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Abstract

Solutions of the spatially inhomogeneous diffusive Aizenmann-Bak model for
clustering within a bounded domain with homogeneous Neumann boundary con-
ditions are shown to stabilize, in the fast reaction limit, towards local equilibria
determined by their monomer density. Moreover, the sequence of monomer densi-
ties converges to the solution of a nonlinear diffusion equation whose nonlinearity
depends on the size-dependent diffusion coefficient. Initial data are assumed to be
integrable, bounded and with a certain number of moments in size. The number
density of clusters for the solutions is assumed to verify uniform bounds away from
zero and infinity independently of the scale parameter.

1 Introduction

In this work, we will analyze the fast reaction asymptotics of the spatially inhomogeneous
Aizenman-Bak model for clustering with spatial diffusion given by

∂tf − a(y)△xf = Q(f, f) . (1.1)
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Here, f = f(t, x, y) is the concentration of clusters with size y ≥ 0 at time t ≥ 0 which
are spatially diffusing in x ∈ Ω ⊂ R

d, d ≥ 1 with normalized volume, i.e., |Ω| = 1.
Homogeneous Neumann boundary condition :

∇x f(t, x, y) · ν(x) = 0 on ∂Ω (1.2)

where ν denotes the outward unit normal to Ω, are imposed in order to preserve the
total number of aggregates. As in [CDF], we assume that the diffusion coefficient a(y) is
non-degenerate

0 < a∗ ≤ a(y) ≤ a∗ (1.3)

with a∗, a
∗ ∈ R

+. The collision operator Q(f, f) takes into account cluster coagulation
and fragmentation/break-up, and it reads as

Q(f, f) = Qc(f, f) + Qb(f, f) (1.4)

with

Qc(f, f) :=

∫ y

0

f(t, x, y − y′)f(t, x, y′) dy′ − 2f(t, x, y)

∫ ∞

0

f(t, x, y′) dy′ ,

and

Qb(f, f) := Q+
b (f, f) − Q−

b (f, f) := 2

∫ ∞

y

f(t, x, y′) dy′ − y f(t, x, y) .

These models appear in applications such as polymerization [AB], cluster aggregation in
aerosols [AB, Al, Dr], cell physiology [PS], population dynamics [Ok], astrophysics [Sa]
and blood thrombi formation [GHZ].

A basic formal property of solutions is the conservation of mass, i.e. the total number of
monomers. Since the reaction term (1.4) satisfies

∫ ∞
0

y Q(f, f) dy = 0, we have (formally)
for all t ≥ 0,

∫

Ω

N(t, x) dx =

∫

Ω

Nin(x) dx := N∞ , where N(t, x) :=

∫ ∞

0

y f(t, x, y) dy. (1.5)

Another macroscopic quantity of interest is the number density of polymers,

M(t, x) :=

∫ ∞

0

f(t, x, y) dy, (1.6)

that together with the monomer density N(t, x) satisfies the reaction-diffusion type system

∂tN −△x

(
∫ ∞

0

ya(y) f(t, x, y) dy

)

= 0 , (1.7)

∂tM −△x

(
∫ ∞

0

a(y) f(t, x, y) dy

)

= N − M2 . (1.8)
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The other important property is the dissipation of the corresponding entropy func-
tional. We will consider the weak definition of the action of the collision operator (1.4)
given by

∫ ∞

0

Q(f, f) ϕ dy = − 2

∫ ∞

0

ϕ(y)f(y) dy

∫ ∞

0

f(y′) dy′ +

∫ ∞

0

∫ ∞

0

f(y)f(y′)ϕ(y′′) dy dy′

+ 2

∫ ∞

0

f(y) Φ(y) dy −
∫ ∞

0

y f(y) ϕ(y) dy (1.9)

for any smooth function ϕ(y), where y′′ = y + y′ and with the function Φ being the
primitive of ϕ (i.e. ∂yΦ = ϕ) such that Φ(0) = 0. Let us consider the entropy functional
associated to any positive density f as

H(f)(t, x) =

∫ ∞

0

(f ln f − f) dy ,

with the relative entropy H(f |g) = H(f)−H(g) between two states f and g not necessarily
with the same L1

y-norm. Then, the entropy formally dissipates as

d

dt

∫

Ω

H(f) dx = −
∫

Ω

∫ ∞

0

a(y)
|∇x f |2

f
dy dx (1.10)

−
∫

Ω

∫ ∞

0

∫ ∞

0

(f ′′ − ff ′) ln

(

f ′′

ff ′

)

dy dy′dx := −DH(f).

Global-in-time weak solutions to (1.1)-(1.2) satisfying the entropy dissipation inequal-
ity

∫

Ω

H(f(t)) dx +

∫ t

0

DH(f(s)) ds ≤
∫

Ω

H(f0) dx

for all t ≥ 0, were obtained in [LM02]. The equilibrium states for which the entropy
dissipation vanishes are given by:

f∞ = e
− y√

N∞ ,

where N∞ is uniquely identified by the conservation of mass (1.5). It is also proved in
[LM02] that f∞ attracts all global weak solutions in L1(Ω × (0,∞)) of (1.1)-(1.2) but
no time decay rate is obtained. Exponential rate of decay for this problem was recently
studied in [CDF] in the one dimensional spatial case. We refer to [LM02, CDF] for
extensive literature related to these problems.
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Our present aim is to study the fast-reaction asymptotics, i.e. the limit ε → 0 of the
rescaled problem :











∂tf
ε − a(y)△xf

ε = 1
ε
Q(f ε, f ε) , for x ∈ Ω, y ∈ (0,∞), and t > 0 ,

∇x f ε(t, x, y) · ν(x) = 0 , for x ∈ ∂Ω, y ∈ (0,∞), and t > 0 ,

f ε(t = 0, x, y) = fin(x, y) ≥ 0 , for x ∈ Ω, y ∈ (0,∞) ,

(1.11)

where we shall assume that (1 + y + ln fin)fin ∈ L1(Ω× (0,∞)). This asymptotic regime
is called the fast reaction limit since the reaction term is dominant as ε gets smaller. In
fact, letting formally ε → 0, we expect f ε → f 0 satisfying Q(f 0, f 0) = 0, i.e.

f ε → e
− y√

N0 ,

where the limiting monomer density N0(t, x) diffuses according to the limit of the moment
equation (1.7) :

∂tN
0 −△xn(N0) = 0 , (1.12)

where n(N) denotes the function

n(N) :=

∫ ∞

0

a(y)ye
− y√

N dy . (1.13)

Under assumption (1.3), equation (1.12) is a nonlinear, non-degenerate diffusion equation
satisfying

0 < a∗N ≤ n(N) ≤ a∗N , 0 < a∗ ≤ n′(N) ≤ a∗ .

Our main goal is a complete rigorous justification of this formal limit. As a first step
however, we will show in this work an ”if-theorem”. We will assume in the following that
the number density Mε given by (1.6) is bounded away from zero and infinity uniformly in
ε > 0. More precisely, our assumptions are the existence of constants 0 < M∗ ≤ M∗ < ∞
such that

Hypothesis (HMBB), Mε is bounded from below: Mε(t, x) ≥ M∗

and

Hypothesis (HMBA), Mε is bounded from above: Mε(t, x) ≤ M∗

for all t ≥ 0, x ∈ Ω and ε > 0. The main result of this work is the following :
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Theorem 1.1 Let Ω be a bounded smooth subset of R
d with normalized volume |Ω| = 1

and let the diffusion coefficient a(y) satisfies (1.3). Assume non-negative initial data
f ε(t = 0, x, y) = fin(x, y) ≥ 0 such that (1 + y6 + ln fin)fin ∈ L1(Ω × (0,∞)) and
fin ∈ L∞(Ω × (0,∞)). Let us assume that the solutions of the rescaled problem (1.11)
verify the hypotheses (HMBB) and (HMBA). Then, the monomer density N ε converges
in L2((0, T ) × Ω) to the unique solution N of the Neumann problem for the nonlinear
diffusion equation

{

∂tN −△xn(N) = 0 ,

∇x N · ν(x)|∂Ω = 0,
(1.14)

with initial data Nin =
∫ ∞
0

yfin dy, for any T > 0, and where the nonlinearity n(N) is
given by (1.13).

Let us remark that the hypotheses (HMBB) and (HMBA) cannot be obtained
by the estimates in [CDF] since they lead to ε dependent bounds. Bounds from below
depending on ε of the density function could be obtained by adapting the arguments in
[Mou]. It is an open problem to show these ε uniform bounds in this generality, although
a perturbative setting around global equilibrium is under current investigation.

Next Sections below are the main steps in the proof of the previous Theorem. Section
2 is devoted to show that the entropy dissipation tends to 0 as ε → 0, which in return
shows local stabilization of the distribution function in L1 in phase-space. Section 3
collects several estimates on moments, L∞-bounds of f ε and Lp-bounds of N ε, which
allow, in Section 4, to prove local stabilization in L2 in space at the cost of a lower
exponent of ε controlling uniformly the rest of the ε-expansion of f ε. Finally, by an L2

duality arguments, Section 4 finishes the proof of Theorem 1.1 by passing to the limit in
the nonlinear nonlocal diffusion equations.

Notation: We will use various short-cuts like Lp
x = Lp(Ω), Lp

y = Lp((0,∞)), and
L2

t (L
1
x,y) = L2((0,∞), L1(Ω × (0,∞))).

2 Entropy Dissipation: L1-Trend to Local Equilibria

In this section, we prove an ε independent L1
x-bound of Mε, which allows to show that

the limiting solution f ε equilibrates asymptotically at a local equilibrium of the form :

fNε := e
− y√

Nε .
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For notational convenience, we will work (in this and the next section) on the equivalent
time-scaled problem with t = ετ :











∂τf
ε − εa(y)△xf

ε = Q(f ε, f ε) , for x ∈ Ω, y ∈ (0,∞), and τ > 0 ,

∇x f ε(τ, x, y) · ν(x) = 0 , for x ∈ ∂Ω, y ∈ (0,∞), and τ > 0 ,

f ε(τ = 0, x, y) = fin(x, y) , for x ∈ Ω, y ∈ (0,∞).

(2.1)

Moreover in this section, it is sufficient to assume initial data f ε(τ = 0, x, y) = fin(x, y) ≥
0 such that (1 + y + ln fin)fin ∈ L1(Ω × (0,∞)).

We start by deriving the L1
x-bound of Mε by integrating equality (1.8), obtaining

d

dτ

∫

Ω

Mε(τ, x) dx =

∫

Ω

N ε(τ, x) dx −
∫

Ω

Mε(τ, x)2 dx

≤
∫

Ω

Nin(x) dx −
(

∫

Ω

Mε(τ, x) dx

)2

by the conservation of mass (1.5) and by Hölder’s inequality. Therefore, for all τ ≥ 0 and
ε > 0, we have

∫

Ω

Mε(τ, x) dx ≤ max

{

∫

Ω

Min(x) dx,

(
∫

Ω

Nin(x) dx

)1/2
}

:= M∗
0. (2.2)

We remark that a bound like (2.2) also follows clearly for the hypothesis (HMBA), which
we nevertheless like to avoid whenever we know how to.

The trend to local equilibrium follows now from the dissipation of the entropy, which
is better understood by using the remarkable inequality proven in [AB, Propositions 4.2
and 4.3], implying that [CDF]

∫ ∞

0

∫ ∞

0

(f ′′ − ff ′) ln

(

f ′′

ff ′

)

dy dy′ ≥ M H(f |fN) + 2(M −
√

N)2 . (2.3)

Thus, the decay of the entropy functional H(f ε) =
∫ ∞
0

(f ε ln f ε − f ε) dy is estimated
using inequality (2.3) as

− d

dτ

∫

Ω

H(f ε) dx ≥ ε

∫

Ω

∫ ∞

0

a(y)
|∇x f ε|2

f ε
dy dx (2.4)

+

∫

Ω

[

Mε H(f ε|fNε) + 2(Mε −
√

N ε)2
]

dx .
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Taking into account the Csiszar-Kullback inequality as in [CDF, Lemma 3], we conclude

‖f ε − e
− y√

Nε ‖2
L1

x,y
≤ 2

{
∫

Ω

[

Mε(τ, x) +
√

N ε(τ, x)
]

dx

}
∫

Ω

H(f ε|fNε) dx

≤ 2
{

M∗
0 +

√

N∞

}

∫

Ω

H(f ε|fNε) dx (2.5)

by Hölder’s inequality, conservation of mass (1.5) and the above bound (2.2). Hence, the
dissipation of entropy in (2.4) and (2.5) implies the following equilibration of the density
function f ε:

Lemma 2.1 There exists C independent of ε such that
∫ ∞

0

∫

Ω

MεH(f ε|fNε) dx dτ ≤ C , (2.6)

and thus, using the assumption (HBMB), that

‖f ε − e
− y√

Nε ‖2
L2

τ (L1
x,y) ≤ C(M∗) , or ‖f ε − e

− y√
Nε ‖2

L2

t (L1
x,y) ≤ εC(M∗) , (2.7)

for a constant C depending on M∗ but not on ε.

The notation L2
τ (L

1
x,y) refers to the space of functions in the scaled space (τ, x, y) belonging

to L2((0,∞), L1(Ω × (0,∞))).

3 A priori Estimates

In this section, we show further uniform in ε apriori estimates to be interpolated with
(2.7) in proving Theorem 1.1 in the following section.

We start by showing the uniform control in time and ε < 1 of all moments with respect
to y of the solutions provided they are initially finite. Let us define the moment of order
p > 1 by

Mε
p (f ε)(τ) :=

∫

Ω

∫ ∞

0

yp f ε(τ, x, y) dy dx

for all τ ≥ 0. Then, the following Lemma holds :

Lemma 3.1 Let fin ≥ 0 be a nonnegative initial datum such that (1 + yp)fin ∈ L1(Ω ×
(0,∞)) with p > 1. Assume that the hypothesis (HMBA) holds. Then, the solution f ε

of (2.1) has moments Mε
p (f ε)(τ) uniformly bounded in time τ ≥ 0 and all ε < 1, i.e.,

there exist explicit constants M∗
p(fin,M∗, p) such that

Mε
p (f ε)(τ) ≤ M∗

p , for a.e. τ ≥ 0. (3.1)
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Proof.- Using the weak formulation (1.9), it is easy to check that

∫ ∞

0

Q(f ε, f ε) yp dy = − 2

(
∫ ∞

0

ypf ε(y) dy

)

Mε +

∫ ∞

0

∫ ∞

0

f ε(y)f ε(z)(y + z)p dy dz

− p − 1

p + 1

∫ ∞

0

f ε(y) yp+1 dy.

Taking into account Hypothesis (HMBA) and (y + z)p ≤ C ′
p (yp + zp), we deduce

∫ ∞

0

Q(f ε, f ε) yp dy ≤ 2C ′
pM∗

∫ ∞

0

ypf ε(y) dy − p − 1

p + 1

∫ ∞

0

f ε(y) yp+1 dy

for all p > 1. Integrating in space, we find that the evolution of the moment of order
p > 1 is given by

d

dτ
Mε

p (f ε)(τ) ≤ 2C ′
pM∗ Mε

p (f ε)(τ) − p − 1

p + 1
Mε

p+1(f
ε)(τ).

Trivial interpolation of the p + 1-order moment with the moment of order one implies

Mε
p (f ε)(τ) ≤ 1

δp−1

∫

Ω

Nin(x) dx + δ Mε
p+1(f

ε)(τ)

for all δ > 0, and thus

d

dτ
Mε

p (f ε)(τ) ≤ 2C ′
pM∗ Mε

p (f ε)(τ) − p − 1

p + 1

1

δ
Mε

p (f ε)(τ) + Dδ

for a certain constant Dδ (of order δ−p). Choosing δ > 0 such that

2C ′
pM∗ − p − 1

p + 1

1

δ
≤ − 1

10δ

we obtain
d

dτ
Mε

p (f ε)(τ) ≤ − 1

10δ
Mε

p (f ε)(τ) + Dδ

for all t > 0, from which

Mε
p (f ε)(τ) ≤ min(Mε

p (f ε)(0), 10δDδ),

ending the proof.

We can also control uniformly the distribution function f ε.
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Lemma 3.2 Let fin ≥ 0 be a nonnegative initial datum such that fin ∈ L∞(Ω× (0,∞)).
Then, the solution f ε of (2.1) is uniformly bounded in time τ ≥ 0 and all ε < 1, i.e.,
there exists an explicit constant K(fin) such that

‖f ε(τ)‖L∞
x,y

≤ K , for a.e. τ ≥ 0. (3.2)

Proof.- We use [LM02, Lemma 3.5] with ϕ(r) = (r − K)+ with K ≥ ‖fin‖L∞
x,y

to obtain

∫

Ω

∫ ∞

0

Qc(f
ε, f ε) ϕ′(f) dydx≤−

∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx

for all τ ≥ 0. Let us remind the main ideas of the proof of [LM02, Lemma 3.5] for the
sake of the reader, see also [LM04]. Assume first ϕ is differentiable and convex such that
0 ≤ ϕ(r) ≤ rϕ′(r) for all r > 0. The action of the coagulation operator can be written as

I :=

∫

Ω

∫ ∞

0

Qc(f
ε, f ε) ϕ′(f) dydx = −2

∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫

Ω

∫ ∞

0

∫ y

0

f(y − y′)f(y′)ϕ′(f(y)) dy′ dy dx.

Using the convexity of ϕ in the last term, ϕ(f(y′)) ≥ ϕ(f(y)) + ϕ′(f(y))(f(y′) − f(y)),
we get

I ≤ −2

∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx +

∫

Ω

∫ ∞

0

∫ y

0

f(y − y′)ϕ(f(y′)) dy′ dy dx

+

∫

Ω

∫ ∞

0

∫ y

0

f(y − y′)[f(y)ϕ′(f(y))− ϕ(f(y))] dy′ dy dx.

Changing variables in the second and third term of the right-hand side as (y, y′) 7→ (y, z =
y − y′) and (y, y′) 7→ (y′, z = y − y′) respectively, we obtain

I ≤ −2

∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx +

∫

Ω

∫ ∞

0

∫ ∞

0

f(z)ϕ(f(y′)) dz dy′ dx

+

∫

Ω

∫ ∞

0

∫ ∞

0

χ[0,y](z)f(z)[f(y)ϕ′(f(y)) − ϕ(f(y))] dz dy dx

= −
∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f(y))f(y)f(y′) dy′ dy dx

+

∫

Ω

∫ ∞

0

∫ ∞

0

[χ[0,y](z)f(z) − f(z)] [f(y)ϕ′(f(y))− ϕ(f(y))] dz dy dx,
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where χ[0,y](z) is the characteristic function of the interval [0, y]. It is easy to observe that
the last term is non-positive from which the stated inequality on the contribution of the
coagulation operator results. The proof for ϕ(r) = (r−K)+ follows by approximation by
smooth differentiable convex functions verifying 0 ≤ ϕ(r) ≤ rϕ′(r) for all r > 0.

Next, we estimate the gain part of the fragmentation kernel to deduce
∫

Ω

∫ ∞

0

Q+
b (f ε, f ε)ϕ′(f) dydx ≤ 2

K

∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx

where we use that Kϕ′(r) ≤ rϕ′(r) for r ≥ K and otherwise ϕ′(r) = 0. Putting these
terms together and disregarding the non-positive contribution of Q−

b , we get

d

dτ

∫

Ω

∫ ∞

0

ϕ(f) dy dx ≤
(

2

K
− 1

)
∫

Ω

∫ ∞

0

∫ ∞

0

ϕ′(f ε(x, y))f ε(x, y)f ε(x, y′) dy′ dy dx.

Then, the result follows by taking K = K(fin) = max{2, ‖fin‖L∞
x,y
}.

Finally in this section, we show an interpolation inequality.

Lemma 3.3 Let f ≥ 0, f ∈ L∞(Ω × (0,∞)) such that (1 + yr)f ∈ L1(Ω × (0,∞)). Let
p > 1 and any k > 0 such that r > pk and pk + 1 > 2p. Then, for a constant C

∥

∥

∥

∥

∫ ∞

0

yf(x, y) dy

∥

∥

∥

∥

Lp
x

≤ C ‖f‖1/p′

L∞
x,y

‖(1 + yr)f‖1/p

L1
x,y

.

As a consequence, the monomer density N ε of the solution f ε of (2.1) with suitable initial
data satisfies an explicit bound N (fin,M∗,M∗

r) such that

‖N ε(τ)‖Lp
x
≤ N , for a.e. τ ≥ 0. (3.3)

Proof.- For p > 1 and ‖N ε(τ)‖p
Lp(Ω) =

∫

Ω

(∫ ∞
0

yf ε dy
)p

dx, we use first the L∞ bound of

Lemma 3.2 and further Hölder’s inequality, observing that p′(−k + 1) < −1, to estimate
for various constants C

‖N ε(τ)‖p
Lp

x
≤ C‖f ε‖p−1

L∞
x,y

∫

Ω

(
∫ ∞

0

(

(1 + y)pkf ε
)1/p

(1 + y)−k+1 dy

)p

dx

≤ C‖f ε‖p−1
L∞

x,y

∫

Ω

∫ ∞

0

(1 + y)pkf ε dy dx

≤ C‖f ε‖p−1
L∞

x,y

∫

Ω

∫ ∞

0

(1 + yr)f ε dy dx ,

which is bounded by Lemma 3.1, and thus, so is (3.3).
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4 Interpolation: Trend to Nonlinear Diffusion in L2

Returning to the original time variable, we gain from the estimate (2.7) in Lemma 2.1
and the bounds of the Lemmata 3.1, 3.2, and 3.3 the following result:

Lemma 4.1 Under the assumptions of Theorem 1.1 exists for any T > 0 a constant CT

independent of ε such that for θ = 1/20

‖f ε − e
− y√

Nε ‖L2

t,x(L1
y((1+y) dy)) ≤ εθCT , (4.1)

on bounded time intervals t ∈ [0, T ].

Proof.- We estimate using the L∞ bound of Lemma 3.2 and Cauchy-Schwarz that for
various constants C

‖f ε − e
− y√

Nε ‖2
L2

t,x(L1
y(1+y)) ≤ C

(

‖f‖L∞
x,y

+ 1
)

·
∫ T

0

∫

Ω

(
∫ ∞

0

(1 + y)2|f ε − e−y/
√

Nε|1/2 (1 + y)−1 dy

)2

dx dt

≤ C

∫ T

0

∫

Ω

∫ ∞

0

(1 + y)4|f ε − e−y/
√

Nε| dy dx dt .

Next, for a A > 1 to be chosen, we split
∫ ∞
0

dy =
∫ A

0
dy +

∫ ∞
A

dy := I1 + I2. For the first
part, we have by Lemma 2.1 in the original time variable that

I1 ≤ C(1 + A)4

∫ T

0

∫

Ω

∫ ∞

0

|f ε − e−y/
√

Nε | dy dx dt ≤ CA4 T 1/2
√

ε .

For the second part, we estimate

I2 ≤ C
1

A

∫ T

0

∫

Ω

∫ ∞

A

(1 + y)5(f ε + e−y/
√

Nε

) dy dx dt

≤ C

A

(

T (M5 + M0) +

∫ T

0

∫

Ω

(
√

N ε + (N ε)3) dx dt

)

≤ C

A

(

CT + T
(

√

N∞ + ‖N ε‖3
L∞

t (L3
x)

))

≤ CT
1

A
,

where we have used Lemma 3.3 for the last term with p = 3, r = 6 and 5/3 < k < 2.
Thus finally, the statement follows by choosing A = ε−1/10.
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In the following, we will expand f ε according to (4.1) as

f ε = e
− y√

Nε + εθf ε
1 ,

where f ε
1 is bounded in L2

t,x(L
1
y((1 + y) dy)) and satisfies ∇x f ε

1 · ν(x) = 0 on ∂Ω. This
yields the moment equation

∂tN
ε −△xn(N ε) = εθ△x

∫ ∞

0

a(y)yf ε
1 dy := εθ △xg

ε,

where gε is uniformly bounded in L2
t,x and satisfies ∇x gε · ν(x) = 0.

Lemma 4.2 Assume that gε is uniformly bounded in L2
t,x and satisfies ∇x gε · ν(x) = 0

on ∂Ω. Then, the sequence of solutions N ε for the nonlinear diffusion equation

{

∂tN
ε −△xn(N ε) = εθ△xg

ε ,

∇x N ε · ν(x)|∂Ω = 0,
(4.2)

with initial data Nin ∈ L2
x converges as ε → 0 in L2

t,x to the unique solution N of the
nonlinear diffusion equation

{

∂tN −△xn(N) = 0 ,

∇x N · ν(x)|∂Ω = 0,
(4.3)

with initial data Nin.

Proof.- The proof uses a duality argument as in [PSch]. We first remark that the initial
data Nin belongs to L2 by Lemma 3.3. Let us also observe the uniqueness of the Cauchy
problem for the limiting nonlinear non-degenerate diffusion equation (4.3) that follows
from standard arguments, see for instance [LSU, CJG]. For any T > 0, we consider
nonnegative solutions w ≥ 0 with end data w(T ) = 0 of the equation

−∂tw − n(N ε) − n(N)

N ε − N
△xw = H ≥ 0 , (4.4)

with Neumann boundary condition ∇x w · ν(x)|∂Ω = 0, for nonnegative test functions
H ∈ C∞

0 ([0, T ] × Ω). These solutions satisfy the estimates

‖△xw‖L2([0,T ]×Ω) ≤ C‖H‖L2([0,T ]×Ω) (4.5)
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for a constant C. The existence of such solutions follows via smooth approximations of
the bounded coefficient a∗ ≤ n(Nε)−n(N)

Nε−N
≤ a∗, which justify also the following formal

calculations : multiplication of (4.4) with −△xw and integration by parts yields

−1

2

d

dt

∫

Ω

|∇x w|2 dx + a∗

∫

Ω

(△xw)2 dx ≤ −
∫

Ω

H(△xw) dx

≤ a∗

2

∫

Ω

(△xw)2 dx +
1

2a∗

∫

Ω

H2 dx .

by Young’s inequality. Then, after integration in time over the interval [0, T ] and recalling
that w(T ) = 0, it follows that

a∗

2

∫ T

0

∫

Ω

(△xw)2 dxdt ≤ 1

2a∗

∫ T

0

∫

Ω

H2 dxdt ,

which gives (4.5).
To prove the statement of the Lemma, we multiply the difference of equation (4.2)

with (4.3) by the dual solution w and integrate by parts in time and space :

∣

∣

∣

∣

∫ T

0

∫

Ω

(N ε − N) Hdxdt

∣

∣

∣

∣

= εθ

∣

∣

∣

∣

∫ T

0

∫

Ω

gε△xw dxdt

∣

∣

∣

∣

≤ εθ‖gε‖L2

t,x
‖H‖L2

t,x
.

Since H is arbitrary, we deduce that for a constant C

‖N ε − N‖L2
t,x

≤ C εθ ‖gε‖L2
t,x

≤ C εθ.

This ends the proof of the Lemma and Theorem 1.1.

Remark 4.3 In [PSch], explicit examples show that equations with discontinuous diffu-
sion (as equation (4.2) is one) can be ill-posed with a right-hand side in Lq for q close to
1, while well-posed for a right-hand side in L2. Therefore, the interpolation Lemma 4.1,
which allows to obtain a right-hand side in H−2, seems crucial.
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[LM04] P. Laurençot, S. Mischler, “On coalescence equations and related models”, survey
in Modeling and computational methods for kinetic equations, Editors P. Degond,
L. Pareschi, G. Russo, 321–356, Model. Simul. Sci. Eng. Technol., Birkhuser Boston,
Boston, MA, 2004.

[Mou] C. Mouhot, “Quantitative lower bounds for the full Boltzmann equation. I. Periodic
boundary conditions”, Comm. Partial Differential Equations 30 (2005), 881–917.

[Ok] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools, flocks and
herds”, Adv. Biophys. 22 (1986), 1–94.

[PS] A.S. Perelson, R.W. Samsel, “Kinetics of red blood cell aggregation: an example
of geometric polymerization”, Kinetics of aggregation and gelation (F. Family, D.P.
Landau editors), Elsevier (1984).

14



[PSch] M. Pierre, D. Schmitt, Blowup in reaction-diffusion systems with dissipation of
mass. SIAM Rev. 42, (2000), pp. 93–106.

[Sa] V.S. Safronov, “Evolution of the ProtoPlanetary cloud and Formation of the earth
and the planets”, Israel Program for Scientific Translations Ltd., Jerusalem (1972).

15


