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2 LAURENT BOUDIN & LAURENT DESVILLETTES1. IntroductionThe Boltzmann equation is a standard model of the kinetic theory of gases(cf. [Ce], [Ce,Il,Pu], [Ch,Co], [Tr,Mu]). It reads@tf + v � rxf = Q(f; f);(1)where f(t; x; v) is the density of particles of the gas which at time t 2 R+and position x 2 R3 have velocity v 2 R3, and Q is a quadratic collisionoperator which only acts on the variable v and writesQ(f; g) = Q+(f; g)� f Lg;(2) Q+(f; g)(t; x; v) = Zv�2R3Z!2S2 f(t; x; v0)g(t; x; v0�)B(v � v�; !)d!dv�;(3) Lg(t; x; v) = Zv�2R3Z!2S2 g(t; x; v�)B(v � v�; !)d!dv�:(4)The post-collisional velocities v0 and v0� are here parametrized by� v0 = v + ((v� � v) � !)!;v0� = v� � ((v� � v) � !)!:Therefore, Lg = A �v g;with A(z) = Z!2S2 B(z; !)d!:The cross section B depends on the type of interactions between the par-ticles of the gas. We shall always make in this paper the so-called \angularcuto� assumption of Grad" (cf. [Gr]). We shall even limit ourselves to crosssections which satisfy the following assumption:Assumption 1.L1(R3� S2) \ L1(S2;W 1;1(R3)).The nonnegative cross section B lies in L1(S2;W 1;1(R3)).Note that the classical cross sections of Maxwellian molecules or regular-ized soft potentials (with angular cuto�) satisfy this assumption. The case ofhard potentials (with angular cuto�), which do not satisfy this assumption,is brie
y discussed in a remark at the end of section 2.The Cauchy problem for equation (1) in R+�R3�R3 has been studiedby various authors. Global renormalized solutions have been proven to existfor a large class of initial data by DiPerna and P.-L. Lions in [DP,L] (cf.also [L]). Global solutions (in the whole space) close to the equilibrium havebeen studied by Imai and Nishida in [Im,Ni] and Ukai and Asano in [Uk,As].Finally, global solutions for small initial data were introduced by Kanieland Shinbrot (cf. [Ka,Sh]) and studied by Bellomo and Toscani (cf. [Be,To]),Goudon (cf. [Gou]), Hamdache (cf. [Ha]), Illner and Shinbrot (cf. [Il,Sh]),



3Mischler and Perthame (cf. [Mi,Pe]), Polewczak (cf. [Po]) and Toscani (cf.[To]).In this paper, we study how the L2 singularities of the initial datum arepropagated by equation (1). This question seems very di�cult to tacklein the general framework of renormalized solutions, because of the lack ofL1-estimates in this setting.We shall therefore concentrate on the case of small initial data, wheresuch estimates are available. We think that our work is likely to extend tosolutions close to the equilibrium, but we shall not investigate this case.We recall one of the theorems of existence of such small solutions. Weuse a formulation adapted to our study, which is inspired from [Mi,Pe].Theorem 1. Let B be a cross section satisfying assumption 1 and fin be aninitial datum such that, for all (x; v) 2 R3�R3,0 � fin(x; v) � (81kAkL1)�1 exp(�12(jxj2+ jvj2)):(5)Then there exists a global distributional solution f to (1) with initial datumfin, such that, for all T > 0, t 2 [0; T ] and (x; v) 2 R3�R3,0 � f(t; x; v) � CT exp(�12(jx� vtj2 + jvj2)) :=MT (t; x; v);(6)where CT is a constant only depending on T and kAkL1.We give in section 2 the precise form of the singularities of the solutionto the Boltzmann equation (in our setting). Our main theorem isTheorem 2. Let B be a cross section satisfying assumption 1 and fin bean initial datum such that (5) holds. Then we can write, for all (t; x; v) 2R+�R3�R3, f(t; x; v) = fin(x� vt)�1(t; x; v) + �2(t; x; v):where �1;�2 2 H�loc(R+�R3�R3) for all � 2]0; 1=25[.Remarks.� This theorem shows that the singularities of the initial datum (that is,for example, the points around which fin is in L2 but not in Hs for anys > 0) are propagated with the free 
ow, and decrease exponentiallyfast (since in fact �1 has an exponential decay).� Theorem 2 ensures that, if f(t) 2 Hs(R3 � R3) for some t > 0, thenfin 2 Hs(R3 � R3) (for s < 1=25), so that no smoothing can occur.This (less precise) result could however probably be obtained with asimpler method.� The exponent 1=25 given here is probably not the best one. In or-der to get the optimal result, one would need to perform many morecomplicated computations.



4 LAURENT BOUDIN & LAURENT DESVILLETTESThe proof of theorem 2 uses the regularizing properties of the kernel Q+,�rst studied by P.-L. Lions in [L], and extended by Wennberg in [We] and byBouchut and Desvillettes in [Bou,De]. Note that those properties are exactlywhat is needed to give the form of the singularities of the solutions to thespatially homogeneous Boltzmann equation (with angular cuto�). In orderto conclude in our inhomogeneous setting, we also have to use the averaginglemmas of Golse, P.-L. Lions, Perthame and Sentis (cf. [G,L,P,S]).In section 3, we give a short proof of a complementary result (that is,the propagation of smoothness instead of the propagation of singularities),under a slightly more stringent assumption. Namely, we show that thesmoothness (with respect to t; x; v) of the solution f to equation (1) at timet > 0 obtained by theorem 1 is at least as good as that of fin (in x; v). Notethat since our solutions satisfy an L1 bound, theorem 2 is enough to showthis propagation of smoothness as long as Sobolev spaces Hs with s < 1=25are concerned. The theorem that we give here deals with higher derivatives.Theorem 3. Let B be a cross section satisfying assumption 1 and such thatB 2 L1(R3�S2) and fin be an initial datum such that (5) holds. If moreoverfin 2 W k;1(R3�R3) for some k 2 N[f1g, then the solution f to (1) givenby theorem 1 veri�es f 2 W k;1loc (R+t �R3x�R3v)):Remark. The propagation of smoothness in a very close setting, but onlywith respect to the variable x, has already been obtained by Polewczak in[Po]. 2. Propagation of singularitiesThis section is devoted to the proof of theorem 2. The main idea is thefollowing : we write down the Duhamel form of the solution of equation (1).This is also called the mild exponential form. For (t; x; v) 2 R+�R3�R3,we havef(t; x; v) = fin(x� vt; v) exp� � Z t0 Lf(�; x� v(t� �); v)d��+ Z t0 �Q+(f; f)(s; x� v(t� s); v)(7) exp�� Z ts Lf(�; x� v(t� �); v)d���ds:We are going to prove that both Lf and Q+(f; f) lie in L2loc(R+;H�loc(R3�R3)) for any � 2]0; 1=25[. In order to get this result, we use on the onehand the analysis of regularity of Q+ in the variable v initiated in [L] anddeveloped in [We] and [Bou,De], and on the other hand the averaging lemmasof [G,L,P,S].



52.1. Regularity of Lf . We here prove the following result.Proposition 4. If B satis�es assumption 1 and fin is such that (5) holds,for any T > 0 and any R > 0, we havekLfkL2([0;T ];H1=2(BR�BR)) � KT;RkAkL1(R3);where KT;R is a constant which depends on T (more precisely, on the con-stant CT in (6)) and R.Let us choose T > 0. Since Lf is a convolution with respect to v, weobviously have that, under assumption 1, Lf 2 L2([0; T ]t � R3x;H1=2loc (R3v))(in fact, it lies in L2([0; T ]t�R3x;W 1;1loc (R3v))) and satis�eskLfkL2([0;T ]�Br;H1=2(Br)) � K 0T;rkAkL1(R3):It remains to prove that Lf 2 L2([0; T ]t�R3v;H1=2loc (R3x)).Let us de�ne the function T�, 0 < � < 1=2, by T�(v�) = e��v� , and studythe following quantitykLfk2L2([0;T ]t�R3v;H1=2(R3x))(8) = Zt;vZx;h ���� Zv� A(v � v�)�f(t; x+ h; v�)� f(t; x; v�)�dv�����2dx dhjhj4dvdt:We want to use the averaging lemma of [G,L,P,S] which we here recall ina version very close to that of [Bou,De2], where the optimal smoothness inthe variable t is not given, but where the dependance with respect to theaveraging function is kept.Lemma 1. Let f 2 C([0; T ]t;L2w(R3x�R3v�)) solve the equation@tf + v� � rxf = g in ]0; T [�R3�R3;for some g 2 L2([0; T ]� R3� R3). Then, for any  2 D(R3), the averagequantity de�ned by� (f)(t; x) = Zv�2R3 f(t; x; v�) (v�)dv�belongs to L2([0; T ];H1=2(R3)) and satis�es, for any s > 1,k� (f)k2L2([0;T ];H1=2(R3)) � Cs �Zx;v jf(0; x; v�)j2j (v�)j2(1 + jv�j2)sdv�dx+ Zt;x;v� jg(t; x; v�)j2j (v�)j2(1 + jv�j2)sdv�dxdt� ;where Cs is a constant only depending on s.



6 LAURENT BOUDIN & LAURENT DESVILLETTESUsing lemma 1, (8) becomes, for any s > 1 and any open ball BR of R3,kLfk2L2([0;T ]t�BRv ;H1=2(R3x))� Zv2BR 



�A(v��)T�� fT��



2L2([0;T ];H1=2(R3))dv� Cs Zv2BR �Zx;v���fin(x; v�)T�(v�) ��2jA(v � v�)j2jT�(v�)j2(1 + jv�j2)sdv�dx+ Zt;x;v���(@t + v� � rx) fT� ��2� jA(v � v�)j2jT�(v�)j2(1 + jv�j2)sdv�dxdt�dv� CR;sM�;s2kAk2L1(R3)(9) �� 



finT� 



2L2(R3�R3) + 



(@t + v � rx) fT�



2L2([0;T ]�R3�R3) �;where CR;s is a constant andM�;s = supv�2R3 jT�(v�)(1 + jv�j2)s=2j:(10)Note that, since we have (5), the following estimate holds0 � fin(x; v)T�(v) � � e�jxj2=2 e(��1=2)jvj2;where � is an absolute constant, so that (recall that 0 < � < 1=2) we can�nd a constant C� > 0 such that



finT� 



L2(R3�R3) � C�:(11)Moreover, we have����(@t + v � rx) fT� ���� � jQ+(f; f)jT� + jfLf jT� :(12)It is clear, by (6), thatjf(t; x; v) Lf(t; x; v)jT�(v) � MT (t; x; v) LMT (t; x; v)T�(v)� C2T (2�)3=2 kAkL1 e� 12 jx�vtj2 e(�� 12 )jvj2 :Hence there exists a constant C� such that



fLfT� 



L2([0;T ]�R3�R3) � C�:(13)



7It is also clear that, for (t; x; v) 2 [0; T ]�R3�R3,jQ+(f; f)(t; x; v)jT�(v) = 1T�(v) ����Zv�;! f(t; x; v0)f(t; x; v0�) B(v � v�; !) d!dv������ Q+(MT ;MT )(t; x; v)T�(v)= MT (t; x; v) LMT (t; x; v)T�(v) ;so that 



Q+(f; f)T� 



L2([0;T ]�R3�R3) � C�:(14)Taking (13){(14) into account, (12) implies that



(@t + v � rx) fT�



L2([0;T ]�R3�R3) � C�:(15)Then, using (11) and (15) in (9), we getkLfk2L2([0;T ]t�R3v;H1=2(R3x)) � CsC�2M�;s2kAk2L1 :Recalling that Lf 2 L2([0; T ]t�R3x;H1=2loc (R3v)), we �nally obtain thatLf 2 L2([0; T ];H1=2loc (R3x�R3v)):(16)2.2. Regularity of Q+(f; f).2.2.1. Study of the average quantities of Q+(f; f) with respect to the velocity.This part is devoted to the proof of theProposition 5. Let � 2 D(R3v), B satisfying assumption 1, and fin suchthat (5) holds. Then we have, for any T > 0 and h 2 R3,Zt;x���Zv�Q+(f; f)(t; x+ h; v)�Q+(f; f)(t; x; v)��(v)dv���2dxdt� KTk�k2W 1;1(R3)jhj2=5;(17)where KT is a constant that depends on T (more precisely on the constantCT in (6)) and on kBkL1(S2;W 1;1(R3)).Proof. Let � 2 D(R3v). We haveZR3Q+(f; f)(v)�(v) dv = Zv;v� ;! f(v0)f(v0�)B(v � v�; !)�(v)d!dv�dv:(18)By changing pre/post-collisional variables, (18) becomesZR3Q+(f; f)(v)�(v)dv= Zv;v� f(v)f(v�)�Z! B(v � v�; !)�(v � ((v � v�) � !)!)d!�dv�dv:(19)



8 LAURENT BOUDIN & LAURENT DESVILLETTESLet us setZ(v; v�) = Z!B(v � v�; !)�(v� ((v � v�) � !)!)d!;(20)which depends neither on t nor on x and belongs to L1(R3 � R3). As amatter of fact, we havekZkL1(R3�R3) � 4�kBkL1(R3�S2)k�kL1(R3):Let us take a mollifying sequence ( ")">0 of functions of v. Thanks to(19), we getZR3Q+(f; f)(v) �(v) dv= Zv;v� f(v)f(v�)�Zw;w� Z(w;w�) "(v � w) "(v� � w�)dw�dw�dv�dv(21) + Zv;v� f(v)f(v�)�Zw;w� �Z(v; v�)� Z(w;w�)� "(v � w) "(v� � w�)dw�dw�dv�dv:We name I1 (respectively I2) the �rst (respectively second) integral in (21).They are functions of t 2 R+ and x 2 R3.� Estimate on I1.The integral I1 can be rewritten asI1 = Zw;w� Z(w;w�)� "(��w)(f)(t; x)� "(��w�)(f)(t; x)dw�dw;where � (f) denotes the average quantity of f with respect to  .Let us study the norm k�hI1�I1kL2([0;T ]�R3), for h 2 R3, with the notation�hg(x) = g(x+ h).The following equality holdsZt;x j�hI1 � I1j2dxdt= Zt;x ���� Zw;w� Z(w;w�)�� "(��w)(f)(t; x+ h)� "(��w�)(f)(t; x+ h)�� "(��w)(f)(t; x)� "(��w�)(f)(t; x)�dw�dw����2dxdt:We immediately get



9Zt;x j�hI1 � I1j2dxdt� CkZk2L1(R3�R3)� Zt;x dtdx���� Zw;w� ����� "(��w)(f)(t; x+ h)� � "(��w)(f)(t; x)�� "(��w�)(f)(t; x+ h)+� "(��w)(f)(t; x)�� "(��w�)(f)(t; x+ h)� � "(��w�)(f)(t; x)����dw�dw����2� CkZk2L1(R3�R3)�� Zt;x dtdx ���� Zw;w�����(�h � Id)� "(��w)(f)�(t; x) �h� "(��w�)(f)(t; x)���dw�dw����2dxdt+ Zt;x dtdx ���� Zw;w�����(�h � Id)� "(��w�)(f)�(t; x) � "(��w)(f)(t; x)���dw�dw����2dxdt�:In the previous inequality, the two terms can be similarly treated. Forexample, let us study the second one, which we name J .J = Zt;x�Zw � "(��w)(f)(t; x)dw�2�Zw� ����(�h � Id)� "(��w�)(f)�(t; x)���dw��2 dxdt� CT Zt;x�Zw� ����(�h � Id)� "(��w�)(f)�(t; x)���dw��2 dxdt;where CT is the constant in (6). Let us choose 0 < � < � < 1=2. Using thenotation T� as in section 2.1, we haveJ � CT �Zw�e��jw�j2dw���Zt;x;w��(�h � Id)� "(��w�)(f)�(t; x)2e�jw�j2dw�dxdt�� CT;�jhj Zw� dw� e�jw� j2


� "(��w�)T�� fT��


2L2([0;T ];H1=2(R3)):Then, thanks to the averaging lemma (lemma 1), we obtainJ � CT;�;sjhj Zw� dw� e�jw�j2� �Zx;v� fin(x; v�)2T�(v�)2  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dx+ Zt;x;v� �(@t + v� � rx) fT��(t; x; v�)2�  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dxdt� :Let us take care of the term with fin (the other one is treated in the sameway thanks to (15)). We notice that, for any w� 2 B(v�; "),e�jw� j2 � e2�jv�j2e2�"2 :



10 LAURENT BOUDIN & LAURENT DESVILLETTESWe thus haveZw� e�jw�j2 Zx;v� fin(x; v�)2T�(v�)2  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dxdw�� Zx;v� fin(x; v�)2T�(v�)2 T�(v�)2(1 + jv�j2)s Zw�2B(v�;") e�jw� j2 "(v� � w�)2dw�!dv�dx� Zx;v� fin(x; v�)2T�(v�)2 T���(v�)2(1 + jv�j2)se2�"2k "k2L2dv�dx� (e�M���;s)2"3 



finT� 



2L2(R3�R3);for 0 < " < 1. Note that we have used that k "k2L2 � "�3 and M���;s isde�ned by (10). Hence we get, thanks to (11),J � C�;�;s"3 ;and �nally k�hI1 � I1k2L2([0;T ]�R3) � C�;�;skZk2L1(R3�R3)"�3jhj:(22)� Estimate on I2.Let us now study the norm k�hI2�I2kL2([0;T ]�R3), with the same notation�h as before. We successively havek�hI2�I2k2L2([0;T ]�R3)= Zt;x dtdx ����Zv;v� �f(t; x+ h; v)f(t; x+ h; v�)� f(t; x; v)f(t; x; v�)�� �Zw;w��Z(v; v�)� Z(w;w�)� "(v � w) "(v� � w�)dw�dw�dv�dv����2� CkZk2W 1;1(R3�R3) �Zw jwj "(w)dw�2Zt;x dtdx�Zv;v���h + Id)�jf(t; x; v)f(t; x; v�)j�dv�dv�2:Thanks to (6), the second integral term is bounded by a constant KT � 0.Hence there exists a constant CT � 0 such thatk�hI2 � I2k2L2([0;T ]�R3) � CTkZk2W 1;1(R3�R3)"2:(23)� Estimate on the average quantity.Under assumption 1, the following inequalities clearly holdkZkL1(R3�R3) � Ck�kL1(R3);(24) kZkW 1;1(R3�R3) � Ck�kW 1;1(R3);(25)



11where C is a constant depending on T and kBkL1(S2;W 1;1(R3)). Conse-quently, using (21){(25), we get, for h 2 R3,Zt;x���Zv�Q+(f; f)(t; x+ h; v)�Q+(f; f)(t; x; v)��(v)dv���2dxdt� KTk�k2W 1;1(R3)("2 + "�3jhj);that gives (17), if we choose " ' jhj1=5.2.2.2. Study of Q+(f; f). Let us once again choose a mollifying sequence( �)�>0 of functions of v. We obviously have, for all � > 0,Q+(f; f) = �Q+(f; f)�  � �v Q+(f; f)�+  � �v Q+(f; f):Note that, thanks to (17), for any h 2 R3 and � > 0,Zt;x���Zw�Q+(f; f)(t; x+ h; w)� Q+(f; f)(t; x; w)� �(v � w)dw���2dxdt� Ck �(v � �)k2W 1;1(R3)jhj2=5� C ��8 jhj2=5:(26)On the other hand, we know that thanks to the regularizing properties ofQ+ (cf. [Bou,De]), for all R > 0,kQ+(f; f)�  � �v Q+(f; f)kL2([0;T ]�BR�BR) � C�:(27)Using again the translations �h in the variable x (h 2 R3), and assumingthat jhj � 1, we successively haveZ(t;x;v)2[0;T ]�BR�BR�����hQ+(f; f)�Q+(f; f)����2dvdxdt� C�Zt;x;v����Q+(f; f)�  � �v Q+(f; f)�(t; x; v)���2dvdxdt+ Zt;x;v�����h( � �v Q+(f; f))�  � �v Q+(f; f)�(t; x; v)���2dvdxdt�� CR(�2 + jhj2=5��8);(28)thanks to (26){(27). Then for a good choice of � (' jhj1=25) in (28), we �ndthe following estimate Z T0 Z(BR)xZ(BR)v j�hQ+(f; f)�Q+(f; f)j2dvdxdt!1=2 � Cjhj1=25;that ensures that Q+(f; f) 2 L2([0; T ]�(BR)v;H�((BR)x)), for any 0 < � <1=25.Besides, we already know thatQ+(f; f) 2 L2([0; T ]�((BR)x);H1((BR)v)).



12 LAURENT BOUDIN & LAURENT DESVILLETTESThen, by a standard interpolation result, we can state that for all � 2]0; 1=25[, Q+(f; f) 2 L2([0; T ];H�loc(R3�R3)):(29)Let us now justify (7). Note that, at least formally, (7) is easily rewrittenas f#(t; x; v) = exp� � Z t0 Lf#(�; x; v)d����fin(x; v) + Z t0 �Q+(f; f)#(s; x; v)(30) exp�Z s0 Lf#(�; x; v)d���ds�:In (30), we name E1 the �rst exponential term in the previous product, andE2 the whole integral term with Q+.We �rst notice that since Lf has the same H1=2 smoothness in bothvariables x and v, it is clear that Lf# 2 L2([0; T ];H1=2loc (R3� R3)). In thesame way, Q+(f; f)# lies in L2([0; T ];H�loc(R3�R3)) for all � 2]0; 1=25[.Besides, we have, for any h 2 L2([0; T ];H�(BR�BR)),R > 0, � 2]0; 1=25[,Z T0 


Z t0 h(�)d�


2L2([0;T ];H�(BR�BR))dt � T 2khk2L2([0;T ];H�(BR�BR)):(31)Using (31) with h = Lf#, we immediately obtain that for any t 2 [0; T ],Z t0 Lf#(�)d� 2 L2([0; T ];H1=2loc (R3�R3)):Its time derivative is exactly Lf# which also lies in L2([0; T ];H1=2loc (R3�R3)).Consequently, we have proven thatZ t0 Lf#(�)d� 2 H1loc(R+;H1=2loc (R3�R3)) � H1=2loc (R+�R3�R3):Since x 7! ex is a bounded C1 function on [�T maxLf; T maxLf ], wecan conclude that E1 belongs to H1=2loc (R+�R3�R3).Then we notice that E2 is the integral of the product of two terms whichare both in A = L2([0; T ];H�loc(R3� R3)) \ L1(R+ �R3� R3) for all � 2]0; 1=25[. The previous vector space A is in fact an algebra, so E2 is theintegral of a term that lies in A. Using once again (31), we �nd that E2belongs to H�loc(R+�R3�R3) for all � 2]0; 1=25[.Since E1 and E2 are obviously in A, ~�1 = E1 and ~�2 = E1 � E2 lie in Atoo, so that both quantities belong toH�loc(R+�R3�R3) for all � 2]0; 1=25[.And then, from (30) back to the standard formulation, we obtain (7) withthe required smoothness on both �1 and �2, because ~�1 and ~�2 have thesame smoothness in the three variables t, x and v.



13Remark. In this proof, we have only considered cross sections B lyingin L1(S2;W 1;1(R3)), which covers the case of Maxwellian molecules andregularized soft potentials (with angular cuto�). We brie
y explain herehow to transform the proof to get a result in the case of hard potentials(with angular cuto�) or hard spheres.Note �rst that the solutions of [Mi,Pe], which have an exponential decayin both x and v, are replaced by solutions with an algebraic decay in atleast one of the variables, like those of [Be,To] or [Po]. Then, throughoutthe proof, if the algebraic decay concerns the variable v, the function T� isreplaced by S�(v�) = (1 + jv�j2)��2 . The estimate on Q+(f;f)S� becomes thenmore intricate (but is still valid).Then, one has to replace the estimates in W 1;1 by estimates in C0;�(except for hard spheres) because the cross sections of hard potentials areonly H�older continuous, not Lipschitz continuous.Finally, the L1 estimates must be replaced by weighted L1 estimatesbecause the cross sections of hard potentials (and hard spheres) tend toin�nity when jv � v�j tends to in�nity. At the end, the exponent in theSobolev space is less than 1=25 (and may be very small for hard potentialsclose to Maxwellian molecules).3. Smoothness estimatesWe give in this section the proof of theorem 3. Thanks to our assumptionon B and to the L1-estimate (6) of theorem 1, we can directly estimate thederivatives of f using a Gronwall type lemma, namelyLemma 2. We suppose that, for some T > 0, (Ut)t2[0;T ] is a family ofuniformly bounded linear operators from L1(R3x�R3v)P to L1(R3x�R3v)P ,for P 2 N, and S 2 L1([0; T ]t � R3x � R3v)P . We also assume that g 2L1([0; T ]t�R3x�R3v)P \ C([0; T ]t;L1w�(R3x�R3v)P ) satis�es the equation@tg + v � rxg = Utg + S;(32)in the sense of distributions. Then there exists a constant CT only dependingon T , supt2[0;T ] jjjUtjjjL1(R3�R3)P and kSkL1([0;T ]�R3�R3)P , such thatkgkL1([0;T ]�R3�R3)P � CT (1 + kg(0)kL1(R3�R3)P ):Proof. We use, for any h 2 L1([0; T ]�R3�R3)P , the standard notationh#(t; x; v) = h(t; x+ vt; v):(33)Equation (32) can be written under the Duhamel's formg#(t; x; v) = g(0; x; v)+ Z t0 S#(s; x; v)ds+ Z t0 (Us(g))#(s; x; v)ds:



14 LAURENT BOUDIN & LAURENT DESVILLETTESTaking L1 norms, we getkg(t)kL1(R3�R3)P � kg(0)kL1(R3�R3)P + TkSkL1([0;T ]�R3�R3)P+ sup�2[0;T ] jjjU� jjjL1(R3�R3)P Z t0 kg(s)kL1(R3�R3)P ds:Then lemma 2 is an immediate consequence of Gronwall's lemma.3.1. Derivatives with respect to x. We �rst study the derivatives of fwith respect to x. Using the fact that Q only acts on the variable v, we cangive an intermediate result, in which the smoothness of fin with respect tov is not required. We recall that a very similar result, in a slightly di�erentcontext, is given in [Po].Proposition 6. Let B a cross section satisfying assumption 1 and suchthat B 2 L1(R3� S2), and fin be an initial datum such that (5) holds. Ifmoreover rpxfin 2 L1(R3x�R3v) for p = 1; � � � ; k, then the solution f to (1)given by theorem 1 is such that rpxf 2 L1([0; T ]t�R3x�R3v) for p = 1; � � � ; kand T > 0.Proof. We introduce the quantities�1hf(t; x; v) = f(t; x1 + h; x2; x3; v);(34) R1hf = �1hf � fh ; h 6= 0;(35)and, in the same way, �2h , �3h , R2h and R3h.Applying Rih to (1), we get@t(Rihf) + v � rx(Rihf) + (Rihf)(� ihLf) + f(LRihf)= Q+(Rihf; � ihf) + Q+(f; Rihf):(36)We now use lemma 2 with S = 0, g = Rihf andUt = Q+(�; � ihf(t)) +Q+(f(t); �)� �(� ihLf(t))� f(t)(L�):(37)Since f 2 L1([0; T ]�R3�R3), it is quite easy to see that each term of Utis a bounded operator of L1(R3 � R3) the norm of which is smaller thankAkL1(R3)kfkL1([0;T ]�R3�R3). We just show the computation for the �rstterm.kQ+(g; � ihf)kL1(R3�R3)= sup(x;v)2R3�R3 ���� Zv�2R3Z!2S2 g(x; v0)� ihf(x; v�0)B(v � v�; !)d!dv�����;and then it is clear thatkQ+(g; � ihf)kL1(R3�R3) � kgkL1(R3�R3)kfkL1([0;T ]�R3�R3)kAkL1(R3):



15Thanks to lemma 2, we obtain for any T > 0 a constant CT independent onh such that kRihfkL1([0;T ]�R3�R3) � CT (1 + kRihfinkL1(R3�R3)):Using now the fact that rxfin 2 L1(R3 � R3), we see that, for all i 2f1; 2; 3g,Rih is uniformly bounded with respect to h in L1([0; T ]�R3�R3),so that rxf 2 L1([0; T ]�R3�R3)for any T > 0.The equation satis�ed by @xif is the same as (36), but with h = 0, namely@t(@xif) + v � rx(@xif) = Q+(@xif; f) +Q+(f; @xif)�(@xif)Lf � f(L@xif):(38)Applying Rjh to this equation, we get@t(Rjh@xif) + v � rx(Rjh@xif)= Q+(Rjh@xif; � jhf) +Q+(@xif; Rjhf)+ Q+(Rjhf; � jh@xif) +Q+(f; Rjh@xif)� (Rjh@xif)(� jhLf)� (@xif)(LRjhf)� (Rjhf)(� jhL@xif)� f(LRjh@xif):At this level, we use lemma 2 withS = Q+(@xif; Rjhf) + Q+(Rjhf; � jh@xif)�(@xif)(LRjhf)� (Rjhf)(� jhL@xif)and Ut is still given by (37).Using the fact that f;rxf 2 L1([0; T ]�R3�R3), it is easy to see thatS is bounded in L1([0; T ]�R3�R3) uniformly with respect to h.Thanks to lemma 2 and the assumption that rxrxfin 2 L1(R3� R3),we see that Rjh@xif is bounded (uniformly in h) in L1([0; T ]�R3�R3) forall T > 0, i; j 2 f1; 2; 3g, so that �nally rxrxf 2 L1([0; T ]�R3�R3).The derivatives of higher order of f w.r.t. x are then obtained by a simpleinduction, in which only the source term is changed.3.2. Derivatives with respect to v. We now turn to the derivatives withrespect to v. Since the proof gets quite intricate, we shall directly usederivatives in the sense of distributions, instead of precisely writing downquantities like Rhf . Note however that a complete justi�cation of our com-putations would require the use of such quantities.We �rst write down the equation satis�ed by @vif for i 2 f1; 2; 3g :@t(@vif) + v � rx(@vif)= �@xif � (@vif)(Lf)� f(L@vif) + @viQ+(f; f):(39)



16 LAURENT BOUDIN & LAURENT DESVILLETTESUsing [Bou,De], note that we could immediately deduce from (39) that rvflies in L1loc([0; T ]t�R3x;L2loc(R3v)), under a slightly more stringent assump-tion on B.However, we rather use a more elementary method, which directly givesestimates in the L1 setting.Thanks to our study of the derivatives of f with respect to x, we shall beable to put the term rxf in the source, and conclude with lemma 2. Notethat it was important to �rst treat the derivatives with respect to x.We now study @viQ+(f; f). Let us denote, for a given (t; x) 2 R+ �R3,the functionsF : R3�R3� S2 ! R(Z; z; !) 7! f(Z + ((z � Z) � !)!)f(z � ((z � Z) � !)!);and G : R3�R3 ! R(Z; z) 7! Zz�2R3Z!2S2F (Z; z�; !) B(z � z�; !) d!dz�:Note that G(Z; z) = Z!2S2 �F (Z; �; !) �z B(�; !)�(z) d!;and that G(v; v) = Q+(f; f)(v); v 2 R3:We have, for i 2 f1; 2; 3g,@viQ+(f; f)(v) = @G@Zi (v; v) + @G@zi (v; v)= Z!2S2 �� @F@Zi (v; �; !)+ @F@zi (v; �; !)� �B(�; !)�(v) d!:(40)With obvious notations, it is easy to compute@F@Zi (Z; z; !) = [(ei � !i!) � rvf(Z0)]f(z0) + [!i! � rvf(z0)]f(Z 0)(41)and, in the same way,@F@zi (Z; z; !) = [!i! � rvf(Z0)]f(z0) + [(ei � !i!) � rvf(z0)]f(Z 0):(42)Taking (40){(42) into account, it is clear that @viQ+(f; f) � Ht(rvf) islinearly depending on rvf , and that


@F@zi + @F@Zi


L1 � 2kfkL1krvfkL1 :(43)Using the L1-estimate (6) on f , we get, for some constant CT > 0,krvQ+(f; f)(t)kL1(R3�R3) � CTkrvf(t)kL1(R3�R3); 0 � t � T:(44)



17We are now in a position to apply lemma 2, withS = �rxfand Ut = Ht(�)� �(Lf)� fL(�):We get at the end that, for any T > 0, there exists CT > 0 such thatkrvfkL1([0;T ]�R3�R3) � CT (1 + krvfinkL1(R3�R3)):Note that the constant CT in (44) depends in fact on krxfinkL1 , so thatwe really need that fin 2 W 1;1(R3�R3) to conclude thatrvf 2 L1([0; T ]�R3�R3):In order to study the second derivatives of f with respect to v, we are ledto consider the derivatives @2xivjf and @2vivj(Q+(f; f)). More precisely, we�rst prove that rxrvf 2 L1, and then we can conclude that rvrvf 2 L1.We recall that, for a given i 2 f1; 2; 3g, @xif satis�es equation (38). Con-sequently, the derivative @2xivjf , j 2 f1; 2; 3g, veri�es@t(@2xivjf) + v � rx(@2xivjf) = �(@2xivjf)(Lf)� f(L@2xivjf)+@vj�Q+(@xif; f) + Q+(f; @xif)��(@xif)(L@vjf)� (@vjf)(L@xif)� @2xixjf:(45)We want to apply lemma 2. It is clear that the last three terms in (45) liein L1([0; T ]�R3�R3). In the same way as in the study of rvQ+(f; f)(t),we can prove that both @vjQ+(@xif; f)(t) and @vjQ+(f; @xif)(t) are linearlydepending on rv(@xif) and thatkrvQ+(@xif; f)(t)kL1(R3�R3)krvQ+(f; @xif)(t)kL1(R3�R3) � � KTkrv(@xif)(t)kL1(R3�R3);for some constant KT > 0.Then, using lemma 2, we getrv(@xif) 2 L1([0; T ]�R3�R3)for any T > 0.Let us study the second derivatives of Q+(f; f) with respect to v. From(40), we immediately compute that@2vivjQ+(f; f)(v)= Z!2S2��@2ZiZjF + @2ZizjF + @2ziZjF + @2zizjF�(v; �; !)�B(�; !)�(v) d!:It is then clear that rvrvQ+(f; f)(t) � It(rvrvf) linearly depends onrvrvf and that, for any T > 0, there exists a constant KT depending onT , kfkL1([0;T ]�R3�R3) and krvfkL1([0;T ]�R3�R3), such thatkrvrvQ+(f; f)(t)kL1(R3�R3) � KTkrvrvf(t)kL1(R3�R3):



18 LAURENT BOUDIN & LAURENT DESVILLETTESWe are now able to prove that the derivative rvrvf lies in L1([0; T ]�R3�R3) for any T > 0. Let us write down the equation satis�ed by @2vivjf .For i; j 2 f1; 2; 3g, we have@t(@2vivj ) + v � rx(@2vivj )= ��@2xivjf + @2vixjf + (@vjf)(L@vif) + (@vif)(L@vjf)�(46) �(@2vivj)(Lf)� f(L@2vivj ) + @2vivjQ+(f; f):We apply lemma 2 with P = 6, where S is the vector whose coordinates arelike the term in brackets in (47), and Ut = � � (Lf)� fL(�) + It(�). Then,for any T > 0, we �nd a constant CT > 0 such thatkrvrvfkL1([0;T ]�R3�R3) � CT (1 + krvrvfinkL1(R3�R3)):That ends the study of the second derivatives of f with respect to x; v.In order to study the smoothness of the derivatives of p-th order, p � 3,of f with respect to x; v, we use an induction on p. Once we know that allderivatives of f with respect to x; v of order � p�1 is bounded, we study, forany i1; � � � ; ip 2 f1; 2; 3g, @pf@xi1 � � �@xip�1@vip , then @pf@xi1 � � �@xip�2@vip�1@vip ,.., up to @pf@vi1 � � �@vip (in this order).Note that we do need that fin 2 W p;1 of both x and v variables toconclude that the derivatives of p-th order with respect to v only lie inL1([0; T ]�R3�R3) for all T > 0.3.3. Derivatives with respect to t. As we did in subsection 3.2, we usederivatives in the sense of distributions.From (1){(2), we immediately obtain that@tf = �v � rxf + Q+(f; f)� fLf:(47)Using (6), it is clear that@tf 2 L1loc(R+�R3�R3):(48)We next study, for a given i 2 f1; 2; 3g, the term @2txif . In fact, we knowthat @xif satis�es equation (38), which similarly implies that@2txif 2 L1loc(R+�R3�R3):(49)Then we di�erentiate (47) with respect to t and get@2ttf = �v � rx(@tf) + Q+(f; @tf) + Q+(@tf; f)� (@ff)(Lf)� f(L@tf):Using (6), (48) and (49), we obtain that@2ttf 2 L1loc(R+�R3�R3):Besides, from (39) and the estimates on f , rxf , rvf , rxrvf , rvQ+(f; f),it is clear that @2tvif 2 L1loc(R+�R3�R3):
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