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Viale G.P. Usberti 53/A, I-43100 Parma, ITALY

Laurent Desvillettes

ENS Cachan, CMLA, IUF & CNRS, PRES UniverSud
61, Av. du Pdt Wilson, 94235 Cachan Cedex, FRANCE

(Communicated by the associate editor name)

Abstract. An asymptotics leading from the reactive Boltzmann equation to-
wards reaction–diffusion equations has been introduced in [1] (cf. also [10],
for an analogous scaling starting from reactive BGK equations). We propose
here a justification of this asymptotics, at the formal level, based on a non–
dimensional form of the original equations.

1. Introduction. Reaction–diffusion equations are widely used to describe the
evolution of species which undergo chemical reactions and which are dispersed in
an underlying fluid.

Those equations can be derived in some situations from a microscopic model
(cf. [5]), but it is also possible to obtain them when one starts with a system of
reactive Boltzmann equations (or from simpler kinetic models, like Fokker–Planck
equations, cf. [9], reactive BGK equations, cf. [10], discrete velocity models, cf. [11]).

This is done in [1] under the assumption that the molecules of the reacting species
collide between themselves, and also collide with the molecules of a “dominant”
species, that is a species whose density is much larger than the density of the reactive
species. As a consequence, it is assumed in this asymptotics that the density in the
phase space of the dominant species is an absolute (that is, not depending on time
and space) Maxwellian function of the velocity.

The whole procedure has then been extended to a more complicated physical
situation, involving chemical irreversible processes of dissociation/recombination
type, cf. [3], and mathematical properties of the final macroscopic reaction–diffusion
system have been investigated by means of entropy methods, cf. [2].

The objective of this short note is to show that the asymptotics proposed in [1]
can be obtained after putting the system of reactive Boltzmann equations in a non–
dimensional form. It includes a proof (at the formal level) of the assumption on the
density in the phase space of the “dominant” species described above.

In Section 2, notations are established, together with the system of reactive
Boltzmann equations under study. Section 3 is devoted to the establishment of the
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corresponding non–dimensional equations. Finally, Section 4 deals with the passage
from reactive Boltzmann equations to macroscopic reaction–diffusion systems.

2. Notations and exposition of the kinetic model. We consider a mixture
of an “inert” species M and of four reactive species (Ai)i=1,...,4, their density in

the phase space being f̃M (t̃, x̃, ṽ),
(

f̃Ai
(t̃, x̃, ṽ)

)

i=1,...,4
. Here t̃, x̃ and ṽ denote

the time, space and velocity variables. We assume that the four gases A1, . . . , A4,
besides all elastic collisions, are subject to the following bimolecular and reversible
chemical reaction:

A1 + A2 ⇋ A3 + A4 ,

and, in order to avoid unessential constants, we take all particle masses equal to 1.
Then, the distribution functions satisfy the following system of Boltzmann equa-

tions:






































∂t̃f̃M + ṽ · ∇x̃f̃M = QB̃MM
(f̃M , f̃M ) +

4
∑

j=1

QB̃MAj
(f̃M , f̃Aj

) ,

∂t̃f̃Ai
+ ṽ · ∇x̃f̃Ai

= QB̃AiM
(f̃Ai

, f̃M ) +

4
∑

j=1

QB̃AiAj
(f̃Ai

, f̃Aj
)

+ Qc̃hem

i (f̃A1
, f̃A2

, f̃A3
, f̃A4

) ,

(1)

where QB denotes the elastic Boltzmann operator with cross section B: for f =
f(ṽ), g = g(ṽ),

QB(f, g)(ṽ) =

∫

ṽ∗∈R3

∫

ω̂∈S2

B

(

|ṽ−ṽ∗|,
∣

∣

∣

∣

ṽ−ṽ∗

|ṽ−ṽ∗|
· ω̂

∣

∣

∣

∣

)

[

f(ṽ′)g(ṽ′
∗)− f(ṽ)g(ṽ∗)

]

dṽ∗dω̂.

(2)
Here, (ṽ, ṽ∗) stand for the pre–collision velocities, while (ṽ′, ṽ′

∗) stand for the post–
collision ones. Taking into account the conservations of momentum and of kinetic
energy, (ṽ′, ṽ′

∗) can be expressed in terms of (ṽ, ṽ∗) and of the unit vector ω̂ ∈ S2 as










ṽ′ = ṽ +
(

ω̂ · (ṽ∗ − ṽ)
)

ω̂ ,

ṽ′
∗ = ṽ∗ −

(

ω̂ · (ṽ∗ − ṽ)
)

ω̂ .

(3)

Moreover, Qc̃hem
i is the Boltzmann operator for reactive species, that we write here

in the form proposed in [8, 7]. We assume the direct reaction A1 + A2 −→ A3 + A4

to be endothermic, in the sense that, if Ei denotes the chemical energy of species i,
we suppose ∆E = E3+E4−E1−E2 > 0. Under this assumption, chemical operator
for gas A1 takes the form:

Qc̃hem
1 (f̃A1

, f̃A2
, f̃A3

, f̃A4
)(ṽ) =

=

∫

ṽ∗∈R3

∫

ω̂∈S2

H
(

|ṽ − ṽ∗|2 − 4 ∆E
)

B̃chem

(

|ṽ − ṽ∗|,
∣

∣

∣

∣

ṽ − ṽ∗

|ṽ − ṽ∗|
· ω̂

∣

∣

∣

∣

)

×
[

f3(ṽ34
12)f

4(ṽ∗
34
12) − f1(ṽ)f2(ṽ∗)

]

dṽ∗ dω̂,

(4)

where H denotes the unit step function, and represents a threshold for the en-
dothermic reaction, that may occur only if the ingoing relative speed overcomes the
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potential barrier 2
√

∆E, and the velocities ṽ34
12, ṽ∗

34
12 are given by the formulas:



















ṽ34
12 =

ṽ + ṽ∗

2
+

1

2

[

|ṽ − ṽ∗|2 − 4 ∆E
]1/2

Tω̂

( ṽ − ṽ∗

|ṽ − ṽ∗|
)

,

ṽ∗
34
12 =

ṽ + ṽ∗

2
− 1

2

[

|ṽ − ṽ∗|2 − 4 ∆E
]1/2

Tω̂

( ṽ − ṽ∗

|ṽ − ṽ∗|
)

,

(5)

where

Tω̂y = y − 2 (ω̂ · y) ω̂.

Chemical operators for species 2, 3, 4 may be obtained from Qc̃hem
1 by suitable

permutations of indices, bearing in mind that differential cross sections of direct and
reverse reactions are related by the so–called microreversibility condition, cf. [8].

3. Non–dimensional form of the equations. We now denote by T , X , and V

a typical time, space, and velocity of the problem under study, together with F and
G a typical number density of the species M and (Ai)i=1,...,4 respectively. Finally,
we consider β and βchem a typical cross section for elastic and reactive collisions.

We introduce the rescaled densities

fM (t,x,v) =
1

F
f̃M (t̃, x̃, ṽ) , fAi

(t,x,v) =
1

G
f̃Ai

(t̃, x̃, ṽ) , (6)

where

t̃ = T t , x̃ = X x , ṽ = V v , (7)

and

B̃

(

|ṽ − ṽ∗|,
∣

∣

∣

∣

ṽ − ṽ∗

|ṽ − ṽ∗|
· ω̂

∣

∣

∣

∣

)

= β B

(

|v − v∗|,
∣

∣

∣

∣

v − v∗

|v − v∗|
· ω̂

∣

∣

∣

∣

)

,

B̃chem

(

|ṽ − ṽ∗|,
∣

∣

∣

∣

ṽ − ṽ∗

|ṽ − ṽ∗|
· ω̂

∣

∣

∣

∣

)

= βchem Bchem

(

|v − v∗|,
∣

∣

∣

∣

v − v∗

|v − v∗|
· ω̂

∣

∣

∣

∣

)

.

(8)

Equations (1) become in non–dimensional form






























































∂tfM +
V T

X
v · ∇xfM = F β V 3 T QBMM

(fM , fM )

+

4
∑

j=1

Gβ V 3 T QBMAj
(fM , fAj

) ,

∂tfAi
+

V T

X
v · ∇xfAi

= F β V 3 T QBAiM
(fAi

, fM )

+

4
∑

j=1

Gβ V 3 T QBAiAj
(fAi

, fAj
)

+ GβchemV 3 T Qchem

i (fA1
, fA2

, fA3
, fA4

) .

(9)

The scaling that we propose can be understood in this way: first, T , X , and V

are chosen in such a way that V T
X = 1

ε , then F and G are chosen in such a way

that FβV 3T = 1
ε2 , GβV 3T = 1

εδ for some δ ∈]0, 1[ (this corresponds to the idea

that M is a dominant species in terms of concentration, i.e. F ≫ G); finally βchem

is chosen in such a way that GβchemV 3T = 1 (this corresponds to the fact that
chemically reactive collisions are much rarer than elastic collisions, i.e. βchem ≪ β).
Notice that in this scaling T coincides essentially with a typical chemical relaxation
time (GβchemV 3)−1, which turns out to be much larger than the macroscopic time X

V
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(O(1
ε )), and quite large (O( 1

εδ )) also with respect to the elastic scattering relaxation

time (GβV 3)−1.
All in all, we impose

V T

X
=

1

ε
; FβV 3T =

1

ε2
; GβV 3T =

1

εδ
; GβchemV 3T = 1 . (10)

As a consequence, we end up with the following asymptotics (where fM and fAi

are renamed fε
M and fε

Ai
, and we recall that δ ∈]0, 1[):



































∂tf
ε
M +

1

ε
v · ∇xfε

M =
1

ε2
QBMM

(fε
M , fε

M ) +
1

εδ

4
∑

j=1

QBMAj
(fε

M , fε
Aj

) ,

∂tf
ε
Ai

+
1

ε
v · ∇xfε

Ai
=

1

ε2
QBAiM

(fε
Ai

, fε
M ) +

1

εδ

4
∑

j=1

QBAiAj
(fε

Ai
, fε

Aj
)

+ Qchem

i (fε
A1

, fε
A2

, fε
A3

, fε
A4

) .

(11)

4. From reactive Boltzmann equations to reaction–diffusion. In this sec-
tion, we do not try to deduce an expansion of fε

M and fε
Ai

(with respect to ε)
from (11), since this seems too ambitious. What we propose is rather to prove more
modestly that a certain expansion satisfies (11) up to order o(1).

In order to do so, we shall suppose that the operator

Li :
{

f := f(v)
}

7−→
{

v 7→ M−1(v)QBAiM
(fM, M)(v)

}

, (12)

where

M(v) =
1

(2πTM )3/2
e
−

|v|2

2 TM (13)

for some constant TM > 0, satisfies
∫

R3

M(v) g(v) dv = 0 ⇐⇒ ∃ q s.t.

∫

R3

q(v)M(v) dv = 0 and Liq = g .

(14)
We denote then q = L−1

i g.
Note that this property is satisfied for a large class of cross sections (including

hard potentials with angular cutoff) when suitable functional spaces are considered
(cf. [4]).

Then, we introduce the expansion:






fε
M (t,x,v) = ρM M(v) ,

fε
Ai

(t,x,v) =
[

ρi(t,x) + ε qi(t,x,v) + ε2 ri(t,x,v)
]

M(v) ,
(15)

where ρM > 0 is an absolute constant, and

qi(t,x,v) = L−1
i (v 7→ v) · ∇xρi(t,x)

ρM
, (16)

ri(t,x,v) = L−1
i

(

v 7→ ∂tρi(t,x) + v · ∇xqi(t,x,v)

−M−1(v)Qchem

i

(

ρ1(t,x)M, ρ2(t,x)M, ρ3(t,x)M, ρ4(t,x)M
)

) 1

ρM
.

(17)
The fact that qi and ri are well-defined (that is, the l.h.s. of (14) is satisfied) is
discussed below.
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We first observe that

∂tf
ε
M +

1

ε
v·∇xfε

M − 1

ε2
QBMM

(fε
M , fε

M )− 1

εδ

4
∑

j=1

QBMAj
(fε

M , fε
Aj

) = O
(

ε1−δ
)

. (18)

Then,

∂tf
ε
Ai

+
1

ε
v · ∇xfε

Ai
− 1

ε2
QBAiM

(fε
Ai

, fε
M ) − 1

εδ

4
∑

j=1

QBAiAj
(fε

Ai
, fε

Aj
)

−Qchem

i (fε
A1

, fε
A2

, fε
A3

, fε
A4

)

= (∂tρi)M + O(ε) +
1

ε

(

v · ∇xρi

)

M +
(

v · ∇xqi

)

M + O(ε)

− 1

ε
QBAiM

(qiM, ρMM) − QBAiM
(riM, ρMM) + O(ε1−δ)

−Qchem

i (ρ1M, ρ2M, ρ3M, ρ4M) + O(ε) .

(19)

Using the form (16) of qi (which is well defined since

∫

R3

v M(v) dv = 0), we get

for the right hand side of (19):

(∂tρi)M+
(

v·∇xqi

)

M−QBAiM
(riM, ρMM)−Qchem

i (ρ1M, ρ2M, ρ3M, ρ4M)+O(ε1−δ),

which in turn gives

∂tf
ε
Ai

+
1

ε
v · ∇xfε

Ai
− 1

ε2
QBAiM

(fε
Ai

, fε
M ) − 1

εδ

4
∑

j=1

QBAiAj
(fε

Ai
, fε

Aj
)

−Qchem

i (fε
A1

, fε
A2

, fε
A3

, fε
A4

) = O(ε1−δ)

(20)

thanks to the form (17) of ri. This form exists when
∫

R3

(

M(v)
{

∂tρi + v · ∇xqi

}

− Qchem

i (ρ1M, ρ2M, ρ3M, ρ4M)
)

dv = 0 , (21)

which is equivalent (cf. [1]) to the reaction–diffusion equation

∂tρi − di ∆xρi = c λi

(

γ ρ3 ρ4 − ρ1 ρ2

)

, (22)

where λ = (1, 1,−1,−1) contains the stoichiometric coefficients, the (di)i=1,...,4 are
obtained by computing the solution of a linear Boltzmann equation (for the elastic
interspecies kernel):

di =
1

3 ρM

∫

R3

M(v)v · L−1
i (v 7→ v) dv,

γ = exp( ∆E
TM

), and

c =

∫

R3

∫

R3

∫

S2

H Bchem M(v)M(v∗) dv dv∗ dω̂,

where H denotes a suitably scaled unit step function. The same computation can
be performed also for models taking into account the internal energy owned by the
gases, cf. [7, 6]. Note that chemical contributions vanish only if number densities
are related by the “mass action law” of chemical collision equilibrium, cf. [8].

Thanks to (18) and (20), we see that the expression (15)–(17), (22) satisfies the
rescaled equations (11) up to order O(ε1−δ). We have therefore established at the



6 M. BISI, AND L. DESVILLETTES

formal level the passage from a set of reactive Boltzmann equations to reaction
diffusion equations under a suitable scaling.

The case δ = 1 is of special interest: it does not seem possible to treat it with the
method presented here, but it still leads to (the same) reaction-diffusion equations
when the dominant species has a fixed density (cf. [1]).
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