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ABSTRACT. We study the link which exists between microscopic (de-
tailed) models for the evolution of the electronic confidimas in a pop-
ulation of ions and the macroscopic (average ions) modelsga@ous
asymptotics is presented in situations where it existg¢léemperature;
almost empty or almost full shells), and numerical simolasi are pre-
sented.

1. INTRODUCTION

In the last years, the extension of average-ion models tontheeling
of plasmas in off-equilibrium conditions has been con®defcf. [DR],
[DFDM]). The validity of this class of models, which are meéda give
a simplified macroscopic statistical description of thdestaf a large set
of ions as an alternative to the more complex detailed dasani based
on evolution equations associated to microscopic prosdssihe plasma,
is in general justified on the basis of heuristic argumemsges priori the
average-ion models can strictly be used only when the lbeahtodynamic
equilibrium approximation is valid.

In this paper we study the link connecting the microscopiaited de-
scription of a set of ions and its average-ion descriptioafifrequilibrium
conditions through the analysis of a toy-model involvindyasimple pro-
cesses in the plasma. The analysis can be considered soroetmplemen-
tary to the analysis performed in papers dealing with thiglaéibn problem
for linear Boltzmann type equations (like [S], [BGW] or [Glist to give a
very short list), where the goal is to find a correct simpliftescription for
a set of particles which in our case would be the sea of freticies (elec-
trons or photons) surrounding the ions. We shall give for toyrmodel
some rigorous (asymptotic) equivalence results and wd phagent nu-
merical simulations.

In what follows, we shall consider a set of ions which belamthe same
species of atoms in a bath of particles (electrons) at Mdiametquilibrium
at a given temperaturE. We denote by” the charge of the nucleus of the

considered atomic species.
1
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We consider the set of bound electrons in each ion and wectdhe
electrons in subsets which we shall dallels

Levels are defined by grouping electrons with about the sameegg,
and usually the grouping is built in such a way that the nunalbésvels N
for bound electrons is finite: in our simulations, the lewsi be indexed
according to the principal quantum numbefup to the numbeN which is
a priori fixed), so that they will correspond to the atomiclishand we shall
use indifferently both words (shells or levels) to denoeghme object.

A configurationE = (k1,...,ky) of anion is specified by the occupation
number (i.e. the number of electrong) € N of each level in the ionic
configuration.

Each bound electron shell can accommodate a finite numbérafens;
we shall denote by, the maximal number of electrons which can be ac-
commodated in the shell(D; = 2:? in the numerical example that we
present). We shall denote @ghe set of all ionic configuration_lé

Electrons can switch their energy to a value correspondirgydifferent
level (bound-bound transitions and be expelled or absorbed by the ion
(continuum-bound transitionsWe shall include this last kind of transition
by modeling the set of free-electrons as fkiet+ 1-th shell; we write then
Dy, = oo for coherence.

At (what we shall call) the microscopic level, the set of iemdescribed
by the probability to find an ion in the configuratid?nat timet, which
we denote byy;(t). We have of coursé ; gz(t) = 1, and the evolution
equation forg;(t) is:

1) Du95(t) = D> Bz (1) = > Br_pgg(t),

K'ec K'ec

where B, is the rate of the transitioh — k. We notice that, because
we included among the allowed transitions the processesnafation and
recombination, the transitiol — & does not necessarily preserve the total
number of electrons in the configuratiéfn

The description of the system can be simplified thanks to Heeai a
macroscopic model in which the set of ions in different etatic configu-
rations is replaced by a set of ions all in the same electroomdiguration
(average iong The electronic configuration of each (and all) ion in thaistl
system is such that the occupation number of each shell atbeage ion
is the average of the occupation numbers of the correspgrstiell of the
ions in the original system.

At this macroscopic level, the set of ions is described byctiikection of
populations of levels for the average ion, which we shalbdety{ P, },>1

or P = (Py,...,Py), whereP, € [0,D,] denotes the (non necessarily
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integer) population of thé-th level of the average ion. In this modeling,
given the level populationB at any timet, the probabilityG;; to find an ion
in the configuratiorE is then computed as

N
Dy Ph i P\ Dk
2 C;q — __ " \~h 1 - " h h
@ =L () - g
as if ions would be in what we shall call a local equilibrium.

In the average ion descriptio, satisfies the following evolution equa-
tion (forn =1,..., N):

d P,

(3) EPH = An({Pm}mZI,?ﬁn)(l N D—:LL) o Bn<{Pm}m21,75n)P“7

where we denote by, the total transition rate to the levelfrom other
levels (including the continuum) and 8, the total transition rate to other
levels (including the continuum) from level. In general, the rated,,
andB,, are functions of the population of the levels in the form otiensof
coefficients (themselves depending@ymultiplied by P, or (1 —P,/Dy)
for m # n plus aterm coming from the ionization-recombination pBsess.

We would like to get an equation of the form (3) as a conseqgi€imc
a certain asymptotics) of an evolution equation for the pbility ¢; of
the form (1), in analogy (even though not strictly in the sasaese) to the
reduction of hierarchies of equations which describe mamniiqges systems
to a single equation for a one particle density (Cf. for ins@[DMP]) . To
this purpose, we shall compare the evolution of the popariatof the shells

—

f(t) = (fi(t), ..., fn(t)), defined, forh = 1,..., N, by
©) falt) = D kngi(2),

kec

whereg;; satisfies eq. (1), with the evolution ot solution of eq. (3).

In order to keep things as simple as possible, we considevblation
of the level populations in ions where the only involved &iginon processes
between levels are excitation and de-excitation (conogronly one bound
electron) which are due to collisions with particles in tlagh(including the
continuum-bound transitions which may change the total memof elec-
trons in an ionic configuration). As a consequence, we do ai@ tnto
account the radiative transitions (Cf. [MM] for the physmissuch tran-
sitions, and for example [BGPS] for a mathematical studyhefriadiative
transfer equations) and the two-electrons collisionalditzons.

In section 2, we describe in detail the microscopic modd wea shall
study, and we write in section 3 a non closed equation for dmjtationsf
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of the shells. This equation can be closed under a fact@izassumption
which is related to the equilibrium. We study rigorously gcsgon 4 the
asymptotics which enable to pass from the macroscopic modelrds the
average ion model. Numerical illustrations are then predich section 5.

2. DEFINITION OF THE MICROSCOPIC MODEL

When needed, we shall use the following notation for sumsofors:

) (kiy oo kit by k41 k) 1<i<j<N

k‘"‘(h,l)”:

Given the assumption on the kind of transitions we are garmghsider, the
transition probability3; . will be nonzero only whett' = E+(i1, F1)ij,
for somei, j € {1,.., N}.

We shall now describe the quantities and the rates of transtiorre-
sponding to our microscopic model, which is built in ordeb®as close as
possible to the macroscopic atomic model in [DR].

2.1. Effectivechargesand energy levels. With respect to the choice of the
effective chargeZ’, which models the part of the nucleus charge effectively
interacting with an electron in theth shell, we shall analyze the following
(two) different models:

¢ In the first model hacroscopically screened mojlelve shall as-
sume

(5) Zr=Z3(f).

With this choice the screening is not a microscopic quansityce
it does not correspond to a single atom. It has the advantage t
make easier the comparison between microscopic and magiosc
evolutions in a way that we shall make explicit later on.

¢ In the second modehficroscopically screened modlelve shall as-
sume

(6) z: = Z;(k).

Here, the screening due to an electron inftkta shell on an electron
in then-th shell is taken into account in each atom independently.
We shall then consider the energy levels corrected by tleenarg effect
defined above:

(7) E,=E.(Z}).
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As for the effective charge of the iori, it is given by the formula

N
8) Z°=2(=2=3_In
h=1

We avoid to choose a microscopic dependence in the effecttiage”*
(although this would be in principle possible) becauseithrarely used in
the applications.

We shall denote in general the effective charge of the iorZbyand

—

sometimesZ*(f), when we wish to stress the dependence with respect to

f.

2.2. Transition probabilitiesand transition rates. In our first model, we
assume that (fon # m andk’ = k + (£1, F1)min (n.m) max (nm))»

c km
where R¢, . depends on,n), E, — E,, andT. Here,(E,,)m=1. .~ IS
function (throughZ) of f (Cf. eq. (7) and (5)), and’ is the temperature
of the bath.

The microscopic transition probabili§¢ = > 0 is associated to the ex-
citation process when < m or to its inverse process (de-excitation) when
n > m, and to the ionization process when= N + 1 or to its inverse pro-
cess (recombination) when= N + 1. For the continuum-bound, bound-
continuum transitions, we defirkg;.; = Z*, Dy = 00, Eny1 = 0.

As a consequence of the detailed balance principle, theosgopic tran-
sition probabilities satisfy the following conditions:rfa < m, n,m =
1,...,N,

D, BnBnm

(10) Rﬁsz—me T R

andforn=1,...,N
En c
(11) R?V-i—ln =D, CT er RnN-i—l?

whereCr is a positive constant (depending only B

In our second model, we assume the microscopic transitiogtilities
to be of the form (9), wher&® depends oni, n,) E, (k) — E,.(k') and
T. We write R¢, (k, k') for the sake of simplicity in the sequel.

As a consequence of the detailed balance principle, theostopic tran-
sition probabilities satisfy the following conditions:rfa < m, n,m =
1,...,N,
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(12)
il Dn n k sy—d)nm)—Em k g pagt
R (B K+ (1, = 1)) = e 2 pe (B (1, = 1), ),

and forn =1,..., N,

En(E‘F(la*l)nN«fl)

(13) Riin(k)=D,Cre 7 Ry (B4 (1, =1un),
whereC'r is the positive constant appearing also in the first model.

2.3. Evolution microscopic equations. According to these transition prob-
abilities, we can write down the evolution equation (for different mod-
els) of the probability; ().

We begin with our first model:

(14)
km —1
Ahi Z Z (kj + 1)( ) Mk 2Dy k0L IR (1,-1) 1
7=1 m=j5+1 m
]{; D Ej—Em c
N N
kpm — 1. Dy _E; m
D3 {(k‘frl)(l— ) e 1
m=1 j=m+1 m J

k.
(1 >g~} x RS,
Dj k J

N
+ Z {(kj + 1)1kj#ngE+(17—1)jN+1

—

* k ﬂ C
~2(f)Cr(1 - D o] e
J

N
% kj—1 Z c
+Z [Z (NOr(L = Z==)Die™ Ly pogi 1)y — i | Riner:

J

We recall that in this formula, the ratég;,,, etc., depend on the energy

levelsE;. Those levels depend g‘hthrough ed. (5) and (7).

Then, we write the corresponding formula for our second rmode
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(15)
N N Lo
095 = Z [(kﬂ +1)(1 - - ) 1{/%7513]'7km;«é0}913+(1,—1)jm
j=1 m=j+1 m
ki D, EjGE+0,=1);m)—Em(k) - o
—kp(1 — L)=Le T gr| X RS (k+ (1, =1, k)
Dj Dm k J J
N N . .
]gm —1 Dm B (R+(=1,1) ;) —BEm(F)
#3030 (b= B B T g,
m=1 j=m+1 m

1= £)05] x Ry (B R+ (-1, Do)

J
N
+ Z |:(kj + 1)1kj#ngE+(1v—1)jN+1

- k. Ej(R+(1,—1)N11)

=Z*(f) Cr(1 — FJ)D]-@ T 97| Renpr(k+ (1, —1)j541)

N .
. 7 ki—1 B;(k) . -
+ § {Z ( )CT(1 - jD )Dje ’ lkj#095+(—1,1)j1v+1 - k‘jg,; RjN+1(k)-

J

3. REDUCTION OF THE MICROSCOPIC EQUATIONS TO MACROSCOPIC
EQUATIONS AND THEIR CLOSURE

3.1. Non closed equations. When we consider our first model, it is possi-
ble to write a simplified (non closed) equation for the quisegif;, starting
from eq. (14) and making a suitable change of indices, by simg@ver
all possible configurations. It reads

(16)
h—1 ) -
d /{;h k. D. E;(f)—Ep(f) -
—f, = E kil — 22—k (1— YL 7 | g-RC
dtfh = E |i J( Dh) h( DJ)Dhe T ] gk; ]h( )
N . -
ky Dy _Ei(H-En£H ki . R
#3033 i)
j=h+1 f J J

. R k B () c A
+Z[Z( ) Cr(1 — ==)Dpe T — k| giRS na (F).
k
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The corresponding equation for our second model is
17)

h—1
d k 7T
_fh: E E /{Zj(l— —h> jh(kak_'_(_lul)jh)
e oo Dy

k’ D E; (E"’(lv*l)jh)*Eh(E) c - -
k(1= BT R (o (1))
kh Dh By (F+(1, 1);LJ> BiR o
+ Z Z{ je RS (K + (1, =), k)

j=h+1 [

—]Ch(l llgj) (]; ];"i_ <_17 1)h3>:| 9i

o kp, Ep(F+(1,-1)pN41)
3020 rl1 = Byp M L (1)
k

—knRj, N+1(E)} )

3.2. Factorized solutions. In the case of our first model, if there exists
a factorized solution of (15) on a certain interval of tima. ig;(t) =
IT_1 n(kn,t) (and of cours& """, g, (kn,t) = 1), equation (16) becomes
closed:

d b, P; D, Ej(P)-B,(P) _
—b, = E Pi(l——)—F(1l — =)= RS, (P
dt h = |: ]( Dh) ( D )Dhe T :| jh( )
N " ~
(18) +§ [p.l_iﬂe SRS p 1_i} ¢ (p

= P, Ep,(P) =
+[Z*(P)CT(1 p)Dwe —Ph]R;NH(P),

whereP;(t) = f;(t) = Zijj:O k;g,(k;,t). Equation (18) coincides with
equation (3) for the average population on thth level in the correspond-
ing average-ion model, by definigand B in a suitable way.

Notice that eq. (18) cannot be obtained from a microscopideheven
when a factorized solution is assumed) when a microscopeeamg is
imposed (that is, for example, in the case of our second maddalso could
not be obtained from a microscopic model in which the effecttharge
would be microscopic (that is, depending lorather thanf).
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3.3. Equilibrium. We now analyze the existence of equilibrium solutions
for equations (14), (15) and (18), and the connection batwleem.

Since this is the most relevant case in physical applicatiae shall only
look for equilibrium solutions which do not depend on the ickoof the
transition ratesk¢, : this corresponds to looking for probability densities
gz(t) or occupation numbers,(t) such that each coefficient in the linear
combination of transitions rates on the right-hand sideld),((15) or (18)
is identically equal t@).

In our second model, represented by eq. (15), in order tefgatil the
constraints, compatibility conditions will be required.

3.3.1. Microscopic equilibrium.We shall first look for an equilibrium so-
lution of equations (14) and (15).

Setting each coefficient of the linear combination of traoss rates on
the right-hand side of (15) equal tp we get a system of equations having
as compatibility condition the following condition on theexgy:

19)  Ej(k) — Bj(k + (=1, Dyni1) = By(k) — Es(k + (=1,1)j511)

for s # j. Whenever this condition is fulfilled, we can obtain a (nones
sarily factorized) microscopic equilibrium solution.

Assuming the electron energies of the form presented in @&sdition
(19) is unfortunately not satisfied for our second model.

For the first model (corresponding to eq. (14)), the equilifor (factor-
ized) solution is:

B (F59)
(20) gl = | (Dh) (Z*(f*1) Cre "7 )
B N/ (14 7 () Ope D
Note that this solution is given in implicit form.
We shall see that (20) can be connected in a simple way to thieemm

solution of the macroscopic model.

3.3.2. Macroscopic equilibrium.Equation (18) has as equilibrium solution

the Fermi-Dirac distribution, given (implicitly) by:

Z4(P0) Cp 7
Bp(Peq) *

1+ Z*(PW) Cre— T
When we consider the function

22 —H( M)y - e,

(21) P}fq = Dy,
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whereP;? is given by formula (21), we find th@g.q is given by (20). This
means that for our first model, the macroscopic equilibriamloe obtained
as an average of the microscopic equilibrium. We expecefbe that
for large times, the result of the microscopic and macroscsipulations
coincide. This property is however not shared by our secoodaty as we
shall see in the fourth simulation of section 5.

One can verify that for our first model, the equilibrium saduatis the
only solution of the microscopic equations which remairctdezed on an
interval of time (that is, all other factorized initial daitase immediately
the property of being factorized in the evolution of eq. (14p that the
closure presented in subsection 3.2 cannot be conside@haistent. As
a consequence, we can in general deduce the macroscoptmegufeom
the microscopic ones only in some asymptotics that will aitesl in next
section.

4. ASYMPTOTIC ANALYSIS

We begin with a proposition mainly based on Gronwall’s lemaiach
enables to make explicit the evolution of the differenceneetn the mi-
croscopic and macroscopic descriptions (for our first madedkerms of its
initial value, the correlation matri ; ky, k; gz(s) — fu(s) f;(s), and the
temperaturd’ of the bath.

Proposition 1. We consideV > 2, an integer numbef]’ > 0, and a family
(D;)i=1...~ of numbers oN. We denoté = max(D;). We also consider

a functionZ* of fand a sequenceél, ) ,en of functions offwhich all lie

in Whee (that is, the space of bounded and Lipschitz-continuoustims).

Then, we take a family of transition rat€B;);—1,. n.ji+1,.,.n+1 Which are
functions ofl" and fand lie (for all T') in the spacaV 1> with respect to
the variablef. Finally, we take a constarit > 0.

Then for allT;,; > 0 and¢; > 0, one can find a constardt’ depend-
ing only onN, D, || Z*||yw1.0, SuP,—y v || Enl|wie, Ting such that (for any
T > T,y > 0andt e [0,t,)) if P := P(t) is solution of eq. (18) and
(98)ice = (9i)zec(t) is solution of eq. (14), then

(23)
Y Ufult) = Palt)] <

(h ZN|fh(0) PO KT j’zh/otl

Z kn kj gp(s) = fa(s) fi(s) ds) KoMt
k
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where

(24) @(T) = sup [ Ry (T )llwroe + (1+ Cr) sup [ Fjin 1 (T )l wroe,
»J

and fj, is given (knowingy;) by formula (4).

Proof of Proposition 1: since we are looking to our first model, we can
write

(25)
N S . 2 By (F)
_fh ZAh] — [ DA + B (D(Z°(F)Cre T )| fu(t)
j=1
~ 5, ()
_ZB’U )Xnj + Rini1 Z7°(f) Cr Dy e e
and
(26)
— N = c >3 *( D En(P)
L ZAM PI0 = | S AnP) + R (P2 (PICre™" 4 1) 1ut0
j=1
. - Ey (P)
—ZBM VPuPj + RS o1 (P)Z*(P)CrDpe~ 7,
where
Xng(t) =Y knk;gg (D)
E
S g<h
(27) Apj = Rfmghe > h,
0 J=
(1-— eEj;Eh)
th - Dh Ahj7

and the evolution of the quantitf, — P, is given by:
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- Ep(f) - —  Ep(P)
Sh

+CrDy, [RfCLN-i-l(f)e T Z(f) — Ry (Pe

We can rewrite (28) as

(29)
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Therefore,
(30)
D10 = At < 3 17(0) = RO+ 2N sup (T ||oo/ Zm
h
5w | B (1) (2 Cre 4 D)l / S 156 = Bl
supllB(T e S Sk — Ful) (55| ds
h.j 7,h=1
+2ND SUPHAhJ ||sz/ Z|f] s)|ds
+Dsupl Ry ()2 Cre™ + Dl / 3150 = Pl
+ND28}?p\\BhJ ||sz/ Z|fy (s)lds
»J
DD | (7,12 Cre F 1 / Z\f] s)|ds,
so that
S 10) = P01 S S U0) ~ PO+ (23D sup 4 Tl
h »J

2P W [ Ry (T ')Z*C'TeTHWLoo +D sup Ry g1 (T ) lwroe
—|—ND2 S;lp ||Bh] ||sz) / Z ‘f] ‘dS

khkj = In(3)f5(5)lgz(s)|ds.

+sup || Bp; (T ||oo
h.j 7,h=1
Then, we observe that

sup, 11 Enllo su E i
SupHAhj(T,~)||W1,oo S D SUPHRZJ-(T,')HWl,ooe Ph Tinf (1—|—2 —ph,1|7| hHLp),
h.j h.j inf

Eplloo 2 supy, 1£nlloe
Hth(Tv')HOOS2M€2 P Ty

supy, || Enl[wice  sup, [12nlle

1 Bns (T ) zip < 2 [[Ang (T )|l wr.os T e " Tt
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su E o su HE;LHoo su E :
< 2D sup | Ry, (T, )l froe SR Enllwre 2w B <1+2M)7
h.j

1Ry (T, ) 27 < Cr || Z7[lwroe || Ry 1 (T ) [l wnoe
y <1 N SuthEhHLip) e =
Enf
As a consequence, for some constanivhich depends only oV, D, T;,, ,
|| Z*|| w1 andsupy, || Ex|wie,

D 1nt) = Pa()] < Z |/n(0) = Pr(0)]

+K o(T / Zm (s)|ds+K T~

where
e(T) = Sup [ Ry, (T, M[wiee + (14 Cp) [| Ry g1 (T, )] [wroe.
5J

/fh/fj—fh(S)fj(S)]gzz(S) ds,

Then, thanks to Gronwall’s lemma (and for ak [0, ¢,]):

Zlfh<t)—
(Zm —P,(0)[+K T Z/

j,h=1
and Proposition 1 is proven.

k:hkj—fh( )fi(s)lg5(s)

ds) et

We can deduce from this proposition the equivalence of treeaacopic
and macroscopic descriptions when the temperature is, largker condi-
tions which are satisfied by the rates (which are those of JDdken in the
simulations of Section 5.

Corollary 1. (HIGH TEMPERATURE LIMIT)

Under the same assumption as in Prop. 1, and for initial datehsthat
P,(0) = fn(0) (that is, “well prepared” initial data),h = 1,..., N, if

(31) hm Sup ||R2m(Ta ')||W1*°° < 400
(32) hm CTSU-p ||RnN+1( a')HWl“’O < 400,
then, for largel” and for anyt; > 0

N
(33) sup Y [fi(t) = Bi(t)] = O(T).
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Proof of Corollary 1: since Prop. 1 is valid anf},(0) = P,(0) for all h,

(34) Zm (1) < N?D? K Tty 9T,

whereyp is given by (24), so that, from (31) and (32), we get (33). Emds
the proof of Corollary 1.

Remark Though we also have (thanks to the analysis of equilibria in
Section 3)limy . ;[ fi(t) — P;(t)| = 0, it doesn’t seem possible to take
t; = 40 in estimate (33).

We now turn to another type of asymptotics, namely the sdnan
which all shells are almost full or almost empty during thelation of
the plasma.

Corollary 2. Under the assumptions of Proposition 1, if, for ak [0, ¢,],

fh()<sforz_1 .,N;and1 — ( fori =N, +1,...,N (for
someN1 e {1,.,N}),andif},_, N\fh( ) — Pr(0)] < Cye, then for all
te [0 tl]

(35) Zm (t)| < Cae,

where

CQ = (Cl + N2 KT_l D3 tl) 6K¢(T)t,
and K, o are the constants appearing in Proposition 1 (and formul&))2

Proof of Corollary 2: We first observe that under our assumption, for
i=1,.., Ny (and any €]0, Dy,]),

> gl < e

Kk, >6

andfori = N; + 1, .., N,

kikp, <Dp,—5
Then, fort € [0,t1], h,j =1,.., N,
(36) Z(khk‘j — [u@®) fi()g7(t) = lreqr,. .} Z (kj — f5) Ky, 97(t)
E

kj, >1
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ey, D, (k= f) (ky, — D) g (0),
k:thDjh_l

so that thanks to the estimate above,

S (ki - fh(t)fj(t))g,;(t)' <.

k
From (23) and (37) we get then

(37)

(38)
2. 'fh<f>—Ph<f>|S< > \fh(o)—Ph(O)HNzKT_lD35t1> pan
h=1,..,N he1...N

This ends the proof of Corollary 2.

It is of course difficult to guarantee that the shells will @malmost full
or almost empty on a long interval of time, it is however astgaossible to
show that for a small interval of time, it remains so if it igérinitially. This
is the point of the following proposition:

Proposition 2. Under the same hypothesis as in Proposition 1, and for
initial data such that?,(0) = f,(0),h =1,..., N (thatis, “well prepared”
initial data), if

P,
(39) %<5 for i=1,...,N;
hi
(40) l—P;;im)<e for i=N;+1,...,N
h.

1

for someN; € {1,.., N}, then

(41) Z | fa(t) = Pa(t)] < C (et +17) " 901,

where K and ¢ are the constants appearing in Proposition 1 (and for-
mula (24)), and the constarit depends orl’, sup,,,, || Ry, (T -)[[w1.e,
|| Z]|wi., N, supy, || Enllwie andD.

Remark We can in particular consider as initial datyi{0) the micro-
scopic equilibrium solution (22) for a temperatufe s. t., for each?;?,

eltherP ar) <eorl — Ph(T ) < g, with e small. This is what is done in
the two flrst simulations of Sectlon 5.

Proof of Proposition 2:
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We have for the correlation matrix (for ayj = 1, .., N):
(42)

—

k

| Z(khkj — FrOF(0)gx(8) = D (knk; — £u(0)£;(0))g5(0)] <

t sup
s€[0,t]

> (knkj — fu(5)£5(5))dr(s) — (Fuls) fi(s) + fj(S)fh(S))glg(S)‘ <
i

sup | RS (T)]|wo [4D2N (1+ ND) e =

F(AND® 4 2D2) (1 + || 2] | cTe%)} '

=y t,

andc, depends osup,, ., | 5., (T, ) locs T's || Z*|| s D, N sUDy, | En |-
According to the proof of Corollary 2, for =1,..., N,

S (ks — £a(0),(0)) 4500 >\ <D

—

k
Therefore, we get the bound:

t
@) [ Sk = SO 5l
i
We use then Proposition 1 to get
Z|fh |<KT1N2(D3 t+2t>eK“0(T)t.

Finally, Proposmon 2 is proven.
Remark Of course, both Corollary 2 and Proposition 2 are valid lfwit
obvious changes in the proof) when all shells are almostye(rﬁt fi <

fori = 1,...,N) or all shells are almost fuII1(— 2,1 — % < ¢ for
i=1,...,N).

ds §D35t+c—21 £

5. NUMERICAL SIMULATIONS

We present in this section some figures in order to illustitzaigorous
results of the previous section. For each figure, we reptgé@nsome
h) the functionsf;, (obtained by solving the microscopic equations (14) or
(15)) andP, (obtained by solving the macroscopic equations (18)).

The results have been obtained thanks to the use of a staseendd
order explicit scheme for ODEs (note that for the microscapodel, the
number of ODEs to solve is very large: 16929).
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Here are the values of the functions and parameters useé wirtiula-
tions:

The shells are built according to the first quantum numbethatD,, =
2n2. Only N = 4 shells (plus the continuum) are introduced, so that the
computation time remains reasonable.

The screening effect (that, is, the effective charge of ideus seen by
an electron) is modeled by
(44)
7 _ { Z = penfn— % fn first (macro — screened) model.

" Z = penkn— 3k, second (micro — screened) model

Then the energy of each level is that of the hydrogenic atamected by
the screening effect defined above:

7% 2
(45) E, = 0.0136( ) keV.
2
n
The rates of transition (fot < m) are given in our first model by
an _LEn—FEm
(46) R = E_E° e
En
1 - 6_T n
@) vt = Ruvir e,
and in our second model by
Rzm(lg’ E + (_1’ 1)nm) _ Rﬁm _En(g)*Em(’?Jr(*lwl)nm)

Ry (k4 (1, =1)pm, k) = Eo(k + (1, =1)um) — En(k)

[1 - En:F(E)]
L - E7L H
R

_ Bn(R+(L,—1pn41))
T

1—e
E%(]g+ (17 _l)nN-l—l))

2N+1(E+(1a—1)nN+1)) = Runt1 e T

In those formulas, we have used the following valuesRyy,, (taken
from [DR]):

499 x 1071 f(n,m) gpm Ne
VT ’

(49) Roni1 = 3.45 x 107 NVT T,

(48) Rom

an 6_ En(;+(l,71;nnb)7E"L(E)

| B+ -Dnni1)

Y

Y



LINK BETWEEN DETAILED DESCRIPTION AND AVERAGE-ION MODELS 9

with the Gaunt factor,,, = 0.361, and the values(1,2) = 0.4161,
F(1,3) = 0.0792, f(1,4) = 0.029, f(2,3) = 0.637, f(2,4) = 0.119,
f(3,4) = 0.8408. Moreover, we take

(50) I, =28014 ¢ 75,
and for the electron number density:

6.02 x 10% p
51 N, =—-"— P
(51) 7

wherep is the plasma mass density (takerbas 10~2g cm~=3), Z* is given
by formula (8),7 is the atomic number of the atom (taken’ 8 and M
is the mass number of the atom (takeni28). Note that the value of is
such that all the denominators appearing in the r&fgsdefined above are
non zero (and are in fact bigger than a strictly positive tamt3.

Finally, the constan€'r appearing in the process of ionization is taken
equal to

P
52 Cpr=—"_,
52) T T MTE
and the temperaturg of the bath (inkeV’) is chosen in a different way for
the different numerical simulations.

In all simulations, we take as initial datum the formulas)(Z22), at a
given temperaturé;, which differs from the temperatufe of the bath.

We begin by showing a figure corresponding to the @ase 4.3keV and
T = 4.5keV, for our first model. This range of temperature is quite high:
the levels are all almost empty. We show the evolution of theupation
numbers for the first shell, its order of magnitudeds?2. As can be seen on
the figure, the curves fof; (¢) and P, (¢) are indistinguishable: we are in the
conditions of application of Corollary 1 dealing with theghitemperature
asymptotics.

Next, we present a figure corresponding to the cise- 1.7keV and
T = 1.9keV/, for our first model. In this range of temperature, the firglsh
is almost full while the other shells are almost empty. Wenskiee evolu-
tion of the occupation numbers for the second shell, itsrooflenagnitude
is10~' —1072. The curves forf,(t) and P, () are once again indistinguish-
able: we are in the conditions of application of Corollary €aling with
shells which are almost empty or almost full. One can alsomdmthe
correlations appearing between the occupation numberifefaht shells:
along the evolution, they never grow over orders of mageitoid 0.

Our third figure corresponds to the cage= 0.6keV andT = 0.9keV,
for our first model. In this range of temperature, the ocdgpatumber for
the second shell is far frothand D, = 8. As a consequence, the evolution
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0.028 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

FIGURE 1. Occupation numberf (t) and P (¢) for our first
model withT, = 4.3keV andT = 4.5keV. The curve
fichierbrutlm’ corresponds té (¢) while the curve "fichier-
brutlM’ corresponds t@ (¢).

0.024 T T T T T T T T
“fichierbrut2m’
‘fichierbrut2m’  +

0.022

0.02 -

0.018 -

0.016

0.014 -

0.012 |

0.01 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

FIGURE 2. Occupation numberf(t) andP»(t) for our first
model withT, = 1.7keV andT = 1.9keV. The curve
fichierbrut2m’ corresponds tg, (¢) while the curve "fichier-
brut2M’ corresponds t@(t).

of f, differs somewhat (as can be seen on the graph) from the evoloft
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P,. Correlations involving the second shell (in particwas — P, P3) grow
up to order ofl0~3.

8 T T T T T
“fichierbrut2m’
‘fichierbrut2m®  +

2 1 1 T
0 500 1000 1500 2000 2500 3000

FIGURE 3. Occupation numberf(t) andP»(t) for our first
model withT, = 0.6keV andT = 0.9keV. The curve
"fichierbrut2m’ corresponds tf, (¢) while the curve "fichier-
brut2M’ corresponds t@%(t).

Finally, we show a figure corresponding to our second modheit (is,
with the microscopic screening), f@f = 1.7keV andT = 1.9keV (those
are the same temperatures as that of figure 2). We see thati@spfor
large times), the curvef (t) and P»(t) are becoming different: this is due
to the fact that there is no microscopic equilibrium in thése which is
compatible with the macroscopic equilibrium.
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