 ‖(∂α
x ∂β

v f)(1 + |v|2) γ+4

2 ‖L∞
t (Ω;H2

x,v). (25)

As for the case γ ∈ [−3,−2[, we deduce from (24) that

‖∂α
x ∂β

v āij‖L∞
t (Ω;L∞

x )(v) ≤ C sup
t∈Ω

∫

R3

|v − v∗|γ+2



∑

|σ|≤2

∫

T3

|∂α+σ
x ∂β

v f(v∗)|2dx




1/2

dv∗.

Using Hölder’s inequality, we get

‖∂α
x ∂β

v āij‖L∞
t (Ω;L∞

x )(v)

≤ C

(∫

R3

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗

)1/2

‖(∂α
x ∂β

v f)(1 + |v|2)‖L∞
t (Ω;H2

x,v). (26)

We now estimate the term
∫
R3 |v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗. For |v| ≤ 1

2 , we see that

1 + |v − v∗| ≥ 1 + |v∗| − |v| ≥ 1

2
+ |v∗|,

and we can get

∫

R3

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗ =

∫

R3

|v∗|2(γ+2)(1 + |v − v∗|2)−2dv∗

≤ C

∫

R3

|v∗|2(γ+2)(
1

2
+ |v∗|)−4dv∗ ≤ C. (27)
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For |v| ≥ 1
2 , we write

∫

R3

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗ =

∫

|v−v∗|≥
1+|v|

4

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗

+

∫

|v−v∗|≤
1+|v|

4

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗. (28)

The first term in the r.h.s of (28) is bounded by

(
1 + |v|

4

)2(γ+2) ∫

R3

(1 + |v∗|2)−2dv∗ ≤ C. (29)

Noticing that if |v − v∗| ≤ 1+|v|
4 , then |v∗| ≥ |v|

4 , we can bound the second term in the r.h.s of (28) by

(
1 +

|v|
4

)−4 ∫

|v−v∗|≤
1+|v|

4

|v − v∗|2(γ+2)dv∗ ≤ C

(
1 +

|v|
4

)−4(
1 + |v|

4

)2(γ+2)+3

≤ C. (30)

Combining (26) through (30), we obtain (21).

Observing that b̄i(v) =
∑

j ∂vj āij(v), we get ∂α
x ∂β

v b̄i(v) =
∑

j

[
aij ∗v (∂α

x ∂β
v ∂vj f)

]
(v). As a

consequence, we can easily get (22) and (23) by following the proofs of (20) and (21) respectively.

4 Treatment of the Case γ ∈ [−2, 1]

In this section, we shall consider eq. (1) in the case when γ ∈ [−2, 1]. We shall use (in section 5) an
induction on the number of derivatives (in x and v) that can be controlled. The following proposition
shows how to get one step of this induction.

Proposition 4.1 Let γ ∈ [−2, 1], N ≥ 8 be a given integer, and let f be a nonnegative solution of eq.
(1) such that assumption A holds for a given constant K. We suppose that for any T ∈]0, +∞[ and
s ≥ 0, ‖f‖L∞

t ([0,T ];HN,s
x,v ) ≤ K̄ for some constant K̄ ≡ K̄(s, T, N, γ). Then for any T > 0, t∗ ∈]0, T [

and s ≥ 0, there is a positive constant C̃0, which depends on N , s, γ, T , K, K̄ and t∗, such that

‖f‖L∞
t ([t∗,T ];HN+1,s

x,v ) ≤ C̃0. (31)

Since the proof of Proposition 4.1 is a bit long, we shall divide it into five parts. The first one is
devoted to the study of the smoothness of f with respect to v.

4.1 Gain of one derivative in v starting from a Sobolev space whose index

is an integer

We prove in this subsection the following

Lemma 4.1 Let γ ∈ [−2, 1], N ≥ 8 be a given integer, and let f be a smooth nonnegative solution of
equation (1) such that assumption A holds for a given constant K. We suppose that for any T > 0,
s ≥ 0,

||f(0, ·, ·)||HN,s
x,v

≤ K0,

||f ||L∞
t ([0,T ];HN−1,s

x,v ) ≤ K0 and ||f ||L2
t ([0,T ];HN,s

x,v ) ≤ K0,

where K0 ≡ K0(s, T, γ, N, K) is some constant.
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Then, there exists a constant C̃1, which depends on N , s, γ, T , K0 and K, such that

sup
t∈[0,T ]

∫

T3 ×R3

|h|2dxdv +

∫

[0,T ]×T3 ×R3

|∇vh|2dtdxdv ≤ C̃1, (32)

where
h = (∂α

x ∂β
v f) (1 + |v|2)s/2, (33)

with |α| + |β| ≤ N .

Proof of Lemma 4.1 If α and β are two multi-indices, we say that β ≤ α when βj ≤ αj for
1 ≤ j ≤ 3. We also denote α! = α1!α2!α3! and, if β ≤ α,

Cα
β =

α!

β!(α − β)!
= Cα1

β1
Cα2

β2
Cα3

β3
.

We finally denote by δi the multi-index whose ith component is 1, and the others are 0.
Since equation (1) is equivalent to (12), we know from Leibniz’s formula that h satisfies the

following equation (using Einstein’s convention for repeated indices and denoting g = ∂α
x ∂β

v f):

∂th + v · ∇xh = I + II + III, (34)

where

I =

{
0, for |β| = 0,
−βi(∂

α+δi
x ∂β−δi

v f)(1 + |v|2)s/2, for |β| ≥ 1,

II = ∂vi(āij∂vj h) − sāij(∂vj g)(1 + |v|2)s/2−1vi − ∂vi

[
sāijg(1 + |v|2)s/2−1vj

]

−∂vi(b̄ih) + sb̄ig(1 + |v|2)s/2−1vi,

III =
∑

α1+α2=α

|α1|≥1

Cα
α1

{
∂vi

[
(∂α1

x āij)(∂
α2

x ∂vj f)(1 + |v|2)s/2

]
− s(∂α1

x āij)(∂
α2

x ∂vj f)(1 + |v|2)s/2−1vi

−∂vi

[
(∂α1

x b̄i)(∂
α2

x f)(1 + |v|2)s/2

]
+ s(∂α1

x b̄i)(∂
α2

x f)(1 + |v|2)s/2−1vi

}
, for |β| = 0,

III =
∑

α1+α2=α
β1+β2=β

|α1|+|β1|≥1

Cα
α1

Cβ
β1

{
∂vi

[
(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2)s/2

]

−s(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2)s/2−1vi − ∂vi

[
(∂α1

x ∂β1

v b̄i)(∂
α2

x ∂β2

v f)(1 + |v|2)s/2

]

+s(∂α1

x ∂β1

v b̄i)(∂
α2

x ∂β2

v f)(1 + |v|2)s/2−1vi

}
, for |β| ≥ 1.

We only consider the case |β| ≥ 1, because the estimates for the case |β| = 0 are similar (and
easier). Multiplying equation (34) by h, and then integrating on (t, x, v), we shall estimate the resulting
equation term by term.

Note that the “main term” implying the coercivity (and thus leading to the gain of one derivative
with respect to v) is II1 (that is, the first term in II), and more precisely (with the notations prescribed
below), the term A1.
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We see that
∫

[0,T ]×T3 ×R3

(∂th)hdtdxdv =
1

2

(
‖h(T )‖2

L2
x,v

− ‖h(0)‖2
L2

x,v

)
≥ 1

2
‖h(T )‖2

L2
x,v

− 1

2
K2

0 . (35)

Since f is a spatially periodic function, we also see that

∫

[0,T ]×T3 ×R3

(v · ∇xh)hdtdxdv =
1

2

∫

[0,T ]×R3

v ·
(∫

T3

∇x(h2)dx

)
dtdv = 0. (36)

For the term containing I, Hölder’s inequality entails that

∣∣∣∣∣

∫

[0,T ]×T3 ×R3

Ihdtdxdv

∣∣∣∣∣ ≤ C‖h‖L2
t([0,T ];L2

x,v)‖f‖L2
t([0,T ];HN,s

x,v ) ≤ C K2
0 . (37)

For the term containing II, we write II =
∑5

i=1 IIi, and then estimate term by term. By
integration by parts,

∫

[0,T ]×T3 ×R3

II1hdtdxdv = −
∫

[0,T ]×T3 ×R3

āij(∂vih)(∂vj h)dtdxdv

= −
∫

[0,T ]×T3 ×R3

āij(∂vig)(∂vj g)(1 + |v|2)sdtdxdv

−2s

∫

[0,T ]×T3 ×R3

āij(∂vig)g(1 + |v|2)s−1vjdtdxdv

−s2

∫

[0,T ]×T3 ×R3

āij |g|2(1 + |v|2)s−2vivjdtdxdv. (38)

Denote the r.h.s of the above identity as A1 + A2 + A3. Thanks to Lemma 2.1, we get

A1 ≤ −K

∫

[0,T ]×T3 ×R3

(1 + |v|2) γ
2

∣∣∣∣(∇vg)(1 + |v|2) s
2

∣∣∣∣
2

dtdxdv

= −K

∫

[0,T ]×T3 ×R3

∣∣∣∣(∇vg)(1 + |v|2) s
2
+ γ

4

∣∣∣∣
2

dtdxdv. (39)

Using then Lemma 3.1, we see that

|A2| ≤ C

∫

[0,T ]×T3 ×R3

|∇vg||g|(1 + |v|2)s+ γ+1

2 dtdxdv‖f‖L∞
t ([0,T ];H2,γ+4

x,v )

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+γ

4 ‖2
L2

t ([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];H

N,s+1+
γ
2

x,v )

)

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + CǫK

2
0

)
, (40)

and
|A3| ≤ CK0‖f‖2

L2
t([0,T ];H

N,s+
γ
2

x,v )
≤ CK3

0 . (41)
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Again by integration by parts, we obtain that

∫

[0,T ]×T3 ×R3

II2hdtdxdv = s

∫

[0,T ]×T3 ×R3

∂vj

(
āijh(1 + |v|2)s/2−1vi

)
gdtdxdv

= s

∫

[0,T ]×T3 ×R3

āij(∂vj h)g(1 + |v|2)s/2−1vidtdxdv

+s

∫

[0,T ]×T3 ×R3

āiihg(1 + |v|2)s/2−1dtdxdv

+s(s − 2)

∫

[0,T ]×T3 ×R3

āijhg(1 + |v|2)s/2−2vivjdtdxdv

+s

∫

[0,T ]×T3 ×R3

b̄ihg(1 + |v|2)s/2−1vidtdxdv.

Thanks to Lemma 3.1, we get
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

II2hdtdxdv

∣∣∣∣∣

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];H

N,s+1+
γ
2

x,v )

)

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
. (42)

For the term containing II3, we write
∫

[0,T ]×T3 ×R3

II3hdtdxdv = s

∫

[0,T ]×T3 ×R3

āij(∂vih)g(1 + |v|2)s/2−1vjdtdxdv

= s

∫

[0,T ]×T3 ×R3

āij(∂vig)g(1 + |v|2)s−1vjdtdxdv

+s2

∫

[0,T ]×T3 ×R3

āij |g|2(1 + |v|2)s−2vivjdtdxdv.

Again from Lemma 3.1, we get that
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

II3hdtdxdv

∣∣∣∣∣

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];H

N,s+1+
γ
2

x,v )

)

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
. (43)

Since
∫

[0,T ]×T3 ×R3

II4hdtdxdv =

∫

[0,T ]×T3 ×R3

b̄i(∂vih)hdtdxdv

= −1

2

∫

[0,T ]×T3 ×R3

(∂vi b̄i)|h|2dtdxdv,

we know thanks to Lemma 3.1 that
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

II4hdtdxdv

∣∣∣∣∣ ≤ CK0‖f‖2

L2
t([0,T ];H

N,s+1+
γ
2

x,v )
≤ CK3

0 . (44)
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Finally, it is easy to see that

∣∣∣∣∣

∫

[0,T ]×T3 ×R3

II5hdtdxdv

∣∣∣∣∣ ≤ CK0‖f‖2

L2
t([0,T ];H

N,s+1+
γ
2

x,v )
≤ CK3

0 . (45)

We now turn to the terms containing the mixed derivatives. We write III =
∑4

i=1 IIIi (we recall
that we treat only the case |β| ≥ 1). By integration by parts,

∫

[0,T ]×T3 ×R3

∂vi

[
(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2)s/2

]
hdtdxdv

= −
∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

−s

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)g(1 + |v|2)s−1vidtdxdv. (46)

For the first term on the r.h.s of the above equality, we first treat the case when |α1|+ |β1| ≤
[

N
2

]
+1.

Then (since N ≥ 8), |α1| + |β1| + 2 ≤ N − 1, and Lemma 3.1 implies that

‖∂α1

x ∂β1

v āij‖L∞
t ([0,T ];L∞

x ) ≤ C(1 + |v|2) γ+2

2 ‖f‖L∞
t ([0,T ];HN−1,γ+4

x,v )

≤ C(1 + |v|2) γ+2

2 K0,

so that
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

∣∣∣∣∣

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];H

N,s+2+
γ
2

x,v )

)

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
.

We now turn to the case when |α1| + |β1| ≥
[

N
2

]
+ 2. If N is even, then |α2| + |β2| ≤

[
N
2

]
− 2, and

|α2|+ |β2|+5 ≤ N −1. If N is odd, then |α2|+ |β2| ≤
[

N
2

]
−1, and we also get |α2|+ |β2|+5 ≤ N −1.

Using Sobolev embedding, we see that

‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
+ γ

4
+2‖L∞

t ([0,T ];L∞
x,v) ≤ C‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
+ γ

4
+2‖L∞

t ([0,T ];H4
x,v)

≤ C‖f‖
L∞

t ([0,T ];H
N−1,s+4+

γ
2

x,v )
≤ CK0.
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We notice that |a(v)| ≤ C|v|γ+2. Then, by Hölder’s and Minkowski’s inequalities, we get that
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

∣∣∣∣∣

≤ CK0

∫

[0,T ]×T3 ×R3

(∫

R3

|v − v∗|γ+2|∂α1

x ∂β1

v f(v∗)|dv∗

)
|∇vg|(1 + |v|2) s

2
− γ

4
−2dtdvdx

≤ CK0

∫

[0,T ]×T3

(∫

R3

∣∣∣∣(∂
α1

x ∂β1

v f)(1 + |v|2) γ+2

2

∣∣∣∣dv

)(∫

R3

|∇vg|(1 + |v|2) s
2
+ γ

4
−1dv

)
dtdx

≤ CK0

∫ T

0




∫

R3

(1 + |v|2)−1

(∫

T3

∣∣∣∣(∂
α1

x ∂β1

v f)(1 + |v|2) γ+4

2

∣∣∣∣
2

dx

)1/2

dv





×




∫

R3

(1 + |v|2)−1

(∫

T3

∣∣∣∣(∇vg)(1 + |v|2) s
2
+ γ

4

∣∣∣∣
2

dx

)1/2

dv



 dt

≤ CK0

∫ T

0

[∫

T3 ×R3

∣∣∣∣(∂
α1

x ∂β1

v f) (1 + |v|2) γ+4

2

∣∣∣∣
2

dxdv

]1/2

×
[∫

T3 ×R3

∣∣∣∣(∇vg)(1 + |v|2) s
2
+ γ

4

∣∣∣∣
2

dxdv

]1/2

dt

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];HN,γ+4

x,v

)

≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
.

Similarly, we can bound the second term on the r.h.s of (46) by CK3
0 . Then,

∣∣∣∣∣

∫

[0,T ]×T3 ×R3

III1hdtdxdv

∣∣∣∣∣ ≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + CǫK

2
0

)
. (47)

The term containing III3 can be estimated in the same way. We do not detail the computation, but
simply notice that because of Lemma 3.1, the cases |α1| + |β1| ≤

[
N
2

]
and |α1| + |β1| ≥

[
N
2

]
+ 1 are

considered separately. As a consequence,

∣∣∣∣∣

∫

[0,T ]×T3 ×R3

III3hdtdxdv

∣∣∣∣∣ ≤ CK0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + CǫK

2
0

)
. (48)

Finally, one can also prove that
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(III2 + III4)hdtdxdv

∣∣∣∣∣ ≤ CK3
0 . (49)

Putting (35) through (49) together, we see that

1

2
||h(T, ·, ·)||2L2

x,v
+ (K − CK0ǫ) ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) ≤ CK2

0 (1 + K0) + CǫK
3
0 . (50)

The proof of Lemma 4.1 is concluded by taking ǫ > 0 small enough.

We now turn to the question of the smoothness with respect to variable x. We cannot hope to get
it directly by an energy estimate like we did for variable v since no diffusion term in x is available. We
use instead averaging lemmas, which ensure that averages in v of the solution of a kinetic equation
have some smoothness (Cf. [17] for example).
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4.2 Gain of 1/20 of a derivative in x starting from a Sobolev space whose

index is an integer

We begin with the

Lemma 4.2 Let γ ∈ [−2, 1], N ≥ 8 be a given integer, and let f be a smooth nonnegative solution of
eq. (1) such that assumption A holds for a given constant K. We suppose that for any T ∈]0, +∞[
and s ≥ 0, ‖f‖L∞

t ([0,T ];HN,s
x,v ) ≤ K1 for some constant K1 ≡ K1(s, T, γ, N, K). Then for any T > 0

and s ≥ 0, there is a positive constant C̃2, which depends on N , s, γ, T , K and K1, such that
∫

[0,T ]×R3

‖h‖2

Ḣ
1/20
x

dtdv ≤ C̃2, (51)

where h is defined by (33).

Proof of Lemma 4.2 Let p(t, x, v) = h(t, x, v)(1 + |v|2)2. We recall that

(51) ⇔
∫

[0,T ]×R3 ×T3 ×T3

(1 + |v|2)−4|△kp(t, x, v)|2|k|−1/10−3dtdvdxdk ≤ C̃2

⇔
∫

[0,T ]×R3

(1 + |v|2)−4

( ∑

m∈Z3

|m|1/10|p̂(t, m, v)|2
)

dtdv ≤ C̃2, (52)

where △kp(t, x, v) = p(t, x + k, v) − p(t, x, v) is a finite difference, and p̂(t, m, v) is the m-th Fourier
coefficient of p with respect to the x variable.

We wish to prove (52). Let χ := χ(v) ∈ C∞
c (R3) be a test function which satisfies χ(v) ≥ 0 and∫

R3 χ(v)dv = 1. We introduce the regularizing sequence χǫ(v) = ǫ−3χ
(

v
ǫ

)
and write

p̂(t, m, v) =

[
p̂(t, m, v) − (p̂(t, m, ·) ∗v χǫ)(v)

]
+ (p̂(t, m, ·) ∗v χǫ)(v). (53)

Here, ǫ will be chosen later (and will depend on m).
For the first term of the r.h.s of the above equality, we use Minkowski’s inequality and get

∫

R3

(1 + |v|2)−4

∣∣∣∣p̂(t, m, v) − (p̂(t, m, ·) ∗v χǫ)(v)

∣∣∣∣
2

dv

≤
∫

R3

∣∣∣∣
∫

R3

[p̂(t, m, v) − p̂(t, m, v − u)] χǫ(u)du

∣∣∣∣
2

dv

≤
(∫

R3

(∫

R3

|p̂(t, m, v) − p̂(t, m, v − u)|2dv

)1/2

χǫ(u)du

)2

≤ C

(∫

R3

χǫ(u)|u|du

)2 ∫

R3

|∇v p̂(t, m, v)|2dv ≤ Cǫ2
∫

R3

|∇v p̂(t, m, v)|2dv

so that
∫

[0,T ]×R3

(1 + |v|2)−4

( ∑

m∈Z3

|m|1/10

∣∣∣∣p̂(t, m, v) − [p̂(t, m, ·) ∗v χǫ](v)

∣∣∣∣
2)

dtdv

≤ C

∫

[0,T ]×R3

∑

m∈Z3

|m|1/10ǫ2|∇v p̂(t, m, v)|2dtdv. (54)

Remembering that p = h(1 + |v|2)2, we see that p is the solution of equation (34) with s replaced
by s + 4. Then, we can write the equation satisfied by p under the form

∂tp + v · ∇xp = p1 + ∇v · p2. (55)
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Here, ∇v ·p2 is the sum of the terms II1, II3, II4, III1 and III3, while p1 is the sum of the remaining
terms.

We claim that p1, p2 ∈ L2
t ([0, T ]; L2

x,v). We only present here the estimates for the terms I, II1,
II5, III1 and III3 in the case |β| ≥ 1, the others being similar.

It is obvious that

‖I‖L2
t([0,T ];L2

x,v) ≤ C‖f‖L2
t([0,T ];HN,s+4

x,v ) ≤ CK1T
1/2. (56)

As for the term II1, we know from (20) that

‖āij‖L∞
t ([0,T ];L∞

x ) ≤ CK1(1 + |v|2) γ+2

2 ,

which implies that

‖āij∂vip‖L2
t([0,T ];L2

x,v) ≤ CK1‖(∇vp)(1 + |v|2) γ+2

2 ‖L2
t([0,T ];L2

x,v) ≤ C

√
C̃1 K1, (57)

where the last inequality holds thanks to Lemma 4.1 (applied to p(1 + |v|2)(γ+2)/2).
If we use (22) instead of (20), we can analogously obtain that

‖b̄ig(1 + |v|2)s/2+1vi‖L2
t ([0,T ];L2

x,v) ≤ CK2
1T 1/2, (58)

and as a consequence
‖II5‖L2

t ([0,T ];L2
x,v) ≤ CK2

1T 1/2. (59)

As for the term III1, when |α1| + |β1| ≤
[

N
2

]
+ 1, we know from (20) that

‖(∂α1

x ∂β1

v āij)(1 + |v|2)− γ+2

2 ‖L∞
t ([0,T ];L∞

x ) ≤ CK1.

This implies that

‖(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2) s+4

2 ‖L2
t([0,T ];L2

x,v)

≤ CK0‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s+γ+6

2 ‖L2
t ([0,T ];L2

x,v) ≤ CK2
1T 1/2. (60)

When |α1| + |β1| ≥
[

N
2

]
+ 2, we know that

‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s+γ+8

2 ‖L∞
t ([0,T ];L∞

x,v) ≤ C‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s+γ+8

2 ‖L∞
t ([0,T ];H4

x,v) ≤ CK1.

Noticing that |a(v − v∗)| ≤ C|v − v∗|γ+2 ≤ C(1 + |v|2) γ+2

2 (1 + |v∗|2)
γ+2

2 , we get

‖(∂α1

x ∂β1

v ā)(1 + |v|2)− γ+4

2 ‖2
L2

t ([0,T ];L2
x,v)

≤ C

∫

[0,T ]×T3 ×R3

(1 + |v|2)−2

(∫

R3

|∂α1

x ∂β1

v f(v∗)|(1 + |v∗|2)
γ+2

2 dv∗

)2

dtdxdv

≤ C

∫

[0,T ]×T3

(∫

R3

|∂α1

x ∂β1

v f(v)|(1 + |v|2) γ+2

2 dv

)2

dtdx.

Using Minkowski’s and Hölder’s inequality, we get

‖(∂α1

x ∂β1

v ā)(1 + |v|2)− γ+4

2 ‖2
L2

t([0,T ];L2
x,v)

≤ C

∫ T

0

(∫

R3

(∫

T3

|∂α1

x ∂β1

v f(v)|2(1 + |v|2)γ+4dx

)1/2

(1 + |v|2)−1dv

)2

dt

≤ C

∫

[0,T ]×T3 ×R3

|∂α1

x ∂β1

v f(v)|2(1 + |v|2)γ+4dtdxdv ≤ CK2
1T,
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which yields for the term III1 :

‖(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2) s+4

2 ‖L2
t ([0,T ];L2

x,v)

≤ CK1‖(∂α1

x ∂β1

v ā)(1 + |v|2)− γ+4

2 ‖L2
t ([0,T ];L2

x,v) ≤ CK2
1T 1/2. (61)

For the term III3, we proceed like for the corresponding term in the proof of Lemma 4.1. We use
(22) instead of (20) and consider the case |α1| + |β1| ≤ [N

2 ] and |α1| + |β1| ≥ [N
2 ] + 1 separately, in

order to get

‖(∂α1

x ∂β1

v b̄i)(∂
α2

x ∂β2+δj
v f)(1 + |v|2) s+4

2 ‖L2
t([0,T ];L2

x,v) ≤ CK2
1T 1/2. (62)

Finally, we see indeed that p1, p2 ∈ L2
t ([0, T ]; L2

x,v).

Now according to (2.16) in Theorem 2.1 (averaging lemma) of [6] (this is a variant of a lemma
first proven in [16]), we can prove that

|m|1/2

∫ T

0

∣∣∣∣(p̂(t, m, ·) ∗v χǫ)(v)

∣∣∣∣
2

dt ≤ C

(
‖χǫ(v − u)(1 + |u|2)‖L∞

u
+ ‖∇χǫ(v − u)(1 + |u|2)‖L∞

u

)2

×
(
‖p̂(0, m, ·)‖2

L2
v

+ ‖p̂(·, m, ·)‖2
L2

t ([0,T ];L2
v)

+‖p̂1(·, m, ·)‖2
L2

t ([0,T ];L2
v) + ‖p̂2(·, m, ·)‖2

L2
t ([0,T ];L2

v)

)
.

Since ‖χǫ(v − u)(1 + |u|2)‖L∞
u

≤ Cǫ−3(1 + |v|2), we see that

∫

[0,T ]×R3

(1 + |v|2)−4
∑

m∈Z3

|m|1/10

∣∣∣∣(p̂(t, m, ·) ∗v χǫ)(v)

∣∣∣∣
2

dtdv

≤ C
∑

m∈Z3

|m| 1
10

− 1
2 (ǫ−6 + ǫ−8)

(
‖p̂(0, m, ·)‖2

L2
v

+‖p̂(·, m, ·)‖2
L2

t([0,T ];L2
v) + ‖p̂1(·, m, ·)‖2

L2
t ([0,T ];L2

v) + ‖p̂2(·, m, ·)‖2
L2

t ([0,T ];L2
v)

)
. (63)

If we choose ǫ := ǫ(m) = |m|−1/20, we can bound (54) by using Lemma 4.1. Then, we can bound
(63) remembering that p(0, ·, ·) ∈ L2

x,v and p, p1, p2 ∈ L2
t ([0, T ]; L2

x,v). This leads to estimate (52) and
ends the proof of Lemma 4.2.

Roughly speaking, Lemma 4.2 (together with Lemma 4.1) shows that when f is a solution of

eq. (1) satisfying assumption A and such that f ∈ L∞
t (HN

x,v), then f ∈ L2
t (H

N+1/20
x,v ) (up to some

weights).

The two next steps consist in proving that the same gain of 1/20 of derivatives (with respect to x

and v) holds when N is replaced by N + δ with δ not integer, so that at the end, f ∈ L2
t (H

N+δ+1/20
x,v )

(with weights). In these two steps, one has to write down the equation satisfied by a finite difference
(in x) of some mixed derivative of f . The two next lemmas are therefore somewhat more technical
than lemmas 4.1, 4.2, and the treatment of this difficulty is the main novelty of this paper.

4.3 Gain of one derivative in v starting from a Sobolev space whose index

is not an integer

Lemma 4.3 Let γ ∈ [−2, 1], N ≥ 8 be a given integer, δ ∈]0, 19/20] and let f be a smooth nonnegative
solution of eq. (1) such that assumption A holds for a given constant K. We suppose that for any
T ∈]0, +∞[ and s ≥ 0, there exists K2 ≡ K2(γ, N, δ, K, T, s) such that

||f(0, ·, ·)||HN+δ,s
x,v

≤ K2, ‖f‖L∞
t ([0,T ];HN,s

x,v ) ≤ K2, ‖f‖L2
t([0,T ];HN+δ,s

x,v ) ≤ K2. (64)
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Then for any T > 0, and s ≥ 0, there is a positive constant C̃3, which depends on N , s, γ, T , K, K2

and δ, such that ∫

[0,T ]×T3 ×R3 ×T3

|∇vgδ,k|2dtdxdvdk ≤ C̃3, (65)

where gδ,k(t, x, v) = △kh(t, x, v)|k|−δ− 3
2 , and h is defined by (33).

Proof of Lemma 4.3 The main difference between this proof and that of Lemma 4.1 is that we
now have an additional integration with respect to k.

By assumption, ‖gδ,k(0)‖L2
x,v,k

≤ K2. We now write down the equation satisfied by gδ,k:

∂tgδ,k + v · ∇xgδ,k = IV + V + V I, (66)

where

IV =

{
0, for |β| = 0,

−βi(∂
α+δi
x ∂β−δi

v △kf)|k|−δ− 3
2 (1 + |v|2)s/2, for |β| ≥ 1,

V = ∂vi

[
△k(āij∂vj h)|k|−δ− 3

2

]
− s△k(āij∂vj g)|k|−δ− 3

2 (1 + |v|2)s/2−1vi

−∂vi

[
s△k(āijg)|k|−δ− 3

2 (1 + |v|2)s/2−1vj

]
− ∂vi

[
△k(b̄ih)|k|−δ− 3

2

]

+s△k(b̄ig)|k|−δ− 3
2 (1 + |v|2)s/2−1vi,

V I =
∑

α1+α2=α

|α1|≥1

Cα
α1

{
∂vi

[
△k((∂α1

x āij)(∂
α2

x ∂vj f))|k|−δ− 3
2 (1 + |v|2)s/2

]

−s△k

(
(∂α1

x āij)(∂
α2

x ∂vj f)

)
|k|−δ− 3

2 (1 + |v|2)s/2−1vi

−∂vi

[
△k

(
(∂α1

x b̄i)(∂
α2

x f)

)
|k|−δ− 3

2 (1 + |v|2)s/2

]

+s△k

(
(∂α1

x b̄i)(∂
α2

x f)

)
|k|−δ− 3

2 (1 + |v|2)s/2−1vi

}
, for |β| = 0,

V I =
∑

α1+α2=α
β1+β2=β

|α1|+|β1|≥1

Cα
α1

Cβ
β1

{
∂vi

[
△k

(
(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)

)
|k|−δ− 3

2 (1 + |v|2)s/2

]

−s△k

(
(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)

)
|k|−δ− 3

2 (1 + |v|2)s/2−1vi

−∂vi

[
△k

(
(∂α1

x ∂β1

v b̄i)(∂
α2

x ∂β2

v f)

)
|k|−δ− 3

2 (1 + |v|2)s/2

]

+s△k

(
(∂α1

x ∂β1

v b̄i)(∂
α2

x ∂β2

v f)

)
|k|−δ− 3

2 (1 + |v|2)s/2−1vi

}
, for |β| ≥ 1.

We still only consider the case |β| ≥ 1. We multiply equation (66) by gδ,k, and then integrate on
(t, x, v, k) in the domain [0, T ] × T3 ×R3 ×T3. We only estimate the terms containing the first and
fourth term of V and the first term of V I, denoted by V1, V4 and V I1 respectively, since the estimates
for other terms are similar. Note that the “main term” implying the coercivity (and thus leading to
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the gain of one derivative with respect to v) is V1, and more precisely (with the notations prescribed
below), the term B1,1.

For any function f(x) and g(x),

△k(f(x)g(x)) = f(x + k)△kg(x) + g(x)△kf(x), (67)

so that (writing āij(x + k) instead of āij(t, x + k, v), etc.), we can write

V1 = ∂vi

[
△k(āij∂vj h)|k|−δ− 3

2

]
= ∂vi

[
āij(x + k)(∂vj gδ,k)

]
+ ∂vi

[
(△kāij)(∂vj h)|k|−δ− 3

2

]
.

We denote the r.h.s of the above equality by B1 + B2. After integration by parts,

∫

[0,T ]×T3 ×R3 ×T3

B1gδ,kdtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

āij(x + k)(∂vigδ,k)(∂vj gδ,k)dtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

āij(x + k)[∂vi(△kg)][∂vj (△kg)](1 + |v|2)s|k|−2δ−3dtdxdvdk

−2s

∫

[0,T ]×T3 ×R3 ×T3

āij(x + k)[∂vi(△kg)](△kg)(1 + |v|2)s−1vj |k|−2δ−3dtdxdvdk

−s2

∫

[0,T ]×T3 ×R3 ×T3

āij(x + k)|△kg|2(1 + |v|2)s−2vivj |k|−2δ−3dtdxdvdk. (68)

We write the r.h.s of the above equality as B1,1 + B1,2 + B1,3. Since f is a spatially periodic function,
we obtain from Lemma 2.1 that

B1,1 ≤ −K

∫

[0,T ]×T3 ×R3 ×T3

(1 + |v|2) γ
2

∣∣∣∣[∇v(△kg)](1 + |v|2) s
2 |k|−δ− 3

2

∣∣∣∣
2

dtdxdvdk

= −K

∫

[0,T ]×T3 ×R3 ×T3

∣∣∣∣[∇v(△kg)](1 + |v|2) s
2
+ γ

4 |k|−δ− 3
2

∣∣∣∣
2

dtdxdvdk. (69)

Thanks to Lemma 3.1, we know that

‖āij(x + k)‖L∞
t ([0,T ];L∞

x,k
) ≤ CK2(1 + |v|2) γ+2

2 .

Using Hölder’s inequality and the hypothesis of our lemma, we get

|B1,2| ≤ CK2

∫

[0,T ]×T3 ×R3 ×T3

(
|∇v(△kg)|(1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2

)

×
(
(△kg)(1 + |v|2) s+1

2
+ γ

4 |k|−δ− 3
2

)
dtdxdvdk

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t([0,T ];L2

x,v,k) + CǫK
2
2

)
. (70)

Similarly, we can obtain

|B1,3| ≤ CK3
2 . (71)
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As for the term containing B2, we treat it by integration by parts,
∫

[0,T ]×T3 ×R3 ×T3

B2gδ,kdtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(△kāij)(∂vigδ,k)(∂vj h)|k|−δ− 3
2 dtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(△kāij)(∂vi(△kg))(∂vj g)(1 + |v|2)s|k|−2δ−3dtdxdvdk

−s

∫

[0,T ]×T3 ×R3 ×T3

(△kāij)(∂vi(△kg))g(1 + |v|2)s−1vj |k|−2δ−3dtdxdvdk

−s

∫

[0,T ]×T3 ×R3 ×T3

(△kāij)(△kg)(∂vj g)(1 + |v|2)s−1vi|k|−2δ−3dtdxdvdk

−s2

∫

[0,T ]×T3 ×R3 ×T3

(△kāij)(△kg)g(1 + |v|2)s−2vivj |k|−2δ−3dtdxdvdk. (72)

We denote the r.h.s of the above equality by
∑4

i=1 B2,i. Noticing that △kāij = aij ∗ △kf , we get
thanks to Lemma 3.1 the following inequality :

‖△kāij‖L∞
x

≤ C(1 + |v|2) γ+2

2 ‖(△kf)(1 + |v|2) γ+4

2 ‖H2
x,v

.

Then,

|B2,1| ≤ C

∫

[0,T ]×T3

‖(△kf)(1 + |v|2) γ+4

2 |k|−δ− 3
2 ‖H2

x,v

×
(∫

T3 ×R3

|∇v(△kg)||∇vg|(1 + |v|2)s+1+ γ
2 |k|−δ− 3

2 dxdv

)
dtdk

≤ C

∫ T

0

‖(△kf)(1 + |v|2) γ+4

2 |k|−δ− 3
2 ‖L2

k(H2
x,v)‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖L2

x,v,k

×‖(∇vg)(1 + |v|2) s
2
+ γ

4
+1‖L2

x,v
dt

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t([0,T ];L2

x,v,k) + CǫC̃1

)
, (73)

where the last inequality holds thanks to Lemma 4.1. Similarly, we can get

4∑

i=2

|B2,i| ≤ C K2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k) + Cǫ(K2 + C̃1)
)

. (74)

Combining (68) through (74), we get the estimate for
∫
[0,T ]×T3 ×R3 ×T3 V1gδ,kdtdxdvdk.

We now briefly describe how to treat the term V4. We know from (67) that

∂vi

[
△k(b̄ih)|k|−δ− 3

2

]
= ∂vi

[
b̄i(x + k)gδ,k

]
+ ∂vi

[
(△k b̄i)h|k|−δ− 3

2

]
.

We find that the estimate for
∫
[0,T ]×T3 ×R3 ×T3 ∂vi [b̄i(x+k)gδ,k]gδ,kdtdxdvdk is similar to that for B1,2.

Moreover, using (22), we obtain for
∫
[0,T ]×T3 ×R3 ×T3 ∂vi [(△k b̄i)h|k|−δ− 3

2 ]gδ,kdtdxdvdk an estimate

similar to that of
∫
[0,T ]×T3 ×R3 ×T3 B2gδ,kdtdxdvdk. Finally, we have that

∣∣∣∣∣

∫

[0,T ]×T3 ×R3 ×T3

V4gδ,kdtdxdvdk

∣∣∣∣∣

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t([0,T ];L2

x,v,k) + Cǫ(K
2
2 + C̃1)

)
. (75)
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As for the term containing V I1, we write

∂vi

[
△k((∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f))(1 + |v|2)s/2|k|−δ− 3

2

]

= ∂vi

[
(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(1 + |v|2)s/2|k|−δ− 3

2

]

+∂vi

[
(∂α1

x ∂β1

v △kāij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2)s/2|k|−δ− 3

2

]
,

and we denote it by D1 + D2. By integration by parts,

∫

[0,T ]×T3 ×R3 ×T3

D1gδ,kdtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(∂vigδ,k)(1 + |v|2)s/2|k|−δ− 3

2 dtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(∂vi(△kg))(1 + |v|2)s|k|−2δ−3dtdxdvdk

−s

∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(△kg)

×(1 + |v|2)s−1vi|k|−2δ−3dtdxdvdk. (76)

We write the r.h.s of the above equality as D1,1 + D1,2. When |α1| + |β1| ≤
[

N
2

]
+ 1, Lemma 3.1

ensures that
‖∂α1

x ∂β1

v āij(x + k)‖L∞
t ([0,T ];L∞

x,k) ≤ CK2(1 + |v|2) γ+2

2 .

Then, thanks to the hypothesis of our lemma, we get

|D1,1| ≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k)

+Cǫ‖[∂α2

x ∂β2+δj
v △kf ](1 + |v|2) s

2
+ γ

4
+1|k|−δ− 3

2 ‖2
L2

t ([0,T ];L2
x,v,k)

)

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k) + CǫK
2
2

)
. (77)

When |α1| + |β1| ≥
[

N
2

]
+ 2, by Sobolev’s embedding, we know that

‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s

2
+ γ

4
+2|k|−δ− 3

2 ‖L∞
x,v

≤ C‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s

2
+ γ

4
+2|k|−δ− 3

2 ‖H4
x,v

.

From the definitions of a and ā, we obtain (we do not write down the time variable for the sake of
simplicity)

|∂α1

x ∂β1

v āij(x + k)| ≤
∫

R3

|a(v − v∗)||∂α1

x ∂β1

v f(x + k, v∗)|dv∗

≤ (1 + |v|2) γ+2

2

∫

R3

|∂α1

x ∂β1

v f(x + k, v)|(1 + |v|2) γ+2

2 dv.
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So using Cauchy-Schwarz’s inequality first, and then Minkowski’s inequality, we can get

|D1,1| ≤ C

∫

[0,T ]×T3

‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s

2
+ γ

4
+2|k|−δ− 3

2 ‖H4
x,v

×
∫

T3

(∫

R3

|∂α1

x ∂β1

v f(x + k, v)|(1 + |v|2) γ+2

2 dv

)

×
(∫

R3

|∇v(△kg)|(1 + |v|2) s
2
+ γ

4
−1|k|−δ− 3

2 dv

)
dxdtdk

≤ C

∫

[0,T ]×T3

‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s

2
+ γ

4
+2|k|−δ− 3

2 ‖H4
x,v

×



∫

R3

(1 + |v|2)−1

(∫

T3

∣∣∣∣(∂
α1

x ∂β1

v f(x + k, v))(1 + |v|2) γ+4

2

∣∣∣∣
2

dx

)1/2

dv




×



∫

R3

(1 + |v|2)−1

(∫

T3

∣∣∣∣[∇v(△kg)](1 + |v|2) s
2
+ γ

4 |k|−δ− 3
2

∣∣∣∣
2

dx

)1/2

dv


 dtdk.

Using Cauchy-Schwarz’s inequality again, we finally obtain

|D1,1| ≤ C

∫ T

0

‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s

2
+ γ

4
+2|k|−δ− 3

2 ‖L2
k(H4

x,v)

×‖(∂α1

x ∂β1

v f)(x + k, v)(1 + |v|2) γ+4

2 ‖L2
x,v

×‖[∇v(△kg)](1 + |v|2) s
2
+ γ

4 |k|−δ− 3
2 ‖L2

x,v,k
dt

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k) + CǫK
2
2

)
. (78)

Estimates (77) and (78) together yield

|D1,1| ≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k
) + CǫK

2
2

)
. (79)

Similarly, we can get
|D1,2| ≤ C K3

2 . (80)

As for D2, by integration by parts,

∫

[0,T ]×T3 ×R3 ×T3

D2gδ,kdtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v △kāij)(∂
α2

x ∂β2+δj
v f)(∂vigδ,k)(1 + |v|2)s/2|k|−δ− 3

2 dtdxdvdk

= −
∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v △kāij)(∂
α2

x ∂β2+δj
v f)(∂vi(△kg))(1 + |v|2)s|k|−2δ−3dtdxdvdk

−s

∫

[0,T ]×T3 ×R3 ×T3

(∂α1

x ∂β1

v △kāij)(∂
α2

x ∂β2+δj
v f)(△kg)

×(1 + |v|2)s−1vi|k|−2δ−3dtdxdvdk. (81)

We denote the r.h.s of the above equality by D2,1 +D2,2. When |α1|+ |β1| ≤
[

N
2

]
+1, we use Lemma

3.1 to get the estimate

‖∂α1

x ∂β1

v △kāij‖L∞
x

≤ C(1 + |v|2) γ+2

2 ‖(△kf)(1 + |v|2) γ+4

2 ‖HN−1
x,v

.
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Proceeding like in the estimate for B2,1, we can get

|D2,1| ≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k) + CǫK
2
2

)
. (82)

When |α1| + |β1| ≥
[

N
2

]
+ 2, we get by Sobolev’s embedding,

‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
+ γ

4
+2‖L∞

x,v
≤ C‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
+ γ

4
+2‖H4

x,v

Since △kāij = aij ∗v △kf , we see that

|∂α1

x ∂β1

v △kāij | ≤ C(1 + |v|2) γ+2

2

∫

R3

|∂α1

x ∂β1

v △kf(v)|(1 + |v|2) γ+2

2 dv,

and therefore

|D2,1| ≤ C

∫

[0,T ]×T3

‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
+ γ

4
+2‖H4

x,v

×
∫

T3

(∫

R3

|∂α1

x ∂β1

v △kf |(1 + |v|2) γ+2

2 |k|−δ− 3
2 dv

)

×
(∫

R3

|∇v(△kg)|(1 + |v|2) s
2
+ γ

4
−1|k|−δ− 3

2 dv

)
dxdtdk.

Estimating this quantity like we did for D1,1, and using the hypothesis of our lemma, we end up with

|D2,1| ≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

x,v,k) + CǫK2

)
. (83)

Similarly, we can get
|D2,2| ≤ CK3

2 . (84)

Collecting (79) - (84), we end up with
∣∣∣∣∣

∫

[0,T ]×T3 ×R3 ×T3

V I1gδ,kdtdxdvdk

∣∣∣∣∣

≤ CK2

(
ǫ‖[∇v(△kg)](1 + |v|2) s

2
+ γ

4 |k|−δ− 3
2 ‖2

L2
t([0,T ];L2

x,v,k) + Cǫ K2
2 )
)

. (85)

As in the end of the proof of Lemma 4.1, we can conclude the proof of Lemma 4.3 by choosing ǫ
small enough.

We finally write down a lemma allowing to recover a fractional derivative in x for the solution of
eq. (1) when we start from a function which lies already in a fractional Sobolev space.

4.4 Gain of a 1/20 of a derivative in x starting from a Sobolev space whose

index is not an integer

Lemma 4.4 Let γ ∈ [−2, 1], N ≥ 8 be a given integer, δ ∈]0, 19/20] and let f be a smooth nonnegative
solution of eq. (1) such that assumption A holds for a given constant K. We suppose that for any
T ∈]0, +∞[ and s ≥ 0, there exists K3 ≡ K3(γ, N, δ, K, T, s) such that

||f(0, ·, ·)||HN+δ,s
x,v

≤ K3, ‖f‖L∞
t ([0,T ];HN,s

x,v ) ≤ K3, ‖f‖L2
t([0,T ];HN+δ,s

x,v ) ≤ K3. (86)

Then for any T > 0 and s ≥ 0, there is a positive constant C̃4 which depends on N , s, γ, T , K, K3

and δ, such that ∫

[0,T ]×R3

‖h‖2

Ḣ
δ+1/20
x

dtdv ≤ C̃4, (87)

where h is given by (33).
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Proof of Lemma 4.4 Noticing that
∫

T3

|ĝδ,k(m)|2dk = C|m|2δ|ĥ(m)|2,

we know that

(87) ⇔
∫

[0,T ]×R3

∑

m∈Z3

|m|2δ+1/10|ĥ(m)|2dtdv ≤ C̃4

⇔
∫

[0,T ]×R3 ×T3

∑

m∈Z3

|m|1/10|ĝδ,k(m)|2dtdvdk ≤ C̃4

⇔
∫

[0,T ]×R3 ×T3

‖gδ,k‖2

Ḣ
1/10
x

dtdvdk ≤ C̃4. (88)

In order to prove estimate (88), we use the method of the proof of Lemma 4.2. We introduce
pδ,k = gδ,k(1 + |v|2)2, and write (for p̂δ,k the Fourier coefficient with respect to x of pδ,k) :

p̂δ,k(t, m, v) =

[
p̂δ,k(t, m, v) − (p̂δ,k(t, m, ·) ∗v χǫ)(v)

]
+ (p̂δ,k(t, m, ·) ∗v χǫ)(v), (89)

the parameter ǫ being chosen later.
Following the proof of estimate (54), we get

∫

[0,T ]×R3 ×T3

(1 + |v|2)−4
∑

m∈Z3

|m|1/10

∣∣∣∣p̂δ,k(t, m, v) − (p̂δ,k(t, m, ·) ∗v χǫ)(v)

∣∣∣∣
2

dtdvdk

≤ C

∫

[0,T ]×R3 ×T3

∑

m∈Z3

|m|1/10ǫ2|∇vp̂δ,k(t, m, v)|2dtdvdk. (90)

Notice that pδ,k is the solution of equation (66) where s replaced by s + 4. As a consequence, we can
write

∂tpδ,k + v · ∇xpδ,k = p
(1)
δ,k + ∇v · p(2)

δ,k, (91)

where p
(1)
δ,k consists in the sum of the terms IV , V2, V5, V I2 and V I4.

We claim that p
(1)
δ,k, p

(2)
δ,k ∈ L2

t ([0, T ]; L2
x,v,k). We only present the estimate for the term V I1 in the

case |β| ≥ 1 here, the others being similar. We write

△k

(
(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)

)
(1 + |v|2) s+4

2 |k|−δ− 3
2

= (∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf) (1 + |v|2) s+4

2 |k|−δ− 3
2

+(∂α1

x ∂β1

v △kāij)(∂
α2

x ∂β2+δj
v f)(1 + |v|2) s+4

2 |k|−δ− 3
2 ,

and we only estimate the first term of the r.h.s of the above equality, the estimate for the second term
being similar.
When 1 ≤ |α1| + |β1| ≤

[
N
2

]
+ 1, we know thanks to (20) that

‖(∂α1

x ∂β1

v āij(x + k))(1 + |v|2)− γ+2

2 ‖L∞
t ([0,T ];L∞

x,k) ≤ C K3.

Thanks to the hypothesis of our lemma, we see that

‖(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+4

2 |k|−δ− 3
2 ‖L2

t([0,T ];L2
x,v,k)

≤ CK3‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+γ+6

2 |k|−δ− 3
2 ‖L2

t([0,T ];L2
x,v,k)

≤ CK2
3 . (92)
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When |α1| + |β1| ≥
[

N
2

]
+ 2, we know that

‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+γ+8

2 |k|−δ− 3
2 ‖L∞

x,v

≤ C‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+γ+8

2 |k|−δ− 3
2 ‖H4

x,v
.

Remembering that |a(v − v∗)| ≤ C|v − v∗|γ+2 ≤ C(1 + |v|2) γ+2

2 (1 + |v∗|2)
γ+2

2 , we see that

‖(∂α1

x ∂β1

v ā(x + k))(1 + |v|2)− γ+4

2 ‖2
L2

x,v

≤ C

∫

T3 ×R3

(1 + |v|2)−2

(∫

R3

∣∣∣∣∂
α1

x ∂β1

v f(x + k, v∗)

∣∣∣∣ (1 + |v∗|2)
γ+2

2 dv∗

)2

dxdv

≤ C

∫

T3

(∫

R3

∣∣∣∣∂
α1

x ∂β1

v f(x + k, v)

∣∣∣∣ (1 + |v|2) γ+2

2 dv

)2

dx.

Using Minkowski’s and Hölder’s inequalities and proceeding like in the study of the term III1 in the
proof of Lemma 4.2, we get

‖(∂α1

x ∂β1

v ā(x + k))(1 + |v|2)− γ+4

2 ‖2
L2

x,v

≤ C

(∫

R3

(∫

T3

|∂α1

x ∂β1

v f(x + k, v)|2(1 + |v|2)γ+4dx

)1/2

(1 + |v|2)−1dv

)2

≤ C

∫

T3 ×R3

|∂α1

x ∂β1

v f |2(1 + |v|2)γ+4dxdv.

Thus, using Hölder’s inequality and the hypothesis of our lemma, we get

‖(∂α1

x ∂β1

v āij(x + k))(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+4

2 |k|−δ− 3
2 ‖2

L2
t([0,T ];L2

x,v,k)

≤ C‖(∂α2

x ∂β2+δj
v △kf)(1 + |v|2) s+γ+8

2 |k|−δ− 3
2 ‖2

L2
t ([0,T ];L2

k(H4
x,v))

×‖(∂α1

x ∂β1

v ā(x + k))(1 + |v|2)− γ+4

2 ‖2
L∞

t ([0,T ];L∞
k (L2

x,v)) ≤ CK4
3 . (93)

Proceeding like in the estimate for (63), we can get

∫

[0,T ]×R3 ×T3

(1 + |v|2)−4
∑

m∈Z3

|m|1/10

∣∣∣∣(p̂δ,k(t, m, ·) ∗ χǫ)(v)

∣∣∣∣
2

dtdvdk

≤ C
∑

m∈Z3

|m| 1
10

− 1
2 (ǫ−6 + ǫ−8)

(
‖p̂δ,k(0, m, ·)‖2

L2
v,k

+ ‖p̂δ,k(t, m, ·)‖2
L2

t ([0,T ];L2
v,k)

+‖p̂(1)
δ,k(t, m, ·)‖2

L2
t ([0,T ];L2

v,k) + ‖p̂(2)
δ,k(t, m, ·)‖2

L2
t ([0,T ];L2

v,k)

)
. (94)

Choosing ǫ = |m|−1/20, we get (using (90)),

∫

[t0,T ]×R3 ×T3

(1 + |v|2)−4
∑

m∈Z3

|m|1/10|p̂δ,k(m)|2dtdvdk ≤ C, (95)

which implies the estimate (88). This ends the proof of Lemma 4.4.

We now finish the proof of Proposition 4.1.
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4.5 Proof of Proposition 4.1

We begin by applying Lemmas 4.1 and 4.2. We obtain that
∫ T

0 ||f(θ, ·, ·)||2
H

N+1/20,s
x,v

dθ < +∞. As a

consequence, we can find some time t1 ∈]0, t∗[ such that ||f(t1, ·, ·)||HN+1/20,s
x,v

< +∞.

This enables to use Lemmas 4.3 and 4.4 for the function f(· − t1, ·, ·) and obtain that∫ T

t1
||f(θ, ·, ·)||2

H
N+2/20,s
x,v

dθ < +∞. As a consequence, we can find some time t2 ∈]t1, t∗[ such that

||f(t2, ·, ·)||HN+2/20,s
x,v

< +∞.

We iterate this procedure (that is, Lemmas 4.3 and 4.4) nineteen times and obtain that (for some
t19 ∈]0, t∗[) ∫ T

t19

||f(θ, ·, ·)||2
H

N+20/20,s
x,v

dθ < +∞. (96)

As a consequence, we can find some time t20 ∈]t19, t∗[ such that

||f(t20, ·, ·)||HN+1,s < +∞. (97)

Taking into account estimates (96) and (97), we use then a last time Lemma 4.1 (with N + 1
instead of N and for f(· − t20, ·, ·)) and obtain that f ∈ L∞([t∗, T ]; HN+1,s

x,v ), so that Proposition 4.1
is proven.

5 Proof of Theorem 1.2 in the case γ ∈ [−2, 1]

We now end up the proof of Theorem 1.2 in the case when γ ∈ [−2, 1].
Using Proposition 4.1 repeatedly, we get by induction of N that for any 0 < τ < T < +∞ and

s ≥ 0,
f ∈ L∞

t ([τ, T ]; H∞,s
x,v ). (98)

We now prove by induction on n that ∂n
t f ∈ L∞([τ, T ]; H∞,s

x,v ). According to (98), this is true
for n = 0. Let us assume that the induction hypothesis holds for any integer k ≤ n. Then for all
multi-indices α and β and s ≥ 0,

[
∂α

x ∂β
v (∂n+1

t f)

]
(1 + |v|2)s/2 = −

(
∂α

x ∂β
v [v · ∇x(∂n

t f)]

)
(1 + |v|2)s/2

+∂α
x ∂β

v

{
n∑

l=0

Cn
l ∇v ·

[
(a ∗v (∂l

tf))∇v(∂
n−l
t f) − (b ∗v (∂l

tf))(∂n−l
t f)

]}
(1 + |v|2)s/2

= −
(

∂α
x ∂β

v [v · ∇x(∂n
t f)]

)
(1 + |v|2)s/2 +

∑

α1+α2=α
β1+β2=β

n∑

l=0

Cα
α1

Cβ
β1

Cn
l

[(
∂α1

x ∂β1

v (aij ∗v (∂l
tf))

)

×
(

∂α2

x ∂β2

v ∂vi∂vj ∂
n−l
t f

)
(1 + |v|2)s/2 +

(
∂α1

x ∂β1

v ∂vi(aij ∗v (∂l
tf))

)(
∂α2

x ∂β2

v ∂vj ∂
n−l
t f

)
(1 + |v|2)s/2

−
(

∂α1

x ∂β1

v (bi ∗v (∂l
tf))

)(
∂α2

x ∂β2

v ∂vi∂
n−l
t f

)
(1 + |v|2)s/2

−
(

∂α1

x ∂β1

v ∂vi(bi ∗v (∂l
tf))

)(
∂α2

x ∂β2

v ∂n−l
t f

)
(1 + |v|2)s/2

]
.

We denote the r.h.s of the above equality by E +
∑4

i=1 Gi. It is clear that E ∈ L2
x,v thanks to the

induction hypothesis. Let us then consider the terms Gi. Using Lemma 3.1, we see that

‖∂α1

x ∂β1

v (aij ∗v (∂l
tf))‖L∞

x
≤ C(1 + |v|2) γ+2

2 ‖(∂α1

x ∂β1

v ∂l
tf)(1 + |v|2) γ+4

2 ‖H2
x,v

,
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and therefore

‖G1‖L∞
t ([τ,T ];L2

x,v)

≤ C‖(∂α1

x ∂β1

v ∂l
tf)(1 + |v|2) γ+4

2 ‖L∞
t ([τ,T ];H2

x,v)‖(∂α2

x ∂β2

v ∂vi∂vj ∂
n−l
t f)(1 + |v|2) s+γ+2

2 ‖L∞
t ([τ,T ];L2

x,v).

From the induction hypothesis, we conclude that G1 ∈ L2
x,v. The other terms can be treated in the

same way.

We now briefly explain how the estimate that we obtained up to now can be made independent
on T . We observe that for any s > 0, N > 0, τ ∈]0, 1[, θ ≥ 0, the norm

sup
|k|≤N

sup
t′∈[τ,1]

||∂k
t f(θ + t′, ·, ·)||HN,s

x,v

has been estimated from above by a constant which depends only on γ, s, N, τ and the H8,s′

x,v (for
any s′ > 0) norm of f and the constant K appearing in (9) for times t ∈ [θ, θ + 1]. Since those
quantities are supposed to be bounded on [0, +∞[ (Cf. Assumption A), we see that for any τ > 0,
f ∈ W∞,∞([τ, +∞[;∩s≥0H

∞,s
x,v ).

This ends the proof of Theorem 1.2 when γ ∈ [−2, 1].

Remark 5.1 Notice that in order to have a completely rigorous proof, all the estimates above should
in fact be made on a version of equation (1) with smooth data and then extended to the solution under
consideration by a passage to the limit. This leads to no difficulty.

6 The case γ ∈ [−3,−2[

In this section, we present the main differences in the proof of Theorem 1.2 when γ lies in [−3,−2[
instead of lying in [−2, 1]. The differences are concentrated in the treatment of inequalities like

|a(v − v∗)| ≤ C|v − v∗|γ+2 ≤ C(1 + |v|2) γ+2

2 (1 + |v∗|2)
γ+2

2 . (99)

Indeed, this inequality holds when γ ≥ −2 only. When γ ∈ [−3,−2[, estimate (99) is no longer true,
and has to be replaced by inequlities used in (27) - (30) and which ensure that

∫

R3

|v − v∗|2(γ+2)(1 + |v∗|2)−2dv∗ ≤ C. (100)

Since apart from this modification, the proof is very similar to that of the case γ ∈ [−2, 1], we
only show the estimate for a representative term. We choose for that the first term on the r.h.s of
(46) in the case |β| ≥ 1.

When |α1| + |β1| ≤
[

N
2

]
+ 1, we know thanks to Lemma 3.1 that

‖∂α1

x ∂β1

v āij‖L∞
t ([0,T ];L∞

x,v) ≤ CK0.

Then,
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

∣∣∣∣∣

≤ C K0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];H

N,s−
γ
2

x,v )

)

≤ C K0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
.
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When |α1| + |β1| ≥
[

N
2

]
+ 2, using Sobolev’s embedding, we get

‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
− γ

4
+1‖L∞

t ([0,T ];L∞
x,v)

≤ C‖(∂α2

x ∂β2+δj
v f)(1 + |v|2) s

2
−γ

4
+1‖L∞

t ([0,T ];H4
x,v) ≤ CK0.

Then, thanks to (100),
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

∣∣∣∣∣

≤ CK0

∫

[0,T ]×T3 ×R3

(∫

R3

|v − v∗|γ+2|∂α1

x ∂β1

v f(v∗)|dv∗

)
|∇vg|(1 + |v|2) s

2
+ γ

4
−1dtdxdv

≤ C K0

∫

[0,T ]×T3

(∫

R3

|(∂α1

x ∂β1

v f)(1 + |v|2)|2dv

)1/2(∫

R3

|∇vg|(1 + |v|2) s
2
+ γ

4
−1dv

)
dtdx.

Using then Cauchy-Schwarz’s and Minkowski’s inequality, we get
∣∣∣∣∣

∫

[0,T ]×T3 ×R3

(∂α1

x ∂β1

v āij)(∂
α2

x ∂β2+δj
v f)(∂vig)(1 + |v|2)sdtdxdv

∣∣∣∣∣

≤ C K0

∫ T

0

[∫

T3 ×R3

|(∂α1

x ∂β1

v f)(1 + |v|2)|2dxdv

]1/2

×



∫

R3

(1 + |v|2)−1

(∫

T3

∣∣∣∣(∇vg)(1 + |v|2) s
2
+ γ

4

∣∣∣∣
2

dx

)1/2

dv


 dt

≤ C K0

∫ T

0

[∫

T3 ×R3

∣∣∣∣(∂
α1

x ∂β1

v f)(1 + |v|2)
∣∣∣∣
2

dxdv

]1/2

×
[∫

T3 ×R3

∣∣∣∣(∇vg)(1 + |v|2) s
2
+γ

4

∣∣∣∣
2

dxdv

]1/2

dt

≤ C K0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + Cǫ‖f‖2

L2
t([0,T ];HN,2

x,v )

)

≤ C K0

(
ǫ‖(∇vg)(1 + |v|2) s

2
+ γ

4 ‖2
L2

t ([0,T ];L2
x,v) + CǫK

2
0

)
.

The other terms appearing in the various estimates of the proof of Proposition 4.1 and Theorem
1.2 in the case when γ ∈ [−3,−2[ can be treated in the same way.
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