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Abstract. We present the various levels of possible modeling for phdse flows: coupling
of fluid equations in different domains with a free boundaguipling (in the same domain) of
a fluid equation and a kinetic (Vlasov or Vlasov-Boltzmargyation; coupling (in the same
domain) of two (or more) fluid equations. We briefly preseatrttathematical results relative
to the passage from one of these approaches to another agpraad we give some ideas of
how to use those different models on a specific practical pl&am
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1 THE CONTEXT

We are interested in complex flows of spray type, in which aelised phase constituted of
liquid droplets lies in a surrounding gas. The typical radii droplets is assumed to be small
in front of the typical length of the flow under study.

The approach presented here is related to works done iraimework of a long term collab-
oration with the CEA-DAM (Commissariat alhergie Atomique-Direction des Applications
Militaires), which has led to the publication of various \ei(Cf. [3], [4], [12]).

We begin by presenting the basics of the possible levels dlietntg and simulation of such
flows.

2 DIFFERENT LEVELS OF MODELING
2.1 Microscopic level

A first possibility consists in writing a system of Naviere&es equations inside and outside
the droplets, the boundary (surface of the droplets) beiag (that is, part of the unknown)
and time-dependent, together with boundary conditionsatiriterface, and rules of coales-
cence/dissociation of the droplets. In the case of an incessible gas and liquid, it writes
(with €2, the domain occupied by the gas afg the domain occupied by the dropletsthe
velocity of the fluid and its pressure, ang,, p,, v,, v, the constant densities and viscosities
of the two phases):

Ou+V, - (u®u)+ v;p =y, Ayu for x €, (1)
g
Vap
Ou+V, - (u®u)+ =y, Au for zeQ,, (2)
Pp
Ve-u=0, for zeQ,UQ,, (3)
boundary conditions on the free interfacé), = 0€2,,. 4)

Such a model can be discretized and simulated thanks toeatlapgthods (Cf.[[15] for exam-
ple), but of course there is a strong limitation on the nunaberoplets which can be simulated.
Note that this model can be simplified by assuming that thpldte are rigid and spherical, but
even in this case only a reasonable number of droplets caatbe @ simulation.

2.2 Mesoscopic level

When a lot of droplets of very small size are present in thayspyne can try to write an
equation on the pdf (Particle Distribution Functioft}, «, u,, r,), density of droplets which at
timet¢ and pointz have a velocity:, and a radius,, having in mind that the force acting on the
(spherical) droplets will be of the following type:

4
my F(t, ,up,1p) = 3 7”“2 Vep(t,z) — D (up — uy(t, x)), (5)
whereu, is the velocity of the gasp,, is the mass of a droplef) is the drag coefficient, ang
is the pressure.

Such a way of modeling the spray, first introduced by Willigfis]), leads to the so-called
“gas-particles”, or “Eulerian-Lagrangian” models. Frohe tpoint of view of mathematics, it
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consists in coupling a kinetic equation of Vlasov (or Vlagmstzmann) type with an hyperbolic
(or Navier-Stokes) system.

According to a classification due to O’Rourke (Cf.][13]) Stdossible to distinguish between
the thin sprays, which correspond to a volume occupied by t@kality of) the droplets neg-
ligeable in front of the volume occupied by the gas; and tlekthprays in which the volume
fraction1 — a(t, z) of the droplets has to be taken into account, together wéteffect of the
collisions between droplets (modeled here by an operatgy).

We consider the simplest case, in which the gas is invisaldcompressible. One obtains
for thin sprays the following set of equations (with the dgnsf gas being, = 1, andu,(t, x),
p(t, z) being respectively the velocity and pressure of the gas):

V- u, =0, (6)
Oug + V- (ug ® uy) + Vyp = // —my, F' f duydr,, (7)

For thick sprays, the equations become sensibly more coatpd, since the coupling is also
done through the volume fraction:

O+ V, - (auy) =0, 9)

O(auy) +V, - (au, @uy) + Vyp = // —my, F' f du,dr,, (20)
l—a= // %ﬁrg f duydry, (12)

Of +up-Vaof + Vo (F f)=Q(f). (12)

At the numerical level, one usually performs a splittingime, first solving the equation of
the gas thanks to a finite volume method (at least when thesgagiscid), and secondly using
a particle method (PIC) for solving the Vlasov equation.sTinieans thaf is discretized using
a sum of Dirac masses.

f:Zwié(:p:xi(t"),v:vi(t”),rzri(t”)). 13)

Note that the presence of the collision term (which can ielthe phenomena of coalescence
and breakup of droplets) leads to specific numerical problgdh [14]). We refer tol[2] for a
complete description of a Lagrangian-Eulerian numeriodkc

2.3 Macroscopic level

When the volume fraction of droplets becomes sufficentlgdathe mesoscopic description
can be replaced by the so-called Eulerian-Eulerian moglé@h [10]), in which one introduces
two coupled Euler (or Navier-Stokes) equations. Those tapgare obtained by performing
suitable closures for averages of solutions of the micnoiscequations (Cf. alsa [10]). Note
however the difference of point of view with respect to thermscopic description: here the
unknowns are defined on the whole domain of computation (fbes not mean that the two
fluids are now miscible, but that the interface between the fiwids has become invisible
because at the scale at which the fluid is looked at, it is ma@pic: This interface is now
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completely described by the volume fractionof gas). We denote by, u, the density and
velocity of the liquid, and by the common pressure of both phases. A typical set of equgation
is the following (still for a mixture of an incompressibleviacid gas of density, = 1, but for

a compressible isotherm inviscid liquid):

O+ V- (auy) =0, (14)

O(auy) +V, - (au, ®uy) +aVyp =D (u, — uy), (15)

(L —a)pp) + Vo (1 — ) ppup) =0, (16)

0.((1— ) py ) + Vi - (1= ) pyty ® ) + (1 — ) Vap = =D (), (A7)

whereD (u, — u,) is the drag between the phases and the pressure law of theriswatl liquid
is taken into account:

p = pa(pp)- (18)

The numerics of such a system is complex since the equatienaconservative (because
of terms likea V. p) and not hyperbolic. Finite volumes schemes especialligded for those
systems can be used (Ci! [1]).

3 LINKSBETWEEN THE DIFFERENT LEVELSOF MODELING : THEORETICAL
RESULTS

The passage from the microscopic equations to the mesasegpations is a difficult prob-
lem in which methods from statistical physics and from fluidamanics have to be brought
together. Passing rigorously from equations includingea fsroundary to Eulerian/Lagrangian
models seems out of reach with the existing techniques, aedtarts therefore from a simpler
model, such as the union &f rigid balls (each moving with its own velocity) of radias- 1/N
in a Stokes or Navier-Stokes flow (with no-slip boundary d¢tads). Even when considering
such a simple situation, it has only been proven (CF. [6]} thaviscous version of) eq[](6),
(@) can be rigorously recovered in the limit whéh — oc in the quasi-static approximation.
The coupling with eq.[{8) remains a challenge, since thetilimiequation are known to have
solutions only in particular situations (Stokes or Burggpproximation, small time solutions,
etc.: Cf. [{], [9], [3])-

The passage from the mesoscopic to the macroscopic modeitésdifferent for various
reasons: first, the macroscopic equations are known to earlynunstable and there is therefore
no hope to establish an asymptotic theorem in which the batisfies those equations, even in
a "small time” regime. Secondly, the mesoscopic and maogfmeanodels are both written in
terms of standard systems of PDEs (without moving boungdaoybhat the "statistical physics”
aspect which was present in the passage from the microscaalel to the mesoscopic model
is not relevant here.

As a consequence, the idea is rather to identify a small petearm the mesoscopic equa-
tions, and to perform &rmal asymptotics leading to the macroscopic model. This has been
done in [12]: the small parameter is the Knudsen number (rfrearpath of a droplet divided
by a characteristic length of the flow), and the asymptotigeiminiscent of the Hilbert expan-
sion of the classical fluid mechanics (Cf] [5]). One provest thhen the Knudsen number
tends to0, the solutionp,., u,., a., f. of (a compressible version of) the thick monodisperse
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spray equations converges (at the formal level) towgyds,, o, f = p, §(v = u,), wherep,,
ug, o, pp, U, Satisfy the macroscopic equations.

One of the main differences is that (at least in the appbecatiwhich are interesting us) the
collisions between droplets do not conserve the kinetioggngart of it is released as oscillation
energy of the droplets). We also note that the result af [bXj$ronly (at the formal level) for
monodisperse sprays (that is, when all droplets have the saahius).

4 LINKS BETWEEN THE DIFFERENT LEVELS OF MODELING : PRACTICAL
APPLICATIONS

We briefly describe here what could be the possible use ofaheus levels of modeling at
the practical level for a given problem (here the study of @ggonstituted of air and liquid
tin obtained after the passage of a shock wave through asolidture made of tin). What we
propose below has not yet been implemented in totality irfrdm@ework of the collaboration
of the CEA-DAM, and some of the issues are still under disouss

First, one cannot hope to obtain in a rigorous (or even rigerat the formal level) way
all the coefficients entering the mesoscopic descriptiomfan asymptotic analysis based on
the microscopic description (even the value of the dragfoefit can be obtained only under
very stringent assumptions which are not satisfied in génepaactical computations). Many
coefficients used in the industrial codes (coefficientsteela.g. to the complex phenomena
involving droplets such as collisions, coalescence, hrpaikteraction with the wall) are based
on experimental results or (less often) numerical resaks in the litterature (CfL]8]). In order
to improve the precision of the computations which are somest done for physical situations
which are not close to the experimental or numerical situgtidescribed in the litterature,
one would like to perform auxiliary computations at the ragmopic scale (direct numerical
simulation) allowing to obtain the coefficients used in theraged (mesoscopic) simulation.
Note that this is far from being possible for the whole rangimteresting physical parameters
(such as large Reynolds numbers, large ratios of densithé&liquid and gas, etc.).

Secondly, it happens that in some situations, the Knudserbau(of the droplets) can be-
come quite small and make the mesoscopic simulation muclkexpensive. One needs then
to transit to the macroscopic simulation. This can be dona certain region of space, or
everywhere at a given time. It leads to problems comparabileet problem encoutered in the
study of rarefied gases when one wishes to couple a Boltzniategion with a Navier-Stokes
simulation (Cf. [11]). In particular, one needs to identif\e zones in which this transition is
justified, and then to "create” the new unknowns using therdiszation (particles) of the pdf
defined in the mesoscopic description.

The previous approaches have to be incorporated in a codehwioften already quite
complicated (with respect to the "thick sprays” equatioasatibed above, one has to take into
account, as in many of the applications of the theory of spfaythe industry, the compressibil-
ity of the gas, and an equation for the conservation of enekdgre are also some more specific
difficulties of the simulations of the sprays that we haveestigated with the CEA-DAM: the
gas as well as the droplets can be compressible (Cf. [4])ptessure and energy laws are
given by tables and can be quite complex, the collisions éetwdroplets do not conserve the
kinetic energy and lead to an exchange of temperature [(&f),[dnd finally (and maybe most
significantly) the volume fraction of droplets can be quétegke in some regions (in time/space)
of the domain of computation.
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