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Abstract. In this paper we consider a particle moving in a ran-
dom distribution of obstacles. Each obstacle is absorbing and a
fixed force field is imposed. We show rigorously that certain (very
smooth) fields prevent the process obtained by the Boltzmann-
Grad limit from being Markovian. Then, we propose a slightly
different setting which allows this difficulty to be removed.

Abstract. On considère dans ce travail une particule qui se dé-
place à travers une distribution aléatoire d’obstacles. Chaque ob-
stacle est absorbant, et un champ de forces fixe est imposé. On
montre rigoureusement que certains champs (très réguliers) empê-
chent le processus obtenu par la limite de Boltzmann-Grad d’être
Markovien. Ensuite, on décrit une situation légèrement différente
dans laquelle la difficulté précédente ne peut apparâıtre.
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1. Introduction

In this paper, we investigate the rigorous derivation of linear kinetic
transport equations starting from the basic particle dynamics in a ran-
dom context.
The first result in this direction was obtained many years ago by G.

Gallavotti, who showed how to derive the linear Boltzmann equation
(with hard–sphere cross section) starting from the dynamics of a single
particle in a random distribution of fixed hard scatterers in the so–
called Boltzmann–Grad limit. This paper (Cf.[G]), published in [G1]
and unfortunately not widely known, is technically simple but has a
deep content. In particular it is proven there for the first time that
it is perfectly consistent to obtain an irreversible stochastic behavior
as a limit of a sequence of deterministic Hamiltonian systems (in a
random medium). Later on this result was improved (see [S1], [S2] and
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[BBuS]). More recently, the Boltzmann–Grad limit in the case when the
distribution of scatterers is periodic (and not random) has also been
considered in [BoGoW] (see also the references therein). Note that in
this case, the result is totally different.
It is sometimes assumed that a given force field does not change any-

thing in the derivation of the (linear) Boltzmann equation. However,
it was noticed (at the formal level) by Bobylev, Hansen, Piasecki and
Hauge (Cf. [Bob]), and verified (at the numerical level) by Kuzmany
and Spohn (Cf. [Spo]) that charged particles in a constant magnetic
field give rise to a non Markovian behavior.
We wish here to analyse rigorously such a behavior (though for a

given force coming out of a smooth potential rather than for a constant
magnetic field) and to prove the convergence of the system (taking into
account only absorbing obstacles) towards the solution of an equation
which is not the standard linear Vlasov-Boltzmann equation, but an
equation with coefficients depending on time (this equation is close to
that obtained in the setting of [Bob], that is when the force field is a
magnetic field, and when the obstacles are not absorbing but instead
give rise to a rebound of the particle).
Then, we propose a setting in which the difficulty disappears, so that

the usual Boltzmann-Grad limit holds. Namely, we consider obstacles
which are not fixed, but which move along straight lines with a random
velocity.
In the first part of our article, we assume that the scatterers are

distributed according to a Poisson law with parameter µε = µ ε−1 on
R

2 (the case of R3 can be treated similarly), and are comprised of balls
of radius ε. More precisely, a given scatterer localized in c(∈ R

d) is
assumed to be absorbing (that is, our test particle disappears when it
enters the obstacle).
The probability distribution of finding exactlyN obstacles in a bounded

measurable set Λ ⊂ R
2 is given by:

(1) P (dcN) = e−µε|Λ|
µN
ε

N !
dc1 . . . dcN ,

where c1 . . . cN = cN are the positions of the scatterers and |Λ| denotes
the Lebesgue measure of Λ.
The expectation with respect to the Poisson repartition of parameter

µε will be denoted by E
ε.

We consider a fixed force F (t, x) acting on the test particle, so that
the equation of motion of this particle (having initial position x and
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initial velocity v) is given by

(2)
d

dt
(T t

1(x, v)) = T t
2(x, v),

d

dt
(T t

2(x, v)) = F (t, T t
1(x, v)),

up to the first time τc(x, v) when the particle enters an obstacle.

For a given initial datum fin ∈ L1(R2 × R
2), we can define the

quantity

(3) fε(t, x, v) = E
ε[fin(T

−t(x, v)) 1{t≤τc(x,v)}].

Then, our first theorem is the following :

Theorem 1: Let c be given by a Poisson’s repartition of parameter
µε = µ ε−1 (on R

2) and F ≡ F (t, x) be a given force in C(R;W 1,+∞(R2))
(that is, globally Lipschitz in x, locally uniformly in t). We denote by
T t the flow defined (for t ∈ R) by (2). We suppose moreover that F
is such that for a.e. initial data (x, v) ∈ R

2 × R
2, the velocity never

reaches 0 (in other words, T s
2 (x, v) 6= 0 for s ∈ R). Then (for a given

fin ∈ L1(R2 × R
2)), the quantity fε defined by (3) converges (when

ε → 0) in L1([0, T ] × R
2 × R

2) for all T > 0 towards the (unique)
solution f in L1([0, T ]× R

2 × R
2) of the equation

(4) ∂tf + v · ∇xf + F · ∇vf = − 2µ |v| f 1{x 6=T−s
1 (x,v),s∈]0,t[}.

together with the initial condition

f(0, x, v) = fin(x, v).

Remarks:
1. Equation (4) is at variance with the expected equation

(5) ∂tf + v · ∇xf + F · ∇vf = −2µ |v| f.

as soon as the trajectories (in the space of x only) of the ODE (2)
cross themselves (for a set of times of strictly positive measure) for a
non zero measure set of initial data. This happens for very smooth
forces (which do not even depend on t), for example for the harmonic
oscillator F (t, x) = −x, when t ≥ π/2. This phenomenon also appears
for forces depending on the velocity of the particles, such as the Lorentz
force : this is exactly the case studied in [Bob].
2.. The assumption that F is globally Lipschitz is used only to

ensure that the flow T t is well-defined for all t (it could be replaced
by any locally Lipschitz force provided that one studies the solution
for times t such that T t is well-defined). The assumption that for a.e.
v, T s

2 (x, v) 6= 0 for s ∈ R is generic (and is satisfied by the harmonic
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oscillator for example). It can be relaxed somehow (for example, one
could allow a finite number of points where T s

2 (x, v) = 0 if, at those
points, the derivative of the velocity is not 0). It seems however very
difficult to completely remove these kinds of assumptions (one could
imagine very singular trajectories, with many points where T s

2 (x, v)
and many (or all of) its derivatives are 0).

We now turn to a way of recovering the “right” equation, that is an
equation describing a Markovian process, at the end of the Boltzmann-
Grad asymptotics. We introduce a new configuration of obstacles,
which are no longer at rest. Their initial position c is still given by
the Poisson law with parameter µε = µ ε−1, but they also move with
a (fixed) velocity w = (w1, .., wN) which is distributed according to a
centered Gaussian law with variance 1. The velocities of the obstacles
are independent from each other and independent of c.
The expectation with respect to the measure we just described will

be denoted by E
ε′ .

We still consider the force F (t, x), the test particle obeying eq. (2),
and the condition of absorption (together with the definition of τ , which
now also depends on w) to be maintained.

For a given initial datum gin ∈ L1(R2 × R
2), we define the quantity

(6) gε(t, x, v) = E
ε′ [gin(T

−t(x, v)) 1{t≤τc,w(x,v)}].

We now state our second theorem :

Theorem 2: Let c,w be given by a repartition as described above
(that is, Poisson with parameter µε = µ ε−1 for c, and centered Gauss-
ian with variance 1 for w, with independence of c and w), and F ≡
F (t, x) be a given force in C(R;W 1,+∞(R2)) (that is, globally Lipschitz
in x, locally uniformly in t). Then (for a given gin ∈ L1(R2 ×R

2)), the
quantity gε defined by (6) converges (when ε → 0) in L1([0, T ]×R

2×R
2)

for all T > 0 towards the (unique) solution g in L1([0, T ]×R
2×R

2) of
the equation

(7) ∂tg + v · ∇xg + F · ∇vg = − 2µ g

∫

w∈R2

|v − w|
e−

|w|2

2

2π
dw

together with the initial condition

g(0, x, v) = gin(x, v).

Remarks :



BOLTZMANN-GRAD LIMIT 5

1. This theorem gives a way of finding the “right” equation as a
Boltzmann-Grad limit. There are certainly many other ways of doing
so (for example considering another reasonable distribution of velocities
for the scatterers, or letting the scatterers vibrate around an equilib-
rium position). The idea consists in adding some extra randomness to
the system.
2. Though we treat here only the simplest case (absorption by the

obstacles), we believe that a similar behavior arises when a more general
interaction between the test particle and the obstacles is considered.
That is, the nonmarkovian behavior which results in the Boltzmann-
Grad limit in the presence of self crossings of trajectories (which of
course still appears in this case), can be cured by the same addition of
randomness.
3. Note that in this theorem, no assumption on F (or on the flow T t)

is made, apart from the smoothness assumption (F Lipschitz) which
allows the flow to be defined. This point is significant since in more
complicated contexts, one might only have very little information about
F .

The remainder of this paper is organized as follows : we first prove
theorem 1 in section 2, and then theorem 2 in section 3.

2. Proof of theorem 1

We first write down the series giving the explicit value of fε. For
this purpose, we first observe that thanks to the assumption that F is
globally Lipschitz, the trajectory T−t

1 (x, v) (for t ∈ [0, T ]) of the test
particle is included in some ball B(0, R(T )) (depending on x, v). Then
we can write the explicit formula (for t ∈ [0, T ]) :

fε(t, x, v) =
∑

N≥0

e−µε |B(0,R(T ))|µ
N
ε

N !

∫

c1∈B(0,R(T ))

..

∫

cN∈B(0,R(T ))

fin(T
−t(x, v))

(8) × 1{T−s
1 (x,v)/∈B(ci,ε),s∈[0,t],i=1..N} dc.

Then, denoting by

(9) θε(t, x, v) = {y ∈ R
2, ∃s ∈ [0, t], |y − T−s

1 (x, v)| ≤ ε}

the tube of width ε around the trajectory (in the space of x), and
noticing that this does not depend on the configuration of obstacles,
we see that

(10) fε(t, x, v) = e−µε |θε(t,x,v)| fin(T
−t(x, v)).



6 L. DESVILLETTES
(1)

AND V. RICCI
(2)

Therefore, in order to get theorem 1, and thanks to Lebesgue’s domi-
nated convergence theorem, it is sufficient to prove the following lemma :

Lemma 1: Under the assumptions of theorem 1, for all t ∈ [0, T ]
and a.e. x, v, the volume of the tube θε(t, x, v) satisfies the following
asymptotic property :
(11)

lim
ε→0

ε−1|θε(t, x, v)| = 2

∫ t

0

|T−s
2 (x, v)| 1{T−s

1 (x,v)/∈∪σ∈[0,s[{T
−σ
1 (x,v)}}ds.

Proof of lemma 1 : We consider only those x and v such that the
velocity T−s

2 (x, v) does not go to 0 between times 0 and t. Note that by
assumption, the (x, v) which do not satisfy this condition belong to a
set of measure 0. For trajectories with such initial data, it is possible to
define by ν(−u) and R(−u) resp. the normal vector to the trajectory
and its (signed) radius of curvature at the point T−u

1 (x, v).
Thanks to our assumptions on F , for u ∈ [0, t], the modulus of the

velocity |T−u
2 (x, v)| is bounded between vmin and vmax. Since (still

thanks to our assumptions on F ) an upper bound is also available
for the derivative of the velocity, we can find a strictly positive lower
bound (called Rmin) for the (absolute value of the) radius of curvature
|R(−u)|.
We only consider in the sequel ε such that 0 < ε < Rmin/2. We

define the following change of variable (remember that t, x, v is given)

ζ : [0, t]× [−ε, ε] −→ R
2

(s, z) 7→ ζ(s, z) =

∫ s

0

T−h
2 (x, v)dh+ ν(−s) z.(12)

Though ζ is not necessarily globally one-to-one (because of the self-
crossings of the trajectory in the space of x), we know at least that
for any given s0, it is indeed one-to-one for s such that |s − s0| <
2π (Rmin − ε)/vmax. Its jacobian determinant is

J(s, z) = |T−s
2 (x, v)|(1−

z

R(−s)
).

We consider the set of times for which a self-crossing occurs and
denote it by

B =

{

s ∈ [0, t] : T−s
1 (x, v) ∈ ∪σ∈[0,s[{T

−σ
1 (x, v)}

}

.

We then bound the R
2-measure of the flow tube from above.
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Using the change of variables ζ , we see that :

|θε(t, x, v)| ≤

∫

s∈Bc

∫ ε

z=−ε

|T−s
2 (x, v)|(1−

z

R(−s)
) dsdz + π ε2

≤ 2ε (1 + ε/Rmin)

∫

s∈Bc

|T−s
2 (x, v)| ds+ π ε2,

so that

lim sup
ε→0

ε−1 |θε(t, x, v)| ≤ 2

∫ t

0

|T−s
2 (x, v)| 1{s∈Bc} ds.

Note that the extremities of the trajectory need some special attention,
since the corresponding part of the tube is not in the image of ζ . This
explains where the term π ε2 comes from in the above computation.

Let us now turn to the proof of a lower bound. This is slightly more
intricate since we have to take into account the points where our change
of variable is in fact not one-to-one (typically, for ε small enough, those
are points close to some self-crossing of the trajectory in the x space).
We first define (for any δ > 0) the constant

Kδ = inf
0≤s1<s2≤t;|s1−s2|≥πRmin/vmax;d(s2,B)≥δ

|T−s1
1 (x, v)− T−s2

1 (x, v)|.

Note that Kδ > 0 because of the definition of B. Taking now ε < Kδ

(and still ε < Rmin/2), we can use the change of variable ζ and write
the lower bound

|θε(t, x, v)| ≥
∫

{s∈[0,t]: d(s,B)≥δ}

∫ ε

z=−ε

|T−s
2 (x, v)|(1−

z

R(−s)
)dsdz

≥ 2 ε (1− ε/Rmin)

∫

{s∈[0,t]: d(s,B)≥δ}

|T−s
2 (x, v)|ds,

so that

lim inf
ε→0

ε−1 |θε(t, x, v)| ≥ 2

∫

{s∈[0,t]: d(s,B)≥δ}

|T−s
2 (x, v)| ds.

We conclude by letting δ go to 0, thanks to Lebesgue’s dominated
convergence theorem. Since for all s ∈ [0, t], 1{s∈[0,t]: d(s,B)≥δ} converges
to 1B̄c , it is sufficient to prove that B is a closed set of [0, t]. Indeed,
this is a consequence of the fact that the (absolute value of the) radius
of curvature is bounded below, which prevents self-crossings at points
corresponding to times which are close.

This ends the proof of the lemma.
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3. Proof of theorem 2

Once again, we write down the series giving the explicit value of
gε. Note however that since there is no bound on the velocity of the
obstacles, we can’t estimate a priori the set (in the x space) of the
positions (at time 0) of the scatterers met later (before time T ) by the
test particle.
Then, we use the (less explicit) formula :

gε(t, x, v) = lim
R→+∞

∑

N≥0

e−µε |B(0,R)|µ
N
ε

N !

×

∫

c1∈B(0,R)

..

∫

cN∈B(0,R)

∫

w1∈R2

..

∫

wN∈R2

gin(T
−t(x, v))

(13) × 1{T−s
1 (x,v)/∈B(ci,ε),s∈[0,t],i=1..N} e

− |w|2

2
dw

(2π)N
dc.

We now need to slightly modify our definition of the tube θ. We define
for each w ∈ R

2 :

(14) θ′ε(t, x, v, w) = {y ∈ R
2, ∃s ∈ [0, t], |y − T−s

1 (x, v) + w s| ≤ ε}.

Then,

(15) gε(t, x, v) = lim
R→+∞

e−µε

∫
w∈R2 |θ′ε(t,x,v,w)| e−

|w|2

2 dw
2π gin(T

−t(x, v)).

Therefore, in order to get theorem 2, it is sufficient to prove the fol-
lowing lemma :

Lemma 2: The volume of the tube θ′ε(t, x, v, w) satisfies the follow-
ing asymptotic property : for all (t, x, v) ∈ [0, T ]× R

2 × R
2,

(16) lim
ε→0

ε−1

∫

w∈R2

|θ′ε(t, x, v, w)| e
−

|w|2

2
dw

2π

= 2

∫ t

0

∫

w∈R2

|T−s
2 (x, v)− w| e−

|w|2

2
dw

2π
ds.

Proof of lemma 2 : We consider a given (t, x, v) ∈ [0, T ]×R
2×R

2.

We prove that ε−1 |θ′ε(t, x, v, w)| converges to
∫ t

0
|T−s

2 (x, v) − w| ds for
a.e. w. Then the convergence of the integral will be a consequence of
Lebesgue’s dominated convergence theorem.
We first notice that for a.e. w ∈ R

2, the (translated) velocity
T−s
2 (x, v) − w is different from 0 for all s. This is due to the fact

that {T−s
2 (x, v), s ∈ [0, t]} is a Lipschitz curve of R2.
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Then, we can apply the same technique as in lemma 1 and get the
convergence of ε−1 |θ′ε(t, x, v, w)| towards 2

∫

Bc
w
|T−s

2 (x, v)−w| ds, where

Bw = {s ∈ [0, t] : ∃σ < s, T−σ
1 (x, v) − w σ = T−s

1 (x, v) − w s}. As a
consequence, it is sufficient to prove that for a.e. w, the set Bw is
negligible.
In order to do so, we first note that the set

U =

{(

s,
T−s
1 (x, v)− T−σ

1 (x, v)

s− σ

)

, 0 ≤ σ < s ≤ t

}

is a Lipschitz surface of a 3-dimensional space, so that its (3-dimensional)
Lebesgue measure is 0. Thanks to Fubini’s theorem, we know then that
for a.e. w ∈ R

2,

Bw =

{

s ∈ [0, t] : ∃σ < s, w =
T−s
1 (x, v)− T−σ

1 (x, v)

s− σ

}

is negligible (as a 1-dimensional space).

This concludes the proof of Lemma 2.
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(1973).
[G1] G. Gallavotti, Statistical Mechanics, Springer, Berlin, 1999.
[S1] H. Spohn, The Lorentz flight process converges to a random flight

process, Comm. Math. Phys., 60, 277–290, (1978).
[S2] H. Spohn, Kinetic Equations from Hamiltonian Dynamics: Mar-

kovian Limits, Rev. Mod. Phys., 52, 569–615, (1980).



10 L. DESVILLETTES
(1)

AND V. RICCI
(2)

[Spo] A. Kuzmany, H. SpohnMagneto-transport in the Two-dimensional

Lorentz gas, Physical Review E, 57, 5544, (1998)
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