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ABSTRACT. We show how the singularities are propagated for the (spa-
tially homogeneous) Boltzmann equation (with the usual angular cutoff
of Grad) in the context of the small solutions first introduced by Kaniel
and Shinbrot.
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1. INTRODUCTION

The Boltzmann equation is a standard model of the kinetic theory of gases

(cf. [Ce], [Ce,ll,Pu], [Ch,Co], [Tr,Mu]). It reads

where f(t,2,v) is the density of particles of the gas which at time t € R
and position € R® have velocity v € R?, and @ is a quadratic collision
operator which only acts on the variable v and writes

(2) Q(f,9)=Q"(f,9) - f Ly,

(3) QT (f,g)(tia,v) = / / F(t 2, o)t 2, ) Bo — v, w)dwdv.,
ve €ER3JSwES?

(4) Lg(t,z,v)= / / g(t,z,v)B(v — v, w)dwdv,.
v ER3J weS?
The post-collisional velocities v" and v/ are here parametrized by

{ v v (v — v) - w)w,

4 Ui — ((vx — 0) - w)w.

<
Il

Therefore,
Lg=A x g,
with
A(z) :/ B(z,w)dw.
wes?

The cross section B depends on the type of interactions between the par-
ticles of the gas. We shall always make in this paper the so-called “angular
cutoff assumption of Grad” (cf. [Gr]). We shall even limit ourselves to cross
sections which satisfy the following assumption:

Assumption 1.
LY (R3 x S?) N L (5% W (R?)).
The nonnegative cross section B lies in L (5% W1 (R?)).

Note that the classical cross sections of Maxwellian molecules or regular-
ized soft potentials (with angular cutoff) satisfy this assumption. The case of
hard potentials (with angular cutoff), which do not satisfy this assumption,
is briefly discussed in a remark at the end of section 2.

The Cauchy problem for equation (1) in Ry x R? x R? has been studied
by various authors. Global renormalized solutions have been proven to exist
for a large class of initial data by DiPerna and P.-L. Lions in [DP,L] (cf.
also [L]). Global solutions (in the whole space) close to the equilibrium have
been studied by Imai and Nishida in [Im,Ni] and Ukai and Asano in [Uk,As].

Finally, global solutions for small initial data were introduced by Kaniel
and Shinbrot (cf. [Ka,Sh]) and studied by Bellomo and Toscani (cf. [Be,To]),
Goudon (cf. [Gou]), Hamdache (cf. [Hal), lllner and Shinbrot (cf. [11,Sh]),
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Mischler and Perthame (cf. [Mi,Pe]), Polewczak (cf. [Po]) and Toscani (cf.
[To]).

In this paper, we study how the L? singularities of the initial datum are
propagated by equation (1). This question seems very difficult to tackle
in the general framework of renormalized solutions, because of the lack of
L*-estimates in this setting.

We shall therefore concentrate on the case of small initial data, where
such estimates are available. We think that our work is likely to extend to
solutions close to the equilibrium, but we shall not investigate this case.

We recall one of the theorems of existence of such small solutions. We
use a formulation adapted to our study, which is inspired from [Mi,Pe].

Theorem 1. Let B be a cross section satisfying assumption 1 and f,, be an
initial datum such that, for all (z,v) € R? x R?,

(5) 0< funle,v) < (1 All) " exp(—5 (jof? + o).

Then there exists a global distributional solution f to (1) with initial datum
fin, such that, for all T >0, t € [0,T] and (z,v) € R®x R?,

(6) 0< f(tv Ty U) < CTeXp(_%(|$ - Ut|2 + |U|2)) = MT(tv Z, U)v

where C'r is a constant only depending on T and || A||f.

We give in section 2 the precise form of the singularities of the solution
to the Boltzmann equation (in our setting). Our main theorem is

Theorem 2. Let B be a cross section satisfying assumption 1 and f,, be
an initial datum such that (5) holds. Then we can write, for all (t,z,v) €
Ry x R®x R3,

flt,z,v) = finlx — )1 (t, 2, v) + Ua(t, 2, v).
where 'y, Ty € HZ . (Ry x R? x R?) for all « €]0,1/25].

loc

Remarks.

e This theorem shows that the singularities of the initial datum (that is,
for example, the points around which f,, is in L? but not in H? for any
s > 0) are propagated with the free flow, and decrease exponentially
fast (since in fact I'y has an exponential decay).

e Theorem 2 ensures that, if f(t) € H*(R® x R?) for some ¢t > 0, then
fin € H*(R® x R?) (for s < 1/25), so that no smoothing can occur.
This (less precise) result could however probably be obtained with a
simpler method.

e The exponent 1/25 given here is probably not the best one. In or-
der to get the optimal result, one would need to perform many more
complicated computations.
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The proof of theorem 2 uses the regularizing properties of the kernel Q,
first studied by P.-L. Lions in [L], and extended by Wennberg in [We] and by
Bouchut and Desvillettes in [Bou,De|. Note that those properties are exactly
what is needed to give the form of the singularities of the solutions to the
spatially homogeneous Boltzmann equation (with angular cutoff). In order
to conclude in our inhomogeneous setting, we also have to use the averaging
lemmas of Golse, P.-L. Lions, Perthame and Sentis (cf. [G,L,P,S]).

In section 3, we give a short proof of a complementary result (that is,
the propagation of smoothness instead of the propagation of singularities),
under a slightly more stringent assumption. Namely, we show that the
smoothness (with respect to ¢, z,v) of the solution f to equation (1) at time
t > 0 obtained by theorem 1 is at least as good as that of fi, (in z,v). Note
that since our solutions satisfy an L bound, theorem 2 is enough to show
this propagation of smoothness as long as Sobolev spaces H*® with s < 1/25
are concerned. The theorem that we give here deals with higher derivatives.

Theorem 3. Let B be a cross section satisfying assumption 1 and such that
B € LY (R3x 5%) and f;, be an initial datum such that (5) holds. If moreover
fin € W (R3XR?) for some k € NU{oc}, then the solution f to (1) given
by theorem 1 verifies

f € Wik (R4, x RY X RY)).
Remark. The propagation of smoothness in a very close setting, but only
with respect to the variable z, has already been obtained by Polewczak in

[Po].

2. PROPAGATION OF SINGULARITIES

This section is devoted to the proof of theorem 2. The main idea is the
following : we write down the Duhamel form of the solution of equation (1).
This is also called the mild exponential form. For (¢,z,v) € Ry x R? x R?,
we have

ft,z,0) = fin(x—vt,v)exp(—/Oth(U,x—v(t—U),v)dU)

7) +/Ot [@+<f, P2 = v(t = 5),0)

exp ( - /: Lf(o,x—v(t - o), v)da)] ds.

We are going to prove that both Lf and QT(f, f) lie in L2 (Ry; HZ.(R? x
R3)) for any a €]0,1/25[. In order to get this result, we use on the one
hand the analysis of regularity of Q% in the variable v initiated in [L] and
developed in [We] and [Bou,De], and on the other hand the averaging lemmas

of [G,L,P.S].



2.1. Regularity of Lf. We here prove the following result.

Proposition 4. If B satisfies assumption 1 and fi, is such that (5) holds,
for any T > 0 and any R > 0, we have

WL 2o, 13500 2 (BrxBR)) < KT,RIAllL0 (22

where K1 R is a constant which depends on ' (more precisely, on the con-

stant Cr in (6)) and R.

Let us choose T" > 0. Since Lf is a convolution with respect to v, we
obviously have that, under assumption 1, Lf € L*([0,T]; x R2; Hﬁf(R%))
(in fact, it lies in L2([0, T]; x R3; W2 (R?))) and satisfies

loc

WL fll 2 (o,1158, 5000 72(8,y) < K7 (| All oo (o)

It remains to prove that Lf € L%([0,T]; x RZ; Hﬁf(Ri))

Let us define the function Ty, 0 < A < 1/2, by Th(v.) = e, and study
the following quantity

(8) HLfH%2([O,T]tXR%;Hlﬁ(Ri))

/t,v/x,h

We want to use the averaging lemma of [G,L,P,S] which we here recall in
a version very close to that of [Bou,De2], where the optimal smoothness in
the variable t is not given, but where the dependance with respect to the
averaging function is kept.

2
/ Al =0 (f(t,x + hyve) = f(t 2, 00))dos| de—=dod.

Lemma 1. Let f € C([0,T]; L2(R2 x R3)) solve the equation
Ohf+uv.-Vof=g in 10, T[xR? x R?,

Jor some g € L*([0,T] x R® x R®). Then, for any ¢» € D(R?), the average
quantity defined by

pulf)(t7) = / £t 2, 02) b (02)do

vx ER?3

belongs to L*([0,T]; H'/?(R®)) and satisfies, for any s > 1,

pr(f)"%2([03];}11/2(]@3)) < G [/ |f(0,x,v*)|2|¢(v*)|2(1 + |v*|2)5dv*d9@

)

—I_/ |g(t,x,v*)|2|¢(v*)|2(1-|- |U*|2)de*d$dt ,
1,2,v%

where Cy is a constant only depending on s.
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Using lemma 1, (8) becomes, for any s > 1 and any open ball Bg of R?,

HLfHL? T]exBr, ;H/2(R3))

s
< _. e
_/ueBR PA(w—)Ty (T/\

<C. [/ f(z, v*
vEBR Z,Ux T/\(

2
dv
L2([0,T;HY/2(R?))

P[A = v PITy (0) P (L4 o) dvode

2
+/t7$7v*‘(8t+v* Vx)T_/\‘

X |A(v — v )P T (v F(1 + |v*|2)5dv*dxdt] dv

(9) < CrsMyP[|Al] (g

2 2
Bl 1805 )
Ty L2(R3xRR3) Ty L2([0,T]xR3xR3)
where C'r s is a constant and
(10) My s = sup |Ty(v.)(1+ [oa]?)*?).

vx ER?3

Note that, since we have (5), the following estimate holds

o< Lol@) ol Jor2p
Tx(v)

where x is an absolute constant, so that (recall that 0 < A < 1/2) we can
find a constant C'y > 0 such that

fin
(1) 12 <o
T L2(R2xR?)
Moreover, we have
+ L
T T/\ T

It is clear, by (6), that
|f(t,z,v) Lf(t,z,v)] < My(t,z,v) LMy(t, z,v)
Ty\(v) - Ty\(v)
C2 (277 || Al e Hom 1 GO-DIE.

IN

Hence there exists a constant C'y such that

< (.

([0,T]xR3xR?)

oo |



It is also clear that, for (¢,z,v) € [0,7] x R? x R3,

|Q‘|‘(J}Azq(jt)7 z,v)| = = 1(1}) » ft, 2, ) f(t,m,0)) B(v — v, w) dwdu,
QY (M, Mr)(t,z,v)

- T\ (v)

_ My (t,z,v) LMy(t, z,v)

N T (v) :
so that
(14) HM <c.

L2([0,T]xR3xR3)

Taking (13)—(14) into account, (12) implies that

f

T2 (o1 xmoxm2)

Then, using (11) and (15) in (9), we get
"Lf"iz([oj]tXRg;Hlﬂ(RS)) < CSCAQMA,SQHAH%OO-

Recalling that Lf € L%([0,T]: x R2; HI/Q(R?’)) we finally obtain that

loc

(16) Lf e L2([0, T]; HYAR? x RY).

loc

(15) (D4 v- V)= < Ch.

2.2. Regularity of QT (/f, f).

2.2.1. Study of the average quantities of QT (f, f) with respect to the velocity.
This part is devoted to the proof of the

Proposition 5. Let ¢ € D(R?), B satisfying assumption 1, and fi, such
that (5) holds. Then we have, for any T > 0 and h € R3,

/t / [QF (F, £tz + hov) — Q (£, 1) (t, 2, 0)]C(v)do

(17) < KISy o0 oy |22,

where K1 is a constant that depends on T (more precisely on the constant
Cr in (6)) and on || B| e (s2w1,00 (2)) -

2
dxdt

Proof. Let ¢ € D(R?). We have
1) [ QHEN@CE) do= [ F0) ) B - v )0 dedode

By changing pre/post-collisional variables, (18) becomes

/ QF(f, ) ()¢ (v)d
RS

w0 = [ s ([ 8- vwrsto (0= o) - v
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Let us set
(20) Z(v,0.) = / B(v — v, w)((v— ((v—vy) - w)w)dw,

which depends neither on ¢ nor on z and belongs to L>(R? x R3). As a
matter of fact, we have

1 Z]| Lo (r2xr2) < 4A7[| B Lo 2ws2) 1€l oo (m2)-

Let us take a mollifying sequence (9.).>¢ of functions of v. Thanks to
(19), we get

@t cto) do
(21) = / L)) ( /w | wee(o = el - w*)dw*dw) dv,dv
-|-/M* f(v)flvs) [/ww (Z(v,v.) = Z(w, wy))

P (v — w)the (Vi — w*)dw*dw] dv.dv.

We name [y (respectively I3) the first (respectively second) integral in (21).
They are functions of ¢t € R4 and z € R>.

e Estimate on I.
The integral I; can be rewritten as

Iy = / Z(w, w*)pd!a(_w) (N, x)pd!a(_w*) ()t z)dw.dw,

where py(f) denotes the average quantity of f with respect to .

Let us study the norm [|7, 7y = I || 72 (jo, 77 x?), for h € R?, with the notation
Thy(x) = g(z + h).

The following equality holds

/ |Th]1 —Il|2d$dt
t,z

)

-/,

)

/ Z(w, wy) [pll!a(_w)(f) (t,z+ h)pd/a(_w*)(f) (t,z+h)

2
=P (c—w) () (6 ) py(—ay () (@) [ dwadw| dad.

We immediately get



/ |Th[1 — 11|2(]7}(]f
Jtx

< ClZI s maxre)
xléwmgémj@%«WWﬁ@mwiwp%«wﬂﬂuw»mq_mnﬁ@m+h>
002 ) (D) Py i) (1) (12 ) = Py (1) 0, 2)) v
< CONZI o~ oxre
X[/t.zdtd:c /ww ‘((rh —1d)py, (=) () (t, ) Thpd,e(._w*)(f)(t,m)‘dw*dw

[ s | [ (0= W0 (0)0:5) s (1)) e

In the previous inequality, the two terms can be similarly treated. For
example, let us study the second one, which we name .J.

J ==Ll?j(]iﬁw@«—uo(f)ﬁvw)dW)z (/i*\«Tﬁ-—1d>p¢a«_w”<f>>@7w>hhu;)2dxdt
cr [ ([ =1t

)

2

2
dxdt

2

d:cdt} .

IN

2
dw*) dxdt,

where C'r is the constant in (6). Let us choose 0 < § < A < 1/2. Using the
notation T’ as in section 2.1, we have

Cr ( / e—€IW*'2dw*) ( | @i x>2e€'w*'2dw*dxdt)
Wi 1,2,k

wa? YK
CT,elhl/w duw, ] pra(_w*m(T—A)‘

Then, thanks to the averaging lemma (lemma 1), we obtain

J

IN

IN

L2 ([0, TT:H I2(®2))

J < Craghl | dw, el

. 2
X |: . %Qbs(?& — w*)QT/\(U*)2(1 + |U*|2)de*dx

+ /t,x,v* ((8,5 + v, VQU)TLA) (t,, v*)2
X e (Ve — 0,)*To(0) 2 (1 4 |va]?) dvadadt |

Let us take care of the term with fi, (the other one is treated in the same
way thanks to (15)). We notice that, for any w, € B(v,¢),

2 2 2
e€|w*| < e?€|v*| 6206 )
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We thus have
[ [ Batn Uf) i on = ) T (02) 21+ [0 dvddu,
W T, Ux A

fin($7v*) 2 2 / €| |2 2

= T\ (v ) (1 + v ]9 e’ b (v, — wy)*dw, | dv.dz
T/\(U*)z /\( ) ( | | ) wy EB(vx,e) ¢ ( )

fin($7v*)2

B T, U T/\(U*)2

< (! My_g.5)?

<

T,V

Taeg(0:)? (14 0 ?)7e |4 7o dvnde

Ty

9

L2 (R?xR3)

for 0 < € < 1. Note that we have used that "¢5"%2 < e P and My_g, is
defined by (10). Hence we get, thanks to (11),

Chre,s
TETa
and finally
(22) ITel1 = Dl o rwme) € ool Z ] oo rasraye 1Al

e Estimate on Is.
Let us now study the norm ||, /3 — I2||72([o,1]x2), With the same notation
7, as before. We successively have

12— o |72 (o, 7y x2)

:/ dtdx / (f(t,x—l—h,v)f(t,x—l—h,v*)—f(t,x,v)f(t,x,v*))
t,x U, Uk

X (/ (Z(v,v4) — Z(w, ws)) ¥ (v — w) Y. (vs — w*)dw*dw)dv*dv

W, Wk

el V4 [ —— (/w|w|¢5(w)dw)2
/m dtdx (/M* (rh +1d) (| f(t, 2, 0) f(t, 2, U*)de*dv)z-

Thanks to (6), the second integral term is bounded by a constant K7 > 0.
Hence there exists a constant C'r > 0 such that

2

(23) I7nl2 = Ll Eo(o,11xre) < CTNZ 1100 (oo e

e Fistimate on the average quantity.
Under assumption 1, the following inequalities clearly hold

(24) 1Z]| Lo @exrsy < ClICllLoo(re),
(25) 1Zllwree@oxrey < ClIClweo @s),
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where (' is a constant depending on 7" and || B|[pe(s2w1,00(m2)). Conse-
quently, using (21)—(25), we get, for h € R?,

||t trnta s ho) =@ g it octo)do | dede
tao'Ju

< Kr[|Clfy .00 (ray (€7 + 72| RD),
that gives (17), if we choose & ~ |h|'/5. O

2.2.2. Study of QT (f, f). Let us once again choose a mollifying sequence
(v5)5>0 of functions of v. We obviously have, for all § > 0,

QTN = (QF (. f) = s % QT ([, ) + s %0 QF (S, f).
Note that, thanks to (17), for any h € R® and & > 0,

/t / [Q+(f7 f)(t,$—|— h7w) - Q+(f7 f)(t7$7w)]¢5(v - w)dw 2d$dt

< s (0 = )pr.00 ey 1217
(26) < C 678 |5,

On the other hand, we know that thanks to the regularizing properties of
Q% (cf. [Bou,De]), for all R > 0,

(27) 1QT(f, f) = s %0 QT (f, Nl 2o, 1)xBrx8r) < C6.

Using again the translations 7, in the variable = (h € R?), and assuming
that |h| < 1, we successively have

(7@ (1)~ Q* (£, 1)) dvdas

/(t,x,v)e[O,T]xBRxBR
< c[/ (QF(F ) — b5 +0 QF (F, ) (8,2, v)

[}

-I-/t (7 (5 %0 QT (f, 1)) — 5 %0 QT (f, 1)) (1, 2, v)‘zdvdxdt]

(28) < CR(d® + [h/557%),
thanks to (26)—(27). Then for a good choice of § (=~ |h|'/?%) in (28), we find

the following estimate

- 1/2
( / / / Q) — QH (. f>|2dvdwdt) < Clh%,
0 J(Br),”(Br),

that ensures that QT (f, f) € L*([0, 7] (Br),; H*((Br),)), for any 0 < a <
1/25.
Besides, we already know that QT (f, f) € L*([0,T]x ((Br),); H'((Br),))-

2
dvdxdt
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Then, by a standard interpolation result, we can state that for all o €
10,1/25],
(29) QF(f, f) € L*([0, T]; H3(R® x RY)).

Let us now justify (7). Note that, at least formally, (7) is easily rewritten
as

¢
fFtz,v) = exp(—/ Lf#(a,xw)da)x
0

(30) (fin(ac,v)—l—/ot [Q+(f, HE(s,2,0)

exp (/0 Lf#(a,x,v)da)]ds).

In (30), we name F; the first exponential term in the previous product, and
F, the whole integral term with Q.

We first notice that since Lf has the same H'/? smoothness in both
variables = and v, it is clear that Lf# ¢ L2([0,T7; Hﬁf(R?’ x R%)). In the
same way, QT (f, £)¥ lies in L2([0,T]; HE(R? x R®)) for all o €]0,1/25].

Besides, we have, for any h € L?([0,T]; H*(BrxBgr)), R > 0, a €]0,1/25],

(31) /OTH/Oth(U)dU‘

Using (31) with h = Lf#, we immediately obtain that for any ¢ € [0, 77,

dt < T2HhH%2([07T];HQ(BRXBR))'

2
L2([0,T];H*(BrXxBRr))

t
| ¥ (01 & L0, T LR < B))
0
Its time derivative is exactly Lf# which also lies in L%([0, TT; Hliéz(R:ng:g)).
Consequently, we have proven that

1
/ Lf#*(o)do € HL (Ry: HY2(R® x RY) ¢ HY2 (R, x R? x R?).

loc loc
0

Since z — €” is a bounded C'*® function on [—T max L f, T max L f], we
can conclude that E; belongs to HI/Z(R_|_ x R? x R3).

loc

Then we notice that Fs is the integral of the product of two terms which
are both in A = L2([0,T]; HZ.(R? x R?)) N L>®(R4 x R? x R?) for all o €
10,1/25[. The previous vector space A is in fact an algebra, so Fs is the
integral of a term that lies in A. Using once again (31), we find that £
belongs to HZ (R4 x R? x R?) for all o €]0,1/25].

Since Fq and FE5 are obviously in A, fl = F; and fg =F x Eyliein A
too, so that both quantities belong to H?_ (R4 xR3x R?) for all @ €]0,1/25].

And then, from (30) back to the standard formulation, we obtain (7) with
the required smoothness on both I'y and I'y, because fl and fg have the

same smoothness in the three variables ¢,  and v.
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Remark. In this proof, we have only considered cross sections B lying
in L°°(S?% W1 (R?%), which covers the case of Maxwellian molecules and
regularized soft potentials (with angular cutoff). We briefly explain here
how to transform the proof to get a result in the case of hard potentials
(with angular cutoff) or hard spheres.

Note first that the solutions of [Mi,Pe], which have an exponential decay
in both 2z and v, are replaced by solutions with an algebraic decay in at
least one of the variables, like those of [Be,To] or [Po]. Then, throughout
the proof, if the algebraic decay concerns the variable v, the function T) is

replaced by Sy(vs) = (14 |v*|2)_%. The estimate on %{’f) becomes then
more intricate (but is still valid).

Then, one has to replace the estimates in W% by estimates in C%°
(except for hard spheres) because the cross sections of hard potentials are
only Holder continuous, not Lipschitz continuous.

Finally, the L™ estimates must be replaced by weighted L™ estimates
because the cross sections of hard potentials (and hard spheres) tend to
infinity when |v — v,| tends to infinity. At the end, the exponent in the
Sobolev space is less than 1/25 (and may be very small for hard potentials
close to Maxwellian molecules).

3. SMOOTHNESS ESTIMATES

We give in this section the proof of theorem 3. Thanks to our assumption
on B and to the L>-estimate (6) of theorem 1, we can directly estimate the
derivatives of f using a Gronwall type lemma, namely

Lemma 2. We suppose that, for some T > 0, (Up)sejor) is a family of
uniformly bounded linear operators from L°°(R2 x R} to L (R2 x R3)T,
for P € N, and S € L>=([0,T]; x R} x R3)F. We also assume that g €
L2([0,T]; x R2 x RHP nC([0, T)s; LL(RE x R:P) satisfies the equation

in the sense of distributions. Then there exists a constant Cr only depending

onT, sElpT |||Ut|||Loo(R3><R3)p and HSHLOO([07T]XR3XR3)P, such that
te

19| oo (o, r1xrexra)? < CT(L+ [|g(0)[| oo (moxme)e)-
Proof. We use, for any h € L>=([0,T] x R® x R*)¥, the standard notation
(33) R#(t,x,v) = h(t,z + vt,v).

Equation (32) can be written under the Duhamel’s form

gF(t,x,v) = g(0,2,v)+ /075 S# (s, x,v)ds+ /Ot(Us(g))#(s,w,v)ds.
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Taking L norms, we get

lg(OlLeraxrayr < [lg(0)||poo@axmeyr + TS| peo (o, 11 xR2xR2) P

1
L LA Py [ FIE—
c€[0,7T] 0

Then lemma 2 is an immediate consequence of Gronwall’s lemma. U

3.1. Derivatives with respect to z. We first study the derivatives of f
with respect to . Using the fact that ) only acts on the variable v, we can
give an intermediate result, in which the smoothness of f,, with respect to
v is not required. We recall that a very similar result, in a slightly different
context, is given in [Po].

Proposition 6. Let B a cross section satisfying assumption 1 and such
that B € LY(R? x S?), and f,, be an initial datum such that (5) holds. If
moreover Vi fi, € L™ (R2 x R2) for p=1,--- ,k, then the solution f to (1)
given by theorem 1 is such that Vi f € L>([0, T];xR2xR3) forp=1,---k
and T > 0.

Proof. We introduce the quantities

(34) ift,z,v) = f(t;er+ h,xo, 23;0),
1
ur il
S = h
h ? # 07
and, in the same way, T2, 72, Ri and R.
Applying R} to (1), we get

(36) (B f) + v Vo(BiS) + (R) (L) + F(LELS)
= QT (RS, ) + QY ([, Ryf).
We now use lemma 2 with S =0, g = th and
(37)  Ue=QF (i f(1) + QT (f(t),) = (A LF (1)) = f()(L-).

Since f € L>([0,T] x R? x R?), it is quite easy to see that each term of U,
is a bounded operator of L°(R? x R?) the norm of which is smaller than
Al ey [ fl oo (o, 1) xRexm2).  We just show the computation for the first
term.

(35) Ryf =

1QF (9, T /)| oo (o xr)

= sup ‘ / / g(z, v’)réf(x, v )B(v — vy, w)dwdv,,
(z,v)ER>XR3 v« ER3J we S2

and then it is clear that

1QF (g, i /) oo maxrey < 19l poo@exray | f oo (o, xR xR | Al L (23 -
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Thanks to lemma 2, we obtain for any 7" > 0 a constant C'r independent on
h such that
IR} fll oo (o, m1xre sy < Cr(1+ (| By finll e (rexmey ) -

Using now the fact that V,f, € L*(R? x R?), we see that, for all i €
{1,2,3}, R} is uniformly bounded with respect to i in L°([0,T] x R*x R3),
so that

V.f € L>(0,T] x R* x R?)

for any T > 0.
The equation satisfied by 0., f is the same as (36), but with 4 = 0, namely

0¢(0z, f) +0-Vu(0n f) = QF(0nf, [)+QF(f,0:.])
(38) (0, ILS = f(LOs, f).
Applying R{L to this equation, we get
Oi(RL0u, ) + v - Vo (R0, f)
= QT (R} 0y, f, 77 f) + QT (0x. f, Ry f)
+ QY (B[, 700 f) + QF (f. B 0s, f)
— (R 0u, )Ty Lf) = (00, Y (LR f) — (R, [) (7. L0, [) — (LR}, 0, f).
At this level, we use lemma 2 with
S = QN0 RIS+ QN (RS 70, )
— (O, SY (LB f) = (B, f)(73, L0, f)
and Uy is still given by (37).
Using the fact that f,V,f € L°([0,T] x R?® x R?), it is easy to see that
S is bounded in L>([0, 7] x R® x R?) uniformly with respect to h.
Thanks to lemma 2 and the assumption that V.V, f, € L>(R? x R?),
we see that R} 9y, f is bounded (uniformly in /) in L>([0, T] x R® x R?) for
all T > 0, 4,7 € {1,2,3}, so that finally V,V,f € L>([0,T] x R® x R?).

The derivatives of higher order of f w.r.t. z are then obtained by a simple
induction, in which only the source term is changed. O

3.2. Derivatives with respect to v. We now turn to the derivatives with
respect to v. Since the proof gets quite intricate, we shall directly use
derivatives in the sense of distributions, instead of precisely writing down
quantities like Ry f. Note however that a complete justification of our com-
putations would require the use of such quantities.

We first write down the equation satisfied by 9,, f for i € {1,2,3}:

at(auif)+v'vx(avif)
(39) = —0p f = (O )(LS) = F(LO [) + 0,,Q(f, f)-
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Using [Bou,De], note that we could immediately deduce from (39) that V, f
lies in L2.([0,T]; x R2; L2 (R?,)), under a slightly more stringent assump-
tion on B.

However, we rather use a more elementary method, which directly gives
estimates in the L* setting.

Thanks to our study of the derivatives of f with respect to z, we shall be
able to put the term V. f in the source, and conclude with lemma 2. Note

that it was important to first treat the derivatives with respect to x.

We now study 9,,QF(f, f). Let us denote, for a given (t,z) € Ry x R3,
the functions
F: R°xR°xS$* —» R
(7, z,w) = f(Z+((z=2) ww)
[z =z - 2) - w)w),

and
G: R°xR’> - R
(Z,z) / F(Z, z,w) B(z — zy,w) dwdz,.
2 €R3JweSs?
Note that
G(Z,z)= / ] (F(Z,-,w)*, B(,w))(z) dw,
and that o

Gv,0)=Q*(f, fiv), veR
We have, for ¢ € {1,2,3},

0. = S0+ G 0)

(40 = [ (G5t G ) s Blw)| ) e
With obvious notations, it is easy to compute

1) o750 = [l - ) T (2 + o - TSNS
and, in the same way,

12) GE(Z50) = o T2 + [ = o) - T (2

Taking (40)—(42) into account, it is clear that 0, QT (f, f) = H(V,f) is
linearly depending on V, f, and that

or oF
H 0z + a7;

Using the L*-estimate (6) on f, we get, for some constant C'y > 0,
(44) [IV.QT(f, N lpeo@exrzy < CrlIVof ()|lpe roxrzy, — 0<t <T.

(43)

<2l
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We are now in a position to apply lemma 2, with
S=-V.,f
and
Ue = Hy(-) = -(Lf) = fL(").
We get at the end that, for any T > 0, there exists C'r > 0 such that
IVufllpeorxrexr?) < CT(1+ [V finll Lo R2xr2))-

Note that the constant C'r in (44) depends in fact on ||V, fi,||re, so that
we really need that fi, € W1>°(R? x R?) to conclude that

V.f € L=([0,T] x R® x R).

In order to study the second derivatives of f with respect to v, we are led
to consider the derivatives agwjf and 8v2wj (Q*(f, f)). More precisely, we
first prove that V,V, f € L, and then we can conclude that V,V, f € L.

We recall that, for a given ¢ € {1, 2,3}, 0,, f satisfies equation (38). Con-
sequently, the derivative 8§ivjf, Jj € {1,2,3}, verifies

875(82“/]][) —I_le’(agw]f) = _(82,1/]][)([/][) - f(Laglvjf)
00, (QT (00, [, [) + QT ([, 02, 1))
(45) ~ (0, [Y LDy, f) = (00, [) (LD, f) = 030, -

We want to apply lemma 2. It is clear that the last three terms in (45) lie
in L>°([0,T] x R? x R®). In the same way as in the study of V, Q% (f, f)(¢),
we can prove that both 9y, Q% (9, f, f)(t) and 9,,QF (f, 0z, f)(t) are linearly
depending on V, (0, f) and that

VL@ (O, f F) ()| oo maxrer)
VL@ (£, 0 F) (D)l poe raxrer)

for some constant K7 > 0.
Then, using lemma 2, we get

Vo (0s, f) € L([0,T] x R? x R?)

} < K|V (@ ) (1) e (o)

for any T > 0.

Let us study the second derivatives of QT (f, f) with respect to v. From
(40), we immediately compute that

05, QF (£ ) (V)
= / [(8%@.2 F4+03 F+0%, F+0%, F) (v, -,w)*B(-,w)](u) dw.
WES2 J et} L) Lat]

It is then clear that V,V,QT(f, f)(t) = I,(V,V,f) linearly depends on
V.V, f and that, for any T" > 0, there exists a constant K7 depending on

T, (1l Lo o, 17x2 xr2) @nd [[Vao fll Lo (o, 1) xR2xR2), Such that

IV VL Q¥ (f, 1) (Dl eaxrzy < Kr[[Vo Vo f (8)]] o maxre)-
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We are now able to prove that the derivative V,V, f lies in L*([0,T] x
R3 x R?) for any T > 0. Let us write down the equation satisfied by Qi.vjf.
For i,j € {1,2,3}, we have

0u(05,0,) + v+ V(05

iUy
(46) = = [00,0, + 050, ] + (00, ) (L0, J) + (0w ) (LD, )]
_(8311/])(1/][) - f(Laglv]) + 83“,]@-'—(][7 f)
We apply lemma 2 with P = 6, where S is the vector whose coordinates are
like the term in brackets in (47), and Uy = — - (Lf) — fL(-) + L¢(-). Then,
for any T" > 0, we find a constant C'7 > 0 such that
VoV flle o, mxrexre) < CT(1+ VoV finllpo®exre))-

That ends the study of the second derivatives of f with respect to z, v.

In order to study the smoothness of the derivatives of p-th order, p > 3,

of f with respect to z, v, we use an induction on p. Once we know that all
derivatives of f with respect to x, v of order < p—1 is bounded, we study, for

. . orf 0P f
1,2,3 th
any iy, y Ip € { 3 4y }7 3962'1 T 3962'13_13%’137 en axil . 8$ip_2 8712'13_187%137
o VT i onden
I | O ——— (1n 1s order).
P up 81]2'1 B -avip

Note that we do need that fi,, € WP of both # and v variables to
conclude that the derivatives of p-th order with respect to v only lie in
L>([0,T] x R® x R?) for all T > 0.

3.3. Derivatives with respect to {. As we did in subsection 3.2, we use
derivatives in the sense of distributions.
From (1)-(2), we immediately obtain that

(47) Of =~v-Vof +Q7(f, /) = JL].
Using (6), it is clear that
(48) of e L (Ry x R? x RY).

We next study, for a given i € {1,2,3}, the term afl,lf In fact, we know
that d,, f satisfies equation (38), which similarly implies that

(49) 0. f € Lin.(Ry x R x R?).

loc

Then we differentiate (47) with respect to ¢ and get

05 f = v -V (0:f) + QT (f,0:f) + QT (DS, ) = O H(LF) = F(LOf).
Using (6), (48) and (49), we obtain that
0%f € L2 (Ry x R® x RY).

loc

Besides, from (39) and the estimates on f, V,.f, V., f, V.V, f, V.Q¥(f, /),
it is clear that
97, f € Lis.(Ry x R® x R?).
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Then we conclude by induction in the same way as in subsection 3.2, by
first studying the mixed derivatives with respect to z and ¢, and next finding
the smoothness of the mixed derivatives with respect to ¢, x and v.
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