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ABSTRACT. We study the link which exists between microscopic (de-
tailed) models for the evolution of the electronic configurations in a pop-
ulation of ions and the macroscopic (average ions) models. Arigorous
asymptotics is presented in situations where it exists (large temperature;
almost empty or almost full shells), and numerical simulations are pre-
sented.

1. INTRODUCTION

In the last years, the extension of average-ion models to themodeling
of plasmas in off-equilibrium conditions has been considered (cf. [DR],
[DFDM]). The validity of this class of models, which are meant to give
a simplified macroscopic statistical description of the state of a large set
of ions as an alternative to the more complex detailed description based
on evolution equations associated to microscopic processes in the plasma,
is in general justified on the basis of heuristic arguments, sincea priori the
average-ion models can strictly be used only when the local thermodynamic
equilibrium approximation is valid.

In this paper we study the link connecting the microscopic detailed de-
scription of a set of ions and its average-ion description inoff-equilibrium
conditions through the analysis of a toy-model involving only simple pro-
cesses in the plasma. The analysis can be considered somehowcomplemen-
tary to the analysis performed in papers dealing with the validation problem
for linear Boltzmann type equations (like [S], [BGW] or [G],just to give a
very short list), where the goal is to find a correct simplifieddescription for
a set of particles which in our case would be the sea of free particles (elec-
trons or photons) surrounding the ions. We shall give for ourtoy-model
some rigorous (asymptotic) equivalence results and we shall present nu-
merical simulations.

In what follows, we shall consider a set of ions which belong to the same
species of atoms in a bath of particles (electrons) at Maxwellian equilibrium
at a given temperatureT . We denote byZ the charge of the nucleus of the
considered atomic species.

1



2 GUIDO CAVALLARO, LAURENT DESVILLETTES, AND VALERIA RICCI

We consider the set of bound electrons in each ion and we collect the
electrons in subsets which we shall calllevels.

Levels are defined by grouping electrons with about the same energy,
and usually the grouping is built in such a way that the numberof levelsN
for bound electrons is finite: in our simulations, the levelswill be indexed
according to the principal quantum numbern (up to the numberN which is
a priori fixed), so that they will correspond to the atomic shells, and we shall
use indifferently both words (shells or levels) to denote the same object.

A configuration~k = (k1, . . . , kN) of an ion is specified by the occupation
number (i.e. the number of electrons)ki ∈ N of each leveli in the ionic
configuration.

Each bound electron shell can accommodate a finite number of electrons;
we shall denote byDi the maximal number of electrons which can be ac-
commodated in the shelli (Di = 2 i2 in the numerical example that we
present). We shall denote asC the set of all ionic configurations~k.

Electrons can switch their energy to a value corresponding to a different
level (bound-bound transitions), and be expelled or absorbed by the ion
(continuum-bound transitions). We shall include this last kind of transition
by modeling the set of free-electrons as theN + 1-th shell; we write then
DN+1 = ∞ for coherence.

At (what we shall call) the microscopic level, the set of ionsis described
by the probability to find an ion in the configuration~k at time t, which
we denote byg~k(t). We have of course

∑

~k g~k(t) = 1, and the evolution
equation forg~k(t) is:

(1) ∂tg~k(t) =
∑

~k
′
∈C

B~k
′→~kg~

k
′ (t) −

∑

~k
′
∈C

B~k→~k
′g~k(t),

whereB~k
′→~k is the rate of the transition~k

′ → ~k. We notice that, because
we included among the allowed transitions the processes of ionization and
recombination, the transition~k

′ → ~k does not necessarily preserve the total
number of electrons in the configuration~k.

The description of the system can be simplified thanks to the use of a
macroscopic model in which the set of ions in different electronic configu-
rations is replaced by a set of ions all in the same electronicconfiguration
(average ions). The electronic configuration of each (and all) ion in this last
system is such that the occupation number of each shell of theaverage ion
is the average of the occupation numbers of the corresponding shell of the
ions in the original system.

At this macroscopic level, the set of ions is described by thecollection of
populations of levels for the average ion, which we shall denote by{Ph}h≥1

or ~P = (P1, . . . , PN), wherePh ∈ [0, Dh] denotes the (non necessarily
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integer) population of theh-th level of the average ion. In this modeling,
given the level populations~P at any timet, the probabilityG~k to find an ion
in the configuration~k is then computed as

(2) G~k =
N
∏

h=1

(

Dh

kh

)

(
Ph

Dh

)kh(1 − Ph

Dh

)Dh−kh,

as if ions would be in what we shall call a local equilibrium.
In the average ion description,~P satisfies the following evolution equa-

tion (for n = 1, . . . , N):

(3)
d

dt
Pn = An({Pm}m≥1, 6=n)(1 − Pn

Dn

) − Bn({Pm}m≥1, 6=n)Pn,

where we denote byAn the total transition rate to the leveln from other
levels (including the continuum) and byBn the total transition rate to other
levels (including the continuum) from leveln. In general, the ratesAn

andBn are functions of the population of the levels in the form of a sum of
coefficients (themselves depending on~P ) multiplied byPm or (1−Pm/Dm)
for m 6= n plus a term coming from the ionization-recombination processes.

We would like to get an equation of the form (3) as a consequence (in
a certain asymptotics) of an evolution equation for the probability g~k of
the form (1), in analogy (even though not strictly in the samesense) to the
reduction of hierarchies of equations which describe many particles systems
to a single equation for a one particle density (Cf. for instance [DMP]) . To
this purpose, we shall compare the evolution of the populations of the shells
~f(t) = (f1(t), . . . , fN(t)), defined, forh = 1, . . . , N , by

(4) fh(t) =
∑

~k∈C

khg~k(t),

whereg~k satisfies eq. (1), with the evolution of~P , solution of eq. (3).

In order to keep things as simple as possible, we consider theevolution
of the level populations in ions where the only involved transition processes
between levels are excitation and de-excitation (concerning only one bound
electron) which are due to collisions with particles in the bath (including the
continuum-bound transitions which may change the total number of elec-
trons in an ionic configuration). As a consequence, we do not take into
account the radiative transitions (Cf. [MM] for the physicsof such tran-
sitions, and for example [BGPS] for a mathematical study of the radiative
transfer equations) and the two-electrons collisional transitions.

In section 2, we describe in detail the microscopic model that we shall
study, and we write in section 3 a non closed equation for the populations~f
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of the shells. This equation can be closed under a factorization assumption
which is related to the equilibrium. We study rigorously in section 4 the
asymptotics which enable to pass from the macroscopic modeltowards the
average ion model. Numerical illustrations are then provided in section 5.

2. DEFINITION OF THE MICROSCOPIC MODEL

When needed, we shall use the following notation for sums of vectors:

~k+(h, l)ij =







(k1, . . . , ki + h, . . . , kj + l, . . . , kN) 1 ≤ i < j ≤ N

(k1, . . . , ki + h, . . . , kN) 1 ≤ i ≤ N, j = N + 1.

Given the assumption on the kind of transitions we are going to consider, the
transition probabilityB~k→~k

′ will be nonzero only when~k
′
= ~k+(±1,∓1)ij,

for somei, j ∈ {1, .., N}.
We shall now describe the quantities and the rates of transition corre-

sponding to our microscopic model, which is built in order tobe as close as
possible to the macroscopic atomic model in [DR].

2.1. Effective charges and energy levels. With respect to the choice of the
effective chargeZ∗

n, which models the part of the nucleus charge effectively
interacting with an electron in then-th shell, we shall analyze the following
(two) different models:

• In the first model (macroscopically screened model), we shall as-
sume

(5) Z∗
n = Z∗

n(~f).

With this choice the screening is not a microscopic quantity, since
it does not correspond to a single atom. It has the advantage to
make easier the comparison between microscopic and macroscopic
evolutions in a way that we shall make explicit later on.

• In the second model (microscopically screened model), we shall as-
sume

(6) Z∗
n = Z∗

n(~k).

Here, the screening due to an electron in theh-th shell on an electron
in then-th shell is taken into account in each atom independently.

We shall then consider the energy levels corrected by the screening effect
defined above:

(7) En = En(Z∗
n).
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As for the effective charge of the ionZ∗, it is given by the formula

(8) Z∗ = Z∗(~f) = Z −
N

∑

h=1

fh.

We avoid to choose a microscopic dependence in the effectivechargeZ∗

(although this would be in principle possible) because thisis rarely used in
the applications.

We shall denote in general the effective charge of the ion byZ∗, and
sometimesZ∗(~f), when we wish to stress the dependence with respect to
~f .

2.2. Transition probabilities and transition rates. In our first model, we
assume that (forn 6= m and~k

′
= ~k + (±1,∓1)min (n,m),max (n,m)),

(9) B~k→~k
′ = Rc

nm kn(1 − km

Dm

),

whereRc
nm depends on (m, n), En − Em and T . Here, (Em)m=1,..,N is

function (throughZ∗
n) of ~f (Cf. eq. (7) and (5)), andT is the temperature

of the bath.

The microscopic transition probabilityRc
nm ≥ 0 is associated to the ex-

citation process whenn < m or to its inverse process (de-excitation) when
n > m, and to the ionization process whenm = N +1 or to its inverse pro-
cess (recombination) whenn = N + 1. For the continuum-bound, bound-
continuum transitions, we definekN+1 = Z∗, DN+1 = ∞, EN+1 = 0.

As a consequence of the detailed balance principle, the microscopic tran-
sition probabilities satisfy the following conditions: for n < m, n, m =
1, . . . , N ,

(10) Rc
mn =

Dn

Dm

e
En−Em

T Rc
nm,

and forn = 1, . . . , N

(11) Rc
N+1n = Dn CT e

En
T Rc

nN+1,

whereCT is a positive constant (depending only onT ).

In our second model, we assume the microscopic transition probabilities
to be of the form (9), whereRc

nm depends on (m, n,) En(~k) − Em(~k
′
) and

T . We writeRc
nm(~k,~k

′
) for the sake of simplicity in the sequel.

As a consequence of the detailed balance principle, the microscopic tran-
sition probabilities satisfy the following conditions: for n < m, n, m =
1, . . . , N ,
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(12)

Rc
mn(~k,~k + (1,−1)nm) =

Dn

Dm

e
En(~k+(1,−1)nm)−Em(~k)

T Rc
nm(~k + (1,−1)nm, ~k),

and forn = 1, . . . , N ,

(13) Rc
N+1n(~k) = Dn CT e

En(~k+(1,−1)nN+1)

T Rc
nN+1(

~k + (1,−1)nN+1),

whereCT is the positive constant appearing also in the first model.

2.3. Evolution microscopic equations. According to these transition prob-
abilities, we can write down the evolution equation (for ourdifferent mod-
els) of the probabilityg~k(t).

We begin with our first model:

(14)

∂tg~k =

N
∑

j=1

N
∑

m=j+1

[

(kj + 1)(1 − km − 1

Dm

) 1{kj 6=Dj ,km 6=0}g~k+(1,−1)jm

−km(1 − kj

Dj

)
Dj

Dm

e
Ej−Em

T g~k

]

× Rc
jm

+
N

∑

m=1

N
∑

j=m+1

[

(kj + 1)(1 − km − 1

Dm

)
Dm

Dj

e−
Ej−Em

T 1{kj 6=Dj ,km 6=0}g~k+(−1,1)mj

−km(1 − kj

Dj

)g~k

]

× Rc
mj

+

N
∑

j=1

[

(kj + 1)1kj 6=Dj
g~k+(1,−1)jN+1

−Z∗(~f)CT (1 − kj

Dj

)Dje
Ej
T g~k

]

Rc
jN+1

+
N

∑

j=1

[

Z∗(~f)CT (1 − kj − 1

Dj

)Dje
Ej
T 1kj 6=0g~k+(−1,1)jN+1

− kjg~k

]

Rc
jN+1.

We recall that in this formula, the ratesRc
jm, etc., depend on the energy

levelsEj . Those levels depend on~f through eq. (5) and (7).

Then, we write the corresponding formula for our second model:



LINK BETWEEN DETAILED DESCRIPTION AND AVERAGE-ION MODELS 7

(15)

∂tg~k =
N

∑

j=1

N
∑

m=j+1

[

(kj + 1)(1 − km − 1

Dm

) 1{kj 6=Dj ,km 6=0}g~k+(1,−1)jm

−km(1 − kj

Dj

)
Dj

Dm

e
Ej(~k+(1,−1)jm)−Em(~k)

T g~k

]

× Rc
jm(~k + (1,−1)jm, ~k)

+

N
∑

m=1

N
∑

j=m+1

[

(kj + 1)(1 − km − 1

Dm

)
Dm

Dj

e−
Ej(~k+(−1,1)mj )−Em(~k)

T 1{kj 6=Dj ,km 6=0}g~k+(−1,1)mj

−km(1 − kj

Dj

)g~k

]

× Rc
mj(

~k,~k + (−1, 1)mj)

+
N

∑

j=1

[

(kj + 1)1kj 6=Dj
g~k+(1,−1)jN+1

−Z∗(~f) CT (1 − kj

Dj

)Dje
Ej(~k+(1,−1)jN+1)

T g~k

]

Rc
jN+1(

~k + (1,−1)jN+1)

+

N
∑

j=1

[

Z∗(~f) CT (1 − kj − 1

Dj

)Dje
Ej (~k)

T 1kj 6=0g~k+(−1,1)jN+1
− kjg~k

]

Rc
jN+1(

~k).

3. REDUCTION OF THE MICROSCOPIC EQUATIONS TO MACROSCOPIC

EQUATIONS AND THEIR CLOSURE

3.1. Non closed equations. When we consider our first model, it is possi-
ble to write a simplified (non closed) equation for the quantitiesfh, starting
from eq. (14) and making a suitable change of indices, by summing over
all possible configurations. It reads

d

dt
fh =

h−1
∑

j=1

∑

~k

[

kj(1 − kh

Dh

) − kh(1 −
kj

Dj

)
Dj

Dh

e
Ej (~f)−Eh(~f)

T

]

g~kR
c
jh(

~f)

+

N
∑

j=h+1

∑

~k

[

kj(1 − kh

Dh

)
Dh

Dj

e−
Ej (~f)−Eh(~f)

T − kh(1 − kj

Dj

)

]

g~kR
c
hj(

~f)

+
∑

~k

[

Z∗(~f) CT (1 − kh

Dh

)Dhe
Eh(~f)

T − kh

]

g~kR
c
h N+1(

~f).

(16)
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The corresponding equation for our second model is

d

dt
fh =

h−1
∑

j=1

∑

~k

[

kj(1 −
kh

Dh

)Rc
jh(

~k,~k + (−1, 1)jh)

−kh(1 − kj

Dj

)
Dj

Dh

e
Ej(~k+(1,−1)jh)−Eh(~k)

T Rc
jh(

~k + (1,−1)jh, ~k)

]

g~k

+
N

∑

j=h+1

∑

~k

[

kj(1 − kh

Dh

)
Dh

Dj

e
Eh(~k+(1,−1)hj )−Ej (~k)

T Rc
hj(

~k + (1,−1)hj, ~k)

−kh(1 − kj

Dj

)Rc
hj(

~k,~k + (−1, 1)hj)

]

g~k

+
∑

~k

[

Z∗(~f) CT (1 − kh

Dh

)Dhe
Eh(~k+(1,−1)hN+1)

T Rc
hN+1(

~k + (1,−1)hN+1)

−khR
c
h N+1(

~k)

]

g~k.

(17)

3.2. Factorized solutions. In the case of our first model, if there exists
a factorized solution of (15) on a certain interval of time, i.e. g~k(t) =
∏N

h=1 ĝh(kh, t) (and of course
∑Dh

kh=1 ĝh(kh, t) = 1), equation (16) becomes
closed:

d

dt
Ph =

h−1
∑

j=1

[

Pj(1 − Ph

Dh

) − Ph(1 − Pj

Dj

)
Dj

Dh

e
Ej (~P )−Eh(~P )

T

]

Rc
jh(

~P )

+

N
∑

j=h+1

[

Pj(1 − Ph

Dh

)
Dh

Dj

e−
Ej (~P)−Eh(~P )

T − Ph(1 − Pj

Dj

)

]

Rc
hj(~P )

+

[

Z∗(~P ) CT (1 − Ph

Dh

)Dhe
Eh(~P)

T − Ph

]

Rc
h N+1(

~P ),

(18)

wherePj(t) := fj(t) =
∑Dj

kj=0 kj ĝj(kj, t). Equation (18) coincides with
equation (3) for the average population on theh-th level in the correspond-
ing average-ion model, by definingA andB in a suitable way.

Notice that eq. (18) cannot be obtained from a microscopic model (even
when a factorized solution is assumed) when a microscopic screening is
imposed (that is, for example, in the case of our second model). It also could
not be obtained from a microscopic model in which the effective charge
would be microscopic (that is, depending on~k rather than~f ).
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3.3. Equilibrium. We now analyze the existence of equilibrium solutions
for equations (14), (15) and (18), and the connection between them.

Since this is the most relevant case in physical applications, we shall only
look for equilibrium solutions which do not depend on the choice of the
transition ratesRc

nm: this corresponds to looking for probability densities
g~k(t) or occupation numbersPh(t) such that each coefficient in the linear
combination of transitions rates on the right-hand side of (14), (15) or (18)
is identically equal to0.

In our second model, represented by eq. (15), in order to satisfy all the
constraints, compatibility conditions will be required.

3.3.1. Microscopic equilibrium.We shall first look for an equilibrium so-
lution of equations (14) and (15).

Setting each coefficient of the linear combination of transitions rates on
the right-hand side of (15) equal to0, we get a system of equations having
as compatibility condition the following condition on the energy:

(19) Ej(~k) − Ej(~k + (−1, 1)sN+1) = Es(~k) − Es(~k + (−1, 1)jN+1)

for s 6= j. Whenever this condition is fulfilled, we can obtain a (non neces-
sarily factorized) microscopic equilibrium solution.

Assuming the electron energies of the form presented in (45), condition
(19) is unfortunately not satisfied for our second model.

For the first model (corresponding to eq. (14)), the equilibrium (factor-
ized) solution is:

(20) geq
~k

=

N
∏

h=1

(

Dh

kh

)

(Z∗(~f eq) CTe
Eh(~feq)

T )kh

(1 + Z∗(~f eq) CTe
Eh(~feq)

T )Dh

.

Note that this solution is given in implicit form.
We shall see that (20) can be connected in a simple way to the equilibrium

solution of the macroscopic model.

3.3.2. Macroscopic equilibrium.Equation (18) has as equilibrium solution
the Fermi-Dirac distribution, given (implicitly) by:

(21) P eq
h = Dh

Z∗(~P eq) CT e
Eh(~Peq)

T

1 + Z∗(~P eq) CT e
Eh(~Peq)

T

.

When we consider the function

(22) geq
~k

=
N
∏

h=1

(

Dh

kh

)

(
P eq

h

Dh

)kh(1 − P eq
h

Dh

)Dh−kh ,
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whereP eq
h is given by formula (21), we find thatgeq

~k
is given by (20). This

means that for our first model, the macroscopic equilibrium can be obtained
as an average of the microscopic equilibrium. We expect therefore that
for large times, the result of the microscopic and macroscopic simulations
coincide. This property is however not shared by our second model, as we
shall see in the fourth simulation of section 5.

One can verify that for our first model, the equilibrium solution is the
only solution of the microscopic equations which remains factorized on an
interval of time (that is, all other factorized initial datalose immediately
the property of being factorized in the evolution of eq. (14)), so that the
closure presented in subsection 3.2 cannot be considered asconsistent. As
a consequence, we can in general deduce the macroscopic equations from
the microscopic ones only in some asymptotics that will be detailed in next
section.

4. ASYMPTOTIC ANALYSIS

We begin with a proposition mainly based on Gronwall’s lemmawhich
enables to make explicit the evolution of the difference between the mi-
croscopic and macroscopic descriptions (for our first model) in terms of its
initial value, the correlation matrix

∑

~k kh kj g~k(s) − fh(s) fj(s), and the
temperatureT of the bath.

Proposition 1. We considerN ≥ 2, an integer number,T > 0, and a family
(Di)i=1,..,N of numbers ofN. We denoteD = max(Di). We also consider
a functionZ∗ of ~f and a sequence(En)n∈N of functions of~f which all lie
in W 1,∞ (that is, the space of bounded and Lipschitz-continuous functions).
Then, we take a family of transition rates(Rc

ij)i=1,.,,N ;j=i+1,.,,N+1 which are

functions ofT and ~f and lie (for all T ) in the spaceW 1,∞ with respect to
the variable~f . Finally, we take a constantCT > 0.

Then for allTinf > 0 and t1 > 0, one can find a constantK depend-
ing only onN,D, ||Z∗||W 1,∞, supn=1,..,N ||En||W 1,∞, Tinf such that (for any

T ≥ Tinf > 0 and t ∈ [0, t1]) if ~P := ~P (t) is solution of eq. (18) and
(g~k)~k∈C := (g~k)~k∈C(t) is solution of eq. (14), then

(23)
∑

h=1,...,N

|fh(t) − Ph(t)| ≤

(

∑

h=1,...,N

|fh(0) − Ph(0)|+ K T−1
∑

j,h

∫ t1

0

∣

∣

∣

∣

∑

~k

kh kj g~k(s) − fh(s) fj(s)

∣

∣

∣

∣

ds

)

eK ϕ(T ) t,



LINK BETWEEN DETAILED DESCRIPTION AND AVERAGE-ION MODELS 11

where

(24) ϕ(T ) := sup
h,j

||Rc
hj(T, ·)||W 1,∞ + (1 + CT ) sup

h

||Rc
hN+1(T, ·)||W 1,∞,

andfh is given (knowingg~k) by formula (4).

Proof of Proposition 1: since we are looking to our first model, we can
write

d

dt
fh(t) =

N
∑

j=1

Ahj(~f)fj(t) −
[ N

∑

j=1

Ajh(~f) + Rc
hN+1(

~f)(Z∗(~f)CT e
Eh(~f)

T + 1)

]

fh(t)

−
N

∑

j=1

Bhj(~f)χhj + Rc
hN+1 Z∗(~f) CT Dh e

Eh(~f)

T

(25)

and

d

dt
Ph(t) =

N
∑

j=1

Ahj(~P )Pj(t) −
[ N

∑

j=1

Ajh(~P ) + Rc
hN+1(

~P )(Z∗(~P )CTe
Eh(~P )

T + 1)

]

Ph(t)

−
N

∑

j=1

Bhj(~P )PhPj + Rc
hN+1(

~P )Z∗(~P )CT Dhe
Eh(~P )

T ,

(26)

where

χhj(t) =
∑

~k

khkjg~k(t),

Ahj =











Rc
jh j < h

Rc
hj

Dh

Dj
e−

Ej−Eh
T j > h,

0 j = h

Bhj =
(1 − e

Ej−Eh
T )

Dh

Ahj,

(27)

and the evolution of the quantityfh − Ph is given by:
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d

dt
(fh(t) − Ph(t)) =

N
∑

j=1

[

Ahj(~f)fj(t) − Ahj(~P )Pj(t)

]

−
{

[

N
∑

j=1

Ajh(~f) + Rc
hN+1(

~f)
(

Z∗(~f)CTe
Eh(~f)

T + 1
)]

fh(t)

−
[

N
∑

j=1

Ajh(~P ) + Rc
hN+1(

~P )
(

Z∗(~P )CT e
Eh(~P )

T + 1
)]

Ph(t)

}

−
N

∑

j=1

[

Bhj(~f)χhj(t) − Bhj(~P )PhPj

]

+CTDh

[

Rc
hN+1(

~f)e
Eh(~f)

T Z∗(~f) − Rc
hN+1(

~P )e
Eh(~P )

T Z∗(~P )
]

.

(28)

We can rewrite (28) as

(29)

d

dt
(fh(t) − Ph(t)) =

N
∑

j=1

Ahj(~f)(fj(t) − Pj(t))

−[
N

∑

j=1

Ajh(~f) + Rc
hN+1(

~f)(Z∗(~f)Ce
Eh(~f)

T + 1)](fh(t) − Ph(t))

−
N

∑

j=1

Bhj(~f)(χhj(t) − PhPj)

+

N
∑

j=1

[Ahj(~f) − Ahj(~P )]Pj(t)

+
{

N
∑

j=1

[

Ajh(~P ) − Ajh(~f)
]

+
[

Rc
hN+1(

~P )(Z∗(~P )CT e
Eh(~P )

T + 1) − Rc
hN+1(

~f)(Z∗(~f)CT e
Eh(~f)

T + 1)
]

}

Ph(t)

+

N
∑

j=1

[

Bhj(~P ) − Bhj(~f)
]

PhPj + CT Dh

[

Rc
hN+1(

~f)e
Eh(~f)

T Z∗(~f) − Rc
hN+1(

~P )e
Eh(~P )

T Z∗(~P )
]

.
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Therefore,

(30)
∑

h

|fh(t) − Ph(t)| ≤
∑

h

|fh(0) − Ph(0)| + 2N sup
h,j

||Ahj(T, ·)||∞
∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+ sup
h

||Rc
hN+1(T, ·)(Z∗CT e

Eh
T + 1)||∞

∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+ sup
h,j

||Bhj(T, ·)||∞
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj − fh(s)fj(s)]g~k(s)

∣

∣

∣

∣

ds

+2N D sup
h,j

||Ahj(T, ·)||Lip

∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+D sup
h

||Rc
hN+1(T, ·)(Z∗CT e

Eh
T + 1)||Lip

∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+N D2 sup
h,j

||Bhj(T, ·)||Lip

∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+D sup
h

||Rc
hN+1(T, ·)Z∗CT e

Eh
T ||Lip

∫ t

0

∑

j

|fj(s) − Pj(s)|ds,

so that
∑

h

|fh(t) − Ph(t)| ≤
∑

h

|fh(0) − Ph(0)| +
(

2N D sup
h,j

||Ahj(T, ·)||W 1,∞

+2D sup
h

||Rc
hN+1(T, ·)Z∗CT e

Eh
T ||W 1,∞ + D sup

h

||Rc
hN+1(T, ·)||W 1,∞

+N D2 sup
h,j

||Bhj(T, ·)||Lip

)
∫ t

0

∑

j

|fj(s) − Pj(s)|ds

+ sup
h,j

||Bhj(T, ·)||∞
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj − fh(s)fj(s)]g~k(s)

∣

∣

∣

∣

ds.

Then, we observe that

sup
h,j

||Ahj(T, ·)||W 1,∞ ≤ D sup
h,j

||Rc
hj(T, ·)||W 1,∞ e

suph
||Eh||∞

Tinf

(

1+2
suph ||Eh||Lip

Tinf

)

,

||Bhj(T, ·)||∞ ≤ 2
suph ||Eh||∞

T
e
2 suph

||Eh||∞
Tinf ,

||Bhj(T, ·)||Lip ≤ 2 ||Ahj(T, ·)||W 1,∞

suph ||Eh||W 1,∞

T
e
suph

||Eh||∞
Tinf
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≤ 2D sup
h,j

||Rc
hj(T, ·)||W 1,∞

suph ||Eh||W 1,∞

T
e
2 suph

||Eh||∞
Tinf

(

1+2
suph ||Eh||Lip

Tinf

)

,

||Rc
hN+1(T, ·)Z∗CT e

Eh
T ||W 1,∞ ≤ CT ||Z∗||W 1,∞ ||Rc

hN+1(T, ·)||W 1,∞

×
(

1 +
suph ||Eh||Lip

Tinf

)

e
suph

||Eh||∞
Tinf .

As a consequence, for some constantK which depends only onN,D, Tinf ,
||Z∗||W 1,∞ andsuph ||Eh||W 1,∞,

∑

h

|fh(t) − Ph(t)| ≤
∑

h

|fh(0) − Ph(0)|

+K ϕ(T )

∫ t

0

∑

j

|fj(s)−Pj(s)|ds+K T−1
N

∑

j,h=1

∫ t

0

∣

∣

∣

∣

∑

~k

[khkj−fh(s)fj(s)]g~k(s)

∣

∣

∣

∣

ds,

where

ϕ(T ) = sup
h,j

||Rc
hj(T, ·)||W 1,∞ + (1 + CT ) ||Rc

hN+1(T, ·)||W 1,∞.

Then, thanks to Gronwall’s lemma (and for allt ∈ [0, t1]):
∑

h

|fh(t) − Ph(t)| ≤

(

∑

h

|fh(0)−Ph(0)|+K T−1

N
∑

j,h=1

∫ t1

0

∣

∣

∣

∣

∑

~k

[khkj−fh(s)fj(s)]g~k(s)

∣

∣

∣

∣

ds

)

eK ϕ(T ) t,

and Proposition 1 is proven.

We can deduce from this proposition the equivalence of the microscopic
and macroscopic descriptions when the temperature is large, under condi-
tions which are satisfied by the rates (which are those of [DR]) taken in the
simulations of Section 5.

Corollary 1. (HIGH TEMPERATURE LIMIT)
Under the same assumption as in Prop. 1, and for initial data such that

Ph(0) = fh(0) (that is, “well prepared” initial data),h = 1, . . . , N , if

lim
T→∞

sup
n,m

‖Rc
nm(T, ·)‖W 1,∞ < +∞(31)

lim
T→∞

CT sup
n

‖Rc
nN+1(T, ·)‖W 1,∞ < +∞,(32)

then, for largeT and for anyt1 > 0

(33) sup
t∈[0,t1]

N
∑

j=1

|fj(t) − Pj(t)| = O(T−1).
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Proof of Corollary 1: since Prop. 1 is valid andfh(0) = Ph(0) for all h,

(34)
N

∑

j=1

|fj(t) − Pj(t)| ≤ N2 D2 K T−1 t1 eKϕ(T )t,

whereϕ is given by (24), so that, from (31) and (32), we get (33). Thisends
the proof of Corollary 1.

Remark: Though we also have (thanks to the analysis of equilibria in
Section 3)limt→∞

∑

j |fj(t) − Pj(t)| = 0, it doesn’t seem possible to take
t1 = +∞ in estimate (33).

We now turn to another type of asymptotics, namely the situation in
which all shells are almost full or almost empty during the evolution of
the plasma.

Corollary 2. Under the assumptions of Proposition 1, if, for allt ∈ [0, t1],
fhi

(t)

Dhi

< ε, for i = 1, . . . , N1 and1 − fhi
(t)

Dhi

< ε for i = N1 + 1, . . . , N (for

someN1 ∈ {1, .., N}), and if
∑

h=1,...,N |fh(0)−Ph(0)| ≤ C1 ε, then for all
t ∈ [0, t1],

(35)
N

∑

h=1

|fh(t) − Ph(t)| ≤ C2 ε,

where

C2 =

(

C1 + N2 K T−1 D3 t1

)

eK ϕ(T ) t,

andK, ϕ are the constants appearing in Proposition 1 (and formula (24)).

Proof of Corollary 2: We first observe that under our assumption, for
i = 1, .., N1 (and anyδ ∈]0, Dhi

[),
∑

~k:khi
≥δ

g~k(t) ≤
Dhi

δ
ε,

and fori = N1 + 1, .., N ,
∑

~k:khi
≤Dhi

−δ

g~k(t) ≤
Dhi

δ
ε.

Then, fort ∈ [0, t1], h, j = 1, .., N ,

(36)
∑

~k

(khkj − fh(t)fj(t))g~k(t) = 1h∈{1,..,N1}

∑

kjh
≥1

(kj − fj) kjh
g~k(t)
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+1h∈{N1+1,..,N}

∑

kjh
≤Djh

−1

(kj − fj) (kjh
− Djh

) g~k(t),

so that thanks to the estimate above,

(37)

∣

∣

∣

∣

∑

~k

(khkj − fh(t)fj(t))g~k(t)

∣

∣

∣

∣

≤ D3 ε.

From (23) and (37) we get then
(38)

∑

h=1,...,N

|fh(t)−Ph(t)| ≤
(

∑

h=1,...,N

|fh(0)−Ph(0)|+N2 K T−1 D3 ε t1

)

eK ϕ(T ) t.

This ends the proof of Corollary 2.

It is of course difficult to guarantee that the shells will remain almost full
or almost empty on a long interval of time, it is however at least possible to
show that for a small interval of time, it remains so if it is true initially. This
is the point of the following proposition:

Proposition 2. Under the same hypothesis as in Proposition 1, and for
initial data such thatPh(0) = fh(0), h = 1, . . . , N (that is, “well prepared”
initial data), if

Phi
(0)

Dhi

< ε for i = 1, . . . , N1(39)

1 − Phi
(0)

Dhi

< ε for i = N1 + 1, . . . , N(40)

for someN1 ∈ {1, .., N}, then

(41)
N

∑

h=1

|fh(t) − Ph(t)| ≤ C (εt + t2) eK ϕ(T ) t,

whereK and ϕ are the constants appearing in Proposition 1 (and for-
mula (24)), and the constantC depends onT , supn,m ‖Rc

nm(T, ·)‖W 1,∞,
||Z||W 1,∞, N , suph ‖Eh‖W 1,∞ andD.

Remark: We can in particular consider as initial datumg~k(0) the micro-
scopic equilibrium solution (22) for a temperatureT ∗ s. t., for eachP eq

h ,

either P
eq
h

(T ∗)

Dh
< ε or 1 − Ph(T ∗)

Dh
< ε, with ε small. This is what is done in

the two first simulations of Section 5.

Proof of Proposition 2:
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We have for the correlation matrix (for anyh, j = 1, .., N):

|
∑

~k

(khkj − fh(t)fj(t))g~k(t) −
∑

~k

(khkj − fh(0)fj(0))g~k(0)| ≤

t sup
s∈[0,t]

∣

∣

∣

∑

~k

(khkj − fh(s)fj(s))ġ~k(s) −
(

ḟh(s)fj(s) + ḟj(s)fh(s)
)

g~k(s)
∣

∣

∣
≤

sup
n,m

‖Rc
nm(T )‖∞

[

4D2N (1 + ND) e
suph ‖Eh‖∞

T

+(4ND3 + 2D2) (1 + ||Z∗||∞ CT e
suph ‖Eh‖∞

T )
]

t

:= c1 t,

(42)

andc1 depends onsupn,m ‖Rc
nm(T, ·)‖∞, T , ||Z∗||∞, D, N ,suph ‖Eh‖∞.

According to the proof of Corollary 2, forh = 1, . . . , N ,
∣

∣

∣

∣

∑

~k

(khkj − fh(0)fj(0)) g~k(0)

∣

∣

∣

∣

≤ D3 ε.

Therefore, we get the bound:

(43)
∫ t

0

∣

∣

∣

∣

∑

~k

(khkj − fh(t)fj(s)) g~k(s)

∣

∣

∣

∣

ds ≤ D3 ε t +
c1

2
t2.

We use then Proposition 1 to get
N

∑

h=1

|fh(t) − Ph(t)| ≤ K T−1 N2

(

D3 ε t +
c1

2
t2

)

eK ϕ(T ) t.

Finally, Proposition 2 is proven.
Remark: Of course, both Corollary 2 and Proposition 2 are valid (with

obvious changes in the proof) when all shells are almost empty ( Pi

Di
, fi

Di
< ε

for i = 1, . . . , N) or all shells are almost full (1 − Pi

Di
, 1 − fi

Di
< ε for

i = 1, . . . , N).

5. NUMERICAL SIMULATIONS

We present in this section some figures in order to illustratethe rigorous
results of the previous section. For each figure, we represent (for some
h) the functionsfh (obtained by solving the microscopic equations (14) or
(15)) andPh (obtained by solving the macroscopic equations (18)).

The results have been obtained thanks to the use of a standardsecond
order explicit scheme for ODEs (note that for the microscopic model, the
number of ODEs to solve is very large: 16929).
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Here are the values of the functions and parameters used in the simula-
tions:

The shells are built according to the first quantum number, sothatDn =
2 n2. Only N = 4 shells (plus the continuum) are introduced, so that the
computation time remains reasonable.

The screening effect (that, is, the effective charge of the nucleus seen by
an electron) is modeled by
(44)

Z∗
n =

{

Z −
∑

h<n fh − 1
3
fn first (macro − screened) model.

Z − ∑

h<n kh − 1
3
kn second (micro − screened) model

Then the energy of each level is that of the hydrogenic atom corrected by
the screening effect defined above:

(45) En = 0.0136
(Z∗

n)
2

n2
keV.

The rates of transition (forn < m) are given in our first model by

(46) Rc
nm =

Rnm

En − Em

e−
En−Em

T ,

(47) Rc
nN+1 = RnN+1

[1 − e−
En
T ]

E2
n

e−
En
T ,

and in our second model by

Rc
nm(~k,~k + (−1, 1)nm) =

Rnm

En(~k) − Em(~k + (−1, 1)nm)
e−

En(~k)−Em(~k+(−1,1)nm)
T ,

Rc
nm(~k + (1,−1)nm, ~k) =

Rnm

En(~k + (1,−1)nm) − Em(~k)
e−

En(~k+(1,−1)nm)−Em(~k)
T ,

Rc
nN+1(

~k) = RnN+1
[1 − e−

En(~k)
T ]

E2
n(~k)

e−
En
T

(~k),

Rc
nN+1(

~k + (1,−1)nN+1)) = RnN+1
[1 − e−

En(~k+(1,−1)nN+1))

T ]

E2
n(~k + (1,−1)nN+1))

e−
En(~k+(1,−1)nN+1)

T .

In those formulas, we have used the following values forRnm (taken
from [DR]):

(48) Rnm =
4.99 × 10−10 f(n, m) gnm Ne√

T
,

(49) RnN+1 = 3.45 × 10−11 Ne

√
T Γn,
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with the Gaunt factorgnm = 0.361, and the valuesf(1, 2) = 0.4161,
f(1, 3) = 0.0792, f(1, 4) = 0.029, f(2, 3) = 0.637, f(2, 4) = 0.119,
f(3, 4) = 0.8408. Moreover, we take

(50) Γn = 2.8014 e−
n

n+5 ,

and for the electron number density:

(51) Ne =
6.02 × 1023 ρ

M
Z∗,

whereρ is the plasma mass density (taken as5 × 10−2g cm−3), Z∗ is given
by formula (8),Z is the atomic number of the atom (taken as50) andM
is the mass number of the atom (taken as120). Note that the value ofZ is
such that all the denominators appearing in the ratesRc

nm defined above are
non zero (and are in fact bigger than a strictly positive constant).

Finally, the constantCT appearing in the process of ionization is taken
equal to

(52) CT =
ρ

317 M T
3
2

,

and the temperatureT of the bath (inkeV ) is chosen in a different way for
the different numerical simulations.

In all simulations, we take as initial datum the formulas (21), (22), at a
given temperatureT0, which differs from the temperatureT of the bath.

We begin by showing a figure corresponding to the caseT0 = 4.3keV and
T = 4.5keV , for our first model. This range of temperature is quite high:
the levels are all almost empty. We show the evolution of the occupation
numbers for the first shell, its order of magnitude is10−2. As can be seen on
the figure, the curves forf1(t) andP1(t) are indistinguishable: we are in the
conditions of application of Corollary 1 dealing with the high temperature
asymptotics.

Next, we present a figure corresponding to the caseT0 = 1.7keV and
T = 1.9keV , for our first model. In this range of temperature, the first shell
is almost full while the other shells are almost empty. We show the evolu-
tion of the occupation numbers for the second shell, its order of magnitude
is 10−1−10−2. The curves forf2(t) andP2(t) are once again indistinguish-
able: we are in the conditions of application of Corollary 2 dealing with
shells which are almost empty or almost full. One can also compute the
correlations appearing between the occupation numbers of different shells:
along the evolution, they never grow over orders of magnitude of10−7.

Our third figure corresponds to the caseT0 = 0.6keV andT = 0.9keV ,
for our first model. In this range of temperature, the occupation number for
the second shell is far from0 andD2 = 8. As a consequence, the evolution
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FIGURE 1. Occupation numbersf1(t) andP1(t) for our first
model with T0 = 4.3keV and T = 4.5keV . The curve
’fichierbrut1m’ corresponds tof1(t) while the curve ’fichier-
brut1M’ corresponds toP1(t).

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0  100  200  300  400  500  600  700  800  900  1000

’fichierbrut2m’
’fichierbrut2M’

FIGURE 2. Occupation numbersf2(t) andP2(t) for our first
model with T0 = 1.7keV and T = 1.9keV . The curve
’fichierbrut2m’ corresponds tof2(t) while the curve ’fichier-
brut2M’ corresponds toP2(t).

of f2 differs somewhat (as can be seen on the graph) from the evolution of
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P2. Correlations involving the second shell (in particularχ23 −P2 P3) grow
up to order of10−3.

 2
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FIGURE 3. Occupation numbersf2(t) andP2(t) for our first
model with T0 = 0.6keV and T = 0.9keV . The curve
’fichierbrut2m’ corresponds tof2(t) while the curve ’fichier-
brut2M’ corresponds toP2(t).

Finally, we show a figure corresponding to our second model (that is,
with the microscopic screening), forT0 = 1.7keV andT = 1.9keV (those
are the same temperatures as that of figure 2). We see that (especially for
large times), the curvesf2(t) andP2(t) are becoming different: this is due
to the fact that there is no microscopic equilibrium in this case which is
compatible with the macroscopic equilibrium.
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