
A KINETIC MODEL ALLOWING TO OBTAIN THE ENERGY LAW OF

POLYTROPIC GASES IN THE PRESENCE OF CHEMICAL REACTIONS
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Abstract. We propose a kinetic model which describes a mixture of reactive gases, in which a unique con-
tinuous internal energy parameter is present. This model enables to recover at the level of its hydrodynamic
limit the Euler equations of a mixture of reactive polytropic gases.
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1. Introduction

In this paper we propose a kinetic model of Boltzmann type for a mixture of reactive gases. The originality
of our model is that it satisfies the following requirements:

(1) we wish to introduce only one internal energy parameter which has moreover to be continuous (that
is, not discrete);

(2) we wish to be able to write down precisely the kernels, and to rigorously prove the conservations
laws and the H-theorem;

(3) we wish to be able to take into account any chemical reversible reactions of type

A1 +A2 ⇋ A3 +A4,

in which the mass of the Ai may all be different, and which may be either endothermic or exothermic.
(4) when looking at the hydrodynamic limit (that is, the limit when the Knudsen number goes to 0),

we wish to be able to relate (in a simple and computable way) the cross sections at the Boltzmann
level with the macroscopic parameters of the corresponding reactive Euler equations (that is, for
example, the energy law of each specie, or the dependance of the reaction rate with respect to
temperature). In particular, we want to be able to recover the energy law of polytropic gases.

Let us comment briefly on these requirements: the adjunction of only one parameter of internal energy
which is moreover continuous will ensure that the numerical computations (under the form of particle
methods) remain tractable (no need to take into account a large number of discrete energy levels). This
is at variance with classical models such as those presented in [5], [6], [7] and [8], and constitute the main
originality of our work. The second and fourth requirements ensure that (at least at the formal level) the
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link between the microscopic and macroscopic description is rigorous. In particular, thanks to the fourth
requirement, one has the possibility to couple numerical codes of both types (particle methods for the kinetic
part, finite volumes for the Euler part). Finally, it is clear that one should be able to treat at least chemical
reactions as described in the third requirement. Our model certainly can be extended to more complicated
chemical situations, but in order to keep a readable paper, we shall not investigate in this direction.

Our model is presented in the framework of the so-called Borgnakke-Larsen procedure (Cf. [1]), and is a
generalization of the models (which do not include chemical reactions) already introduced in [2] and [4].

For each specie Ai (i = 1, ..4) of the mixture, we introduce a number density function fi, which depends
on the time t, the position (in space) x in R

N (of course N = 3 in the applications, but we shall keep N
in the sequel so that it is possible to see the dependence of the kernels with respect to the dimension), the
velocity v (in R

N ), but also an internal energy I, which will vary in R+ (that is, as required, one unique
continuous parameter). This last quantity will enable to get general energy laws at the level of the Euler
equation.

If we denote by ni(x, t) dx the number of particles of the specie i at time t in an infinitesimal region of
thickness dx centered in x, the physical meaning of the density fi is the following:

(1) ni(t, x) =

∫

RN

∫ +∞

0

fi(t, x, v, I)ϕi(I) dvdI,

where ϕi(I) dI is a nonnegative measure which is a parameter of the model (typically, one can take ϕi(I) =
Iαi for some αi ≥ 0).

As we shall see, the introduction of the functions ϕi(I) is crucial, since it will permit to obtain a mass
action law and a set of energy laws that are typical of polyatomic (polytropic) gases.

The paper is organized as follows : in Section 2, we write down the kernels corresponding to collisions
between molecules of the same specie or of different species, but without chemical reactions. These kernels
are close to that described in [2] and [4]. One of the differences (with the kernels presented in these papers)
is that we take into account the mass of the molecules (which may be different for the different species) and
the non-symmetric aspect of the bi-species kernel.

Then, in Section 3, we shall explain how to modify the previous description when chemical reactions are
allowed. The main difficulty here is to include in the model the energy which is dissipated when a chemical
reaction occurs.

Finally, in Section 4, we link our kinetic model with the fluid-dynamic (Euler) system corresponding to
a mechanical (but not chemical) equilibrium.

2. Non reactive collision kernels

We consider the (non reactive) collision between two molecules of species i and j, with mass mi and mj ,
velocity v and v∗, and internal energy I and I∗ respectively. After this collision, the molecules belong to
the same specie, they still have mass mi and mj , but their velocities and internal energies have changed,
and are now denoted by v′, v′∗, I

′ and I ′∗ (as a matter of fact, the kernel that we shall write use the inverse
(and traditional) convention : the primed quantities correspond to the state of the molecules before the
collision).

The conservations of momentum and total energy write :

(2) miv
′ +mjv

′
∗ = miv +mjv∗,

(3)
1

2
mi |v′|2 +

1

2
mj |v′∗|2 + I ′ + I ′∗ =

1

2
mi |v|2 +

1

2
mj |v∗|2 + I + I∗.
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Since we shall systematically work in the reference frame of the center of mass, we introduce the reduced
mass

(4) µij =
mimj

mi +mj
.

The Borgnakke-Larsen procedure, which we shall use throughout this paper, is one of the simplest
(and most natural) way to describe the evolution of the different energies (kinetic, internal) in the process
of collision (from the mathematical point of view, it can also be seen as a simple way of parametrizing
equations (2) and (3)). The idea of this procedure can be described as follows : one first compute the total
energy of the incoming molecules in the center of mass reference frame (thanks to eq. (2) and (3), this is
also the total energy of the outgoing molecules in the center of mass reference frame) :

(5) ε =
1

2
µij |v − v∗|2 + I + I∗ =

1

2
µij |v′ − v′∗|2 + I ′ + I ′∗.

Then, a proportion 1−R (with R ∈ [0, 1]) of this energy is attributed to the internal energy of the outgoing
molecules, that is

(6) I ′ + I ′∗ = (1 −R) ε.

This internal energy is itself distributed between the two outgoing molecules : we introduce therefore a
parameter r ∈ [0, 1] in such a way that

(7) I ′ = r(1 −R) ε, I ′∗ = (1 − r)(1 −R) ε.

The kinetic energy of the outgoing molecules (in the center of mass reference frame) is now

(8)
1

2
µij |v′ − v′∗|2 = Rε.

This last equation can be parametrized by a unitary vector ω ∈ SN−1 :

(9) v′ − v′∗ =

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

,

where

Tωx = x− 2(ω · x)ω
is the symmetry with respect to ω⊥. Coming back in the laboratory reference frame, we end up with the
formulas :

(10) v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

,

(11) v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

.

Finally, we introduce (for the sake of symmetry : this will help in the computations of the Jacobian
determinants) the extra parameters

(12) R′ =
1

2
µij |v − v∗|2ε−1, r′ =

I

I + I∗
.

The main properties of the Borgnakke-Larsen transformations (5)-(12) are collected in the following
lemma :
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Lemma 1. Let us define (for a given ω ∈ SN−1) the transformation

Sij
ω : (v, v∗, I, I∗, r, R) 7→ (v′, v′∗, I

′, I ′∗, r
′, R′),

by formulas (5)-(12).
Then Sij

ω is a (one-to-one) involution of the set E = {(v, v∗) ∈ R
N ×R

N ; I, I∗ ≥ 0; r,R ∈ [0, 1]}, and its
Jacobian determinant J (defined here and in all this paper as the absolute value of the determinant of the
Jacobian matrix of the transformation) is given by

J =
1 −R

1 −R′

( |v′ − v′∗|
|v − v∗|

)N−2

=
RN/2−1(1 −R)

(R′)N/2−1(1 −R′)
.

Proof. Note first that the inversion of Sij
ω leads to the following formulas :

ε =
1

2
µij |v′ − v′∗|2 + I ′ + I ′∗,(13)

v =
miv

′ +mjv
′
∗

mi +mj
+

mj

mi +mj

√

2Rε

µij
Tω

[

v′ − v′∗
|v′ − v′∗|

]

,(14)

v∗ =
miv

′ +mjv
′
∗

mi +mj
− mi

mi +mj

√

2Rε

µij
Tω

[

v′ − v′∗
|v′ − v′∗|

]

,(15)

I = r′(1 −R′) ε, I∗ = (1 − r′)(1 −R′) ε,(16)

R =
1

2
µij |v′ − v′∗|2ε−1, r =

I ′

I ′ + I ′∗
.(17)

As a consequence, the transformation Sij
ω is one to one and onto E.

In order to compute its Jacobian determinant, we shall decompose it in a chain of elementary changes of
variables.

• First, we consider the passage to the center of mass reference frame. Since the transformation

A1 : (v, v∗, I, I∗, r, R) 7→ (g,G, I, I∗, r, R),

with g = v − v∗ and G = (miv +mjv∗)/(mi +mj), has a Jacobian determinant equal to 1, as well
as the transformation

B1 : (g′, G′, I ′, I ′∗, r
′, R′) 7→ (v′, v′∗, I

′, I ′∗, r
′, R′),

with g′ = v′ − v′∗ and G′ = (miv
′ +mjv

′
∗)/(mi +mj) = G, we are led to study the transformation

C1 : (g, I, I∗, r, R) 7→ (g′, I ′, I ′∗, r
′, R′).

• We now pass to spherical coordinates for the relative velocities g and g′. We perform therefore the
transformations

A2 : (g, I, I∗, r, R) 7→ (|g|, g/|g|, I, I∗, r, R)

and

B2 : (|g′|, g′/|g′|, I ′, I ′∗, r′, R′) 7→ (g′, I ′, I ′∗, r
′, R′),

and study the transformation

C2 : (|g|, g/|g|, I, I∗, r, R) 7→ (|g′|, g′/|g′|, I ′, I ′∗, r′, R′),

taking into account the Jacobian determinant |g′|N−1/|g|N−1 coming from A2 and B2.
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• In the next step, we consider the transformation

A3 : (|g|, g/|g|, I, I∗, r, R) 7→ (|g|, g/|g|, I, ε, r, R),

which thanks to (5) has a Jacobian determinant equal to 1. As a consequence, we only have to
study the Jacobian determinant of the transformation

C3 : (|g|, g/|g|, I, ε, r, R) 7→ (|g′|, g′/|g′|, I ′, I ′∗, r′, R′).

In the sequel, we will denote by J [ · ] the Jacobian determinant of a transformation. We use eq.
(5), (9) and (12), in order to compute the Jacobian determinant of C3 :

J

[

(

|g|, g|g| , I, ε, r, R
)

7→
(√

2Rε

µij
, Tω

[

g

|g|

]

, r(1 −R)ε, (1 − r)(1 −R)ε,
I

ε− µij |g|2/2
,
µij |g|2

2ε

)]

.

Since Tω is a symmetry, the previous quantity is equal to

J

[

(|g|, I, ε, r, R) 7→
(√

2Rε

µij
, r(1 −R)ε, (1 − r)(1 −R)ε,

I

ε− µij |g|2/2
,
µij |g|2

2ε

)]

=
1

ε− µij |g|2/2
J

[

(|g|, ε, r, R) 7→
(√

2Rε

µij
, r(1 −R)ε, (1 − r)(1 −R)ε,

µij |g|2
2ε

)]

,

and, by denoting ρ = Rε, it is also equal to

(

µij |g|
ε− µij |g|2/2

)

J

[

(ε, r, ρ) 7→
(√

2ρ

µij
, r(ε− ρ), (1 − r)(ε − ρ)

)]

.

If we call w = ε− ρ, we get for the Jacobian of C3 the formula :

(

µij |g|
ε− µij |g|2/2

)

J

[

(w, r, ρ) 7→
(√

2ρ

µij
, r w, (1 − r)w

)]

=

(

µij |g|
(1 −R′)ε

√

2

µij

1

2
√
ρ

)

J [(w, r) 7→ (r w, (1 − r)w)] .

=
√

2µij
|g|

(1 −R′)ε

w

2
√
ρ

=
1 −R

1 −R′

|g|
|g′| .

Taking into account the term coming from the Jacobian determinant of the spherical change of variables,
we finally get

J
[

Sij
ω

]

=
1 −R

1 −R′

( |v′ − v′∗|
|v − v∗|

)N−2

=
RN/2−1(1 −R)

(R′)N/2−1(1 −R′)
,

and this ends the proof of the lemma. �
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Note that when mi = mj , the Borgnakke-Larsen equations (5)-(12) reduce to

ε =
mi

4
|v − v∗|2 + I + I∗,(18)

v′ =
v + v∗

2
+

√

Rε

mi
Tω

[

v − v∗
|v − v∗|

]

,

v′∗ =
v + v∗

2
−
√

Rε

mi
Tω

[

v − v∗
|v − v∗|

]

,

I ′ = r(1 −R) ε, I ′∗ = (1 − r)(1 −R) ε,

R′ =
mi

4
|v − v∗|ε−1, r′ =

I

I + I∗
,

which are the equations of [2] (when mi = 1).

We now introduce the Boltzmann kernels corresponding to the previous transformations. We begin with
the kernel corresponding to the collisions between molecules of the same species :

Definition 1. The (non reactive) mono-specie collision kernel for the specie i is given by

(19) Qm
i (f, f)(v, I) =

∫

Ω

∫

ω∈SN−1

[f(v′, I ′)f(v′∗, I
′
∗) − f(v, I)f(v∗, I∗)]

×Bi(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−N 1

ϕi(I)
dv∗dI∗dr dR dω,

where Ω = {v∗ ∈ R
N ; I∗ ≥ 0; r,R ∈ [0, 1]}, v′, I ′, v′∗, I ′∗ are defined by eq. (5)-(12) (or the simplified

formulation (18)), and the cross sections Bi are supposed to satisfy the (microreversibility) assumptions :

Bi(v, v∗, I, I∗, R, r, ω) = Bi(v∗, v, I∗, I, R, 1 − r, ω),

Bi(v, v∗, I, I∗, R, r, ω) = Bi(v
′, v′∗, I

′, I ′∗, R
′, r′, ω).(20)

The standard conservation properties of this kernel are consequences of the following weak formulation :

Lemma 2. Let ψ : R
N × [0,+∞) → R be a function such that the weak formulation

∫

v∈RN

∫

I≥0

Qm
i (f, f)(v, I)ψ(v, I)ϕi(I) dIdv

makes sense. Then

(21)

∫

v∈RN

∫

I≥0

Qm
i (f, f)(v, I)ψ(v, I)ϕi(I) dI dv =

−1

4

∫

v∈RN

∫

I≥0

∫

Ω

∫

ω∈SN−1

[f(v′, I ′)f(v′∗, I
′
∗) − f(v, I)f(v∗, I∗)]

× [ψ(v′, I ′) + ψ(v′∗, I
′
∗) − ψ(v, I) − ψ(v∗, I∗)]

×Bi(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−N dv dv∗dI dI∗dr dR dω.

Proof. We use the changes of variables (with ω ∈ SN−1 fixed):

(v, v∗, I, I∗, R, r) 7→ (v∗, v, I∗, I, R, 1 − r)

(v, v∗, I, I∗, R, r) 7→ (v′, v′∗, I
′, I ′∗, R

′, r′).

�
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Note that this weak formulation is nothing but a rewriting (with slightly different notations and with the
addition of the explicit dependence on the masses) of the main result of [4].

As a consequence, considering ψ(v, I) = 1,mi v(k),mi
|v|2

2 + I (for k = 1, .., N , v(k) denoting the k-th
component of v), we get the conservation of the number of molecules of specie i, of momentum, and of total
(kinetic + internal) energy (also for each specie i) :

(22)

∫

v∈RN

∫

I≥0

Qm
i (f, f)(v, I)





1
mi v(k)

mi
|v|2

2 + I



 ϕi(I) dI dv = 0.

We now write down the collision kernel between molecules of different species (that is, i 6= j), but still
without chemical reactions.

Definition 2. The (non reactive) bi-species collision kernel for the species i and j, with i 6= j, is given by

Qb
Sij (f, g)(v, I) =

∫

Ω

∫

ω∈SN−1

[f(v′, I ′)g(v′∗, I
′
∗) − f(v, I)g(v∗, I∗)](23)

×Bij(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−N 1

ϕi(I)
dv∗dI∗dr dR dω,

where Ω = {v∗ ∈ R
N ; I∗ ≥ 0; r,R ∈ [0, 1]}, v′, I ′, v′∗, I ′∗ are defined by eq. (5)-(12) (with the indices i, j

corresponding to Sij. In other words, when we write Qb
Sji , it means that we exchange the masses mi and

mj in eq. (5)-(12)), and the cross sections Bij are supposed to satisfy the (microreversibility) assumptions :

Bij(v, v∗, I, I∗, R, r, ω) = Bji(v∗, v, I∗, I, R, 1 − r, ω)

Bij(v, v∗, I, I∗, R, r, ω) = Bij(v
′, v′∗, I

′, I ′∗, R
′, r′, ω).(24)

Then, the weak formulation of the kernel (23) is given by the lemma :

Lemma 3. Let ψi : R
N × [0,+∞) → R be functions such that the formulas

∫

v∈RN

∫

I≥0

Qb
Sij (f, g)(v, I)ψi(v, I)ϕi(I) dIdv,

and
∫

v∈RN

∫

I≥0

Qb
Sji(g, f)(v, I)ψj(v, I)ϕj(I) dIdv,

make sense. Then, on one hand,

(25)

∫

v∈RN

∫

I≥0

Qb
Sij (f, g)(v, I)ψi(v, I)ϕi(I) dI dv

= −1

2

∫

Ω

∫

v∈RN

∫

I≥0

∫

ω∈SN−1

[f(v′, I ′)g(v′∗, I
′
∗) − f(v, I)g(v∗, I∗)]

× [ψi(v
′, I ′) − ψi(v, I)]

×Bij(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−Ndv dv∗dI dI∗dr dR dω,

and on the other hand

(26)

∫

v∈RN

∫

I≥0

Qb
Sij (f, g)(v, I)ψi(v, I)ϕi(I) dI dv

+

∫

v∈RN

∫

I≥0

Qb
Sji(g, f)(v, I)ψj(v, I)ϕj(I) dI dv
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= −1

2

∫

Ω

∫

v∈RN

∫

I≥0

∫

ω∈SN−1

[f(v′, I ′)g(v′∗, I
′
∗) − f(v, I)g(v∗, I∗)]

× [ψi(v
′, I ′) + ψj(v

′
∗, I

′
∗) − ψi(v, I) − ψj(v∗, I∗)]

×Bij(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−Ndv dv∗dI dI∗dr dR dω.

Proof. In order to get formula (25), it is enough to use the change of variables

(v, v∗, I, I∗, R, r) 7→ (v′, v′∗, I
′, I ′∗, R

′, r′).

We now turn to formula (26). We consider the second integral in the left-hand side of eq. (26). By
expliciting the primed variables (that is, by using eq. (10), (11) and (7)), we obtain

∫

v∈RN

∫

I≥0

Qb
Sji(g, f)(v, I)ψj(v, I)ϕj(I) dIdv

=

∫

v∈RN

∫

I≥0

∫

Ω

∫

ω∈SN−1

[

g

(

mjv +miv∗
mi +mj

+
mi

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

, r(1 −R) ε

)

× f

(

mjv +miv∗
mi +mj

− mj

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

, (1 − r)(1 −R) ε

)

− g(v, I)f(v∗, I∗)] ψj(v, I)

×Bji(v, v∗, I, I∗, R, r, ω) (1 −R)|v − v∗|2−Ndv dv∗dI dI∗dr dR dω.

Then, by the change of variables (with ω ∈ SN−1 fixed)

(v, v∗, I, I∗, R, r) 7→ (v∗, v, I∗, I, R, 1 − r),

the kernel takes the form
∫

v∈RN

∫

I≥0

Qb
Sji(g, f)(v, I)ψj(v, I)ϕj(I) dIdv

=

∫

v∈RN

∫

I≥0

∫

Ω

∫

ω∈SN−1

[

g

(

mjv∗ +miv

mi +mj
− mi

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

, (1 − r)(1 −R) ε

)

× f

(

mjv∗ +miv

mi +mj
+

mj

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

r(1 −R) ε

)

− g(v∗, I∗)f(v, I)] ψj(v∗, I∗)

×Bji(v∗, v, I∗, I, R, 1 − r, ω) (1 −R)|v − v∗|2−Ndv dv∗dI dI∗dr dR dω.

The proposition is then obtained by using the change of variables

(v, v∗, I, I∗, R, r) 7→ (v′, v′∗, I
′, I ′∗, R

′, r′).

�

As a consequence, considering ψi(v, I) = 1 in formula (25), we get the conservation of the number of
molecules of specie i :

(27)

∫

v∈RN

∫

I≥0

Qb
Sij (g, f)(v, I)ϕi(I) dIdv = 0.

Considering then ψi(v, I) = mi v(k),mi
|v|2

2 + I (for k = 1, .., N) in formula (26), we get the conservation of
the momentum and total (kinetic + internal) energy when all species are considered together :

(28)

∫

v∈RN

∫

I≥0

Qb
Sij(f, g)(v, I)

(

mi v(k)

mi
|v|2

2 + I

)

ϕi(I) dI dv
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+

∫

v∈RN

∫

I≥0

Qb
Sji(g, f)(v, I)

(

mj v(k)

mj
|v|2

2 + I

)

ϕj(I) dI dv = 0.

We conclude this section by a brief discussion relative to the assumption on the cross sections Bi and
Bij . We observe that the requirement that these quantities are invariant when v, v∗, I, I∗, r, R become
v′, v′∗, I

′, I ′∗, r
′, R′ is automatically satisfied when they depend upon the following quantities : ε,

µij

2 R |v−v∗|2
(because it can also be written RR′ ε),

µij

2 R |(v − v∗) · ω|2 (because it can still be written RR′ ε), and
(I + I∗) (1 −R) (because it can also be written (1 −R) (1 −R′) ε).

3. Scattering in presence of chemical reactions

Let us now consider the possibility for the molecules of the gas mixture to react with themselves, according
to :

(29) A1 +A2 ⇋ A3 +A4.

The mass is conserved during a collision; we denote by M = m1 +m2 = m3 +m4 its constant value.
Moreover, we define ri = mi/M (so that µij = (mimj)/M). We get the relation r1 + r2 = r3 + r4 = 1.

Finally we denote by E ≥ 0 the energy which is dissipated by (or which has to be supplied to) the system
when we pass from A1 +A2 to A3 +A4.

This means that we consider the reaction (29) from the left to the right as an endothermic reaction,
whereas the inverse one is an exothermic reaction.

The conservation laws of momentum and energy are :

m1v1 +m2v2 = m3v3 +m4v4,

(30)
1

2
m1v

2
1 +

1

2
m2v

2
2 + I1 + I2 =

1

2
m3v

2
3 +

1

2
m4v

2
4 + I3 + I4 + E.

The passage to the center of mass reference frame is made thanks to the equation :

1

2
M |rivi + rjvj |2 +

1

2
µij |vi − vj |2 =

1

2
miv

2
i +

1

2
mjv

2
j ,

so that equation (30) becomes

1

2
µ12|v1 − v2|2 + I1 + I2 =

1

2
µ34|v3 − v4|2 + I3 + I4 + E.

We now introduce the energy

ε =
1

2
µ12|v1 − v2|2 + I1 + I2 −

E

2
=

1

2
µ34|v3 − v4|2 + I3 + I4 +

E

2

and define v3, I3, v4 and I4 in function of v1, I1, v2, I2 and of the parameters r, R (in [0, 1]) and ω ∈ SN−1

by :

v3 = r1v1 + r2v2 − r4

√

2

µ34

(

Rε− E

6

)1/2

Tω

[

v1 − v2
|v1 − v2|

]

,(31)

v4 = r1v1 + r2v2 + r3

√

2

µ34

(

Rε− E

6

)1/2

Tω

[

v1 − v2
|v1 − v2|

]

,(32)

I3 = (1 −R)r ε− E

6
,(33)

I4 = (1 −R)(1 − r)ε− E

6
.(34)
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Moreover, we introduce for the sake of symmetry the parameters

R′ =
1

ε

(

µ12

2
|v1 − v2|2 −

E

6

)

,(35)

r′ =
I1 − E/6

ε(1 −R′)
=

I1 − E/6

ε− µ12|v1 − v2|2/2 + E/6
.(36)

The previous equations can be written backwards, and so become :

v1 = r3v3 + r4v4 − r2

√

2

µ12

(

R′ε+
E

6

)1/2

Tω

[

v3 − v4
|v3 − v4|

]

,(37)

v2 = r3v3 + r4v4 + r1

√

2

µ12

(

R′ε+
E

6

)1/2

Tω

[

v3 − v4
|v3 − v4|

]

,(38)

I1 = (1 −R′)r′ε+
E

6
,(39)

I2 = (1 −R′)(1 − r′)ε+
E

6
,(40)

R =
1

ε

(

µ34

2
|v3 − v4|2 +

E

6

)

,(41)

r =
I3 + E/6

ε(1 −R)
.(42)

In the sequel, we shall denote the application corresponding to the previous change of variables (that is, to
eq. (31) - (36)) by

S̃12 : (v1, v2, I1, I2, r, R) 7→ (v3, v4, I3, I4, r
′, R′).

In the following lemma, we prove the main properties of this transformation.

Lemma 4. The application S̃12 is a one-to-one map from the set

F = {(v1, v2) ∈ R
N × R

N ; I1, I2 ≥ E/6; r,R ∈ [0, 1]; Rε ≥ E/6;

µ12|v1 − v2|2/2 ≥ E/6; (1 −R)r ε ≥ E/6; (1 −R)(1 − r)ε ≥ E/6}
onto

G = {(v3, v4) ∈ R
N × R

N ; I3, I4 ≥ 0; r′, R′ ∈ [0, 1]},
and its Jacobian determinant J is given by

J =

(

m1m2

m3m4

)(

1 −R

1 −R′

) ( |v3 − v4|
|v1 − v2|

)N−2

.

Proof. In order to prove the first part of the lemma, we observe that S̃12 is well defined on F since Rε ≥ E/6.
Moreover, I3 and I4 are nonnegative since (1 −R)r ε ≥ E/6 and (1 −R)(1 − r) ε ≥ E/6.
Finally 0 ≤ R′ ≤ 1 since µ12|v1 − v2|2/2 ≥ E/6, I1, I2 ≥ E/6, and 0 ≤ r′ ≤ 1 since I1 ≥ E/6,

ε− µ12|v1 − v2|2/2 + E/6 = (I1 − E/6) + (I2 − E/6) ≥ 0.
Conversely, if (v3, v4, I3, I4, r

′, R′) ∈ G, we deduce, by using formulas (37)-(42), that I1, I2 ≥ E/6,
µ12|v1 − v2|2/2 = R′ε + E/6 ≥ E/6, Rε = µ34 |v3 − v4|2/2 + E/6 ≥ E/6, r(1 − R) ε = I3 + E/6 ≥ E/6,
and finally (1 − r)(1 −R) ε = I4 + E/6 ≥ E/6.

The fact that S̃12 is one-to-one directly follows from the inversion formulas (37) - (42).

The last part of the proof is based on a series of changes of variables, and is very similar to the proof of
Lemma 1.
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In what follows, we shall use the following notation :

g =

√

µ12

2
(v1 − v2), g′ =

√

µ34

2
(v3 − v4).

We recall moreover that the transformations of variables which are used here refer to equations (31)-(36)
and (37)-(42).

The Jacobian determinant of the transformation S̃12 can be computed as follows:

J [(v1, v2, I1, I2, r, R) 7→ (v3, v4, I3, I4, r
′, R′)]

=

(

µ12

µ34

)N/2

J [(g, I1, I2, r, R) 7→ (g′, I3, I4, r
′, R′)] .

By representing g and g′ in spherical coordinates, we get the Jacobian determinant of the original transfor-
mation :

(

µ12

µ34

)N/2( |g′|
|g|

)N−1

J [(|g|, I1, I2, r, R) 7→ (|g′|, I3, I4, r′, R′)] .

This means that we are led to compute the Jacobian determinant of the following transformation:

(|g|, I1, I2, r, R) 7→
(

(

Rε− E

6

)1/2

, (1 −R)r ε− E

6
, (1 −R)(1 − r)ε− E

6
,

I1 − E/6

ε− |g|2 + E/6
,
1

ε

(

|g|2 − E

6

)

)

.

It is equal to

1

ε− |g|2 + E/6
J

[

(|g|, ε, r, R) 7→
(

(

Rε− E

6

)1/2

, (1 −R)r ε− E

6
, (1 −R)(1 − r)ε− E

6
,
1

ε

(

|g|2 − E

6

)

)]

.

Finally, we follow the same steps as in Lemma 1. We compute

J

[

(|g|, ε, r, R) 7→
(

(

Rε− E

6

)1/2

, (1 −R)r ε− E

6
, (1 −R)(1 − r)ε− E

6
,
1

ε

(

|g|2 − E

6

)

)]

= εJ

[

(|g|, ε, r, ρ = Rε) 7→
(

(

ρ− E

6

)1/2

, (ε− ρ)r − E

6
, (ε− ρ)(1 − r) − E

6
,
1

ε

(

|g|2 − E

6

)

)]

= 2|g| J
[

(ε, r, ρ) 7→
(

(

ρ− E

6

)1/2

, (ε− ρ)r − E

6
, (ε− ρ)(1 − r) − E

6

)]

.

Using the change of variables (of jacobian 1) ε − ρ = w we observe that the quantity above is equal to
|g| (ρ− E/6)−1/2(ε− ρ).

Collecting together all the computations, we finally see that

J [S̃12] =

(

µ12

µ34

)N/2( |g′|
|g|

)N−1 |g|
ε− |g|2 + E/6

(

ρ− E

6

)−1/2

(ε− ρ).

Using the original variables, this means

J [S̃12] =

(

m1m2

m3m4

)(

1 −R

1 −R′

) ( |v3 − v4|
|v1 − v2|

)N−2

,

and the last part of the lemma is proven. �
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We now write down the collision kernels (one for each specie) corresponding to the chemical reaction
considered here. We first define some sets :

F 1
react =

{

I, I2, R ε,
µ12

2
|v − v2|2, (1 −R)r ε, (1 −R)(1 − r)ε ≥ E

6

}

F 2
react =

{

I, I1, R ε,
µ12

2
|v − v1|2, (1 −R)r ε, (1 −R)(1 − r)ε ≥ E

6

}

F 3
react =

{

I4 ≥ 0; v4 ∈ R
N ; 0 ≤ r′, R′ ≤ 1

}

F 4
react =

{

I3 ≥ 0; v3 ∈ R
N ; 0 ≤ r′, R′ ≤ 1

}

,

and the following Heaviside functions :

Hi(ξ) =

{

1 whenξ ∈ F i
react,

0 otherwise.

Finally, we define the following quantities:

ε1 =
1

2
µ12|v − v2|2 + I + I2 −

E

2

ε2 =
1

2
µ12|v − v1|2 + I + I1 −

E

2

ε3 =
1

2
µ34|v − v4|2 + I + I4 +

E

2

ε4 =
1

2
µ34|v − v3|2 + I + I3 +

E

2
.

Definition 3. We define the reactive collision kernels by

Qreact
1 (v, I) =

∫

Ω1

∫

ω∈SN−1

H1

[

(

m1m2

m3m4

)N

f3

(

r1v + r2v2 − r4

√

2

µ34

(

Rε1 −
E

6

)

Tω

[

v − v2
|v − v2|

]

, (1 −R)r ε1 −
E

6

)

× f4

(

r1v + r2v2 + r3

√

2

µ34

(

Rε1 −
E

6

)

Tω

[

v − v2
|v − v2|

]

, (1 −R)(1 − r) ε1 −
E

6

)

− f1(v, I)f2(v2, I2)] B
react
1 (v, v2, I, I2, R, r, ω) (m1m2)

1−N |v − v2|2−N (1 −R)

ϕ1(I)
dv2dI2dr dR dω,

Qreact
2 (v, I) =

∫

Ω2

∫

ω∈SN−1

H2

[

(

m1m2

m3m4

)N

f3

(

r1v1 + r2v − r4

√

2

µ34

(

Rε2 −
E

6

)

Tω

[

v1 − v

|v1 − v|

]

, (1 −R)r ε2 −
E

6

)

× f4

(

r1v1 + r2v + r3

√

2

µ34

(

Rε2 −
E

6

)

Tω

[

v1 − v

|v1 − v|

]

, (1 −R)(1 − r) ε2 −
E

6

)

− f1(v1, I1)f2(v, I)] B
react
2 (v1, v, I1, I, R, r, ω) (m1m2)

1−N |v1 − v|2−N (1 −R)

ϕ2(I)
dv1dI1dr dR dω,

Qreact
3 (v, I) =

∫

Ω3

∫

ω∈SN−1

H3

[

(

m3m4

m1m2

)N

f1

(

r3v + r4v4 − r2

√

2

µ12

(

R′ε3 +
E

6

)

Tω

[

v − v4
|v − v4|

]

, (1 −R′)r′ε3 +
E

6

)
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× f2

(

r3v + r4v4 + r1

√

2

µ12

(

R′ε3 +
E

6

)

Tω

[

v − v4
|v − v4|

]

, (1 −R′)(1 − r′) ε3 +
E

6

)

− f3(v, I)f4(v4, I4)] B
react
3 (v, v4, I, I4, R

′, r′, ω) (m3m4)
1−N |v − v4|2−N (1 −R′)

ϕ3(I)
dv4dI4dr

′ dR′ dω,

Qreact
4 (v, I) =

∫

Ω4

∫

ω∈SN−1

H4

[

(

m3m4

m1m2

)N

f1

(

r3v3 + r4v − r2

√

2

µ12

(

R′ε4 +
E

6

)

Tω

[

v3 − v

|v3 − v|

]

, (1 −R′)r′ε4 +
E

6

)

× f2

(

r3v3 + r4v + r1

√

2

µ12

(

R′ε4 +
E

6

)

Tω

[

v3 − v

|v3 − v|

]

, (1 −R′)(1 − r′) ε4 +
E

6

)

− f3(v3, I3)f4(v, I)] B
react
4 (v3, v, I3, I, R

′, r′, ω) (m3m4)
1−N |v3 − v|2−N (1 −R′)

ϕ4(I)
dv3dI3dr

′ dR′ dω,

where

Ω1 = {v2 ∈ R
N ; I2 ≥ 0; r,R ∈ [0, 1]},

Ω2 = {v1 ∈ R
N ; I1 ≥ 0; r,R ∈ [0, 1]},

Ω3 = {v4 ∈ R
N ; I4 ≥ 0; r′, R′ ∈ [0, 1]},

Ω4 = {v3 ∈ R
N ; I3 ≥ 0; r′, R′ ∈ [0, 1]}.

As in the previous section, we now write down the weak form of the kernel. The following proposition
holds :

Lemma 5. Let ψi : R
N × [0,+∞) → R be a function such that for all i = 1, .., 4, the formula

∫

v∈RN

∫

I≥0

Qreact
i (v, I)ψi(v, I)ϕi(I) dI dv

makes sense.
Then, if

Breact
1 (v1, v2, I1, I2, R, r, ω) = Breact

2 (v1, v2, I1, I2, R, r, ω)

= Breact
3 (v3, v4, I3, I4, R

′, r′, ω) = Breact
4 (v3, v4, I3, I4, R

′, r′, ω),(43)

where the different variables have the same meaning as in formulas (31)-(36), then

(44)

4
∑

i=1

∫

v∈RN

∫

I≥0

Qreact
i (v, I)ψi(v, I)ϕi(I) dI dv

= −
∫

F

∫

ω∈SN−1

[

m−N
3 f3(v3, I3)m

−N
4 f4(v4, I4) −m−N

1 f1(v1, I1)m
−N
2 f2(v2, I2)

]

× [ψ3(v3, I3) + ψ4(v4, I4) − ψ1(v1, I1) − ψ2(v2, I2)]

×Breact
1 (v1, v2, I1, I2, R, r, ω)m1m2(1 −R)|v1 − v2|2−Ndv1dv2dI1dI2dr dR dω.
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Proof. Let us consider first

2
∑

i=1

∫

v∈RN

∫

I≥0

Qreact
i (v, I)ψi(v, I)ϕi(I) dI dv.

Since Breact
1 (v1, v2, I1, I2, R, r, ω) = Breact

2 (v1, v2, I1, I2, R, r, ω), this is equal to

∫

F

∫

ω∈SN−1

[

(

m1m2

m3m4

)N

f3

(

r1v1 + r2v2 − r4

√

2

µ34

(

Rε− E

6

)

Tω

[

v1 − v2
|v1 − v2|

]

, (1 −R)r ε− E

6

)

× f4

(

r1v1 + r2v2 + r3

√

2

µ34

(

Rε− E

6

)

Tω

[

v1 − v2
|v1 − v2|

]

, (1 −R)(1 − r)ε− E

6

)

− f1(v1, I1)f2(v2, I2)

]

× [ψ1(v1, I1) + ψ2(v2, I2)]B
react
1 (v1, v2, I1, I2, R, r, ω) (m1m2)

1−N (1 −R)|v1 − v2|2−Ndv1dv2dI1dI2dr dR dω.

Since Breact
3 (v3, v4, I3, I4, R

′, r′, ω) = Breact
4 (v3, v4, I3, I4, R

′, r′, ω), a similar formulation also holds for the
two other terms in the left-hand side of equation (44) :

4
∑

i=3

∫

v∈RN

∫

I≥0

Qreact
i (v, I)ψi(v, I)ϕi(I) dI dv =

∫

G

∫

ω∈SN−1

[

(

m3m4

m1m2

)N

f1

(

r3v3 + r4v4 − r2

√

2

µ12

(

R′ε4 +
E

6

)

Tω

[

v3 − v4
|v3 − v4|

]

, (1 −R′)r′ε4 +
E

6

)

× f2

(

r3v3 + r4v4 + r1

√

2

µ12

(

R′ε4 +
E

6

)

Tω

[

v3 − v4
|v3 − v4|

]

, (1 −R′)(1 − r′) ε4 +
E

6

)

− f3(v3, I3)f4(v, I4)

]

×[ψ3(v3, I3)+ψ4(v4, I4)]B
react
3 (v3, v4, I3, I4, R

′, r′, ω) (m3m4)
1−N |v3−v4|2−N (1−R′) dv3dv4dI3dI4dr

′ dR′ dω.

If in the last formula, we use the change of variables defined by (31)-(36) and (37)-(42), then thanks to
the symmetry

Breact
1 (v1, v2, I1, I2, R, r, ω) = Breact

3 (v3, v4, I3, I4, R
′, r′, ω)

and Lemma 4, we obtain :

4
∑

i=3

∫

v∈RN

∫

I≥0

Qreact
i (v, I)ψi(v, I)ϕi(I) dI dv =

∫

F

∫

ω∈SN−1

[

(

m3m4

m1m2

)N

f1 (v1, I1) f2 (v2, I2) − f3(v3, I3)f4(v, I)

]

[ψ3(v3, I3) + ψ4(v4, I4)]

×Breact
1 (v1, v2, I1, I2, R, r, ω) (m3m4)

−N (m1m2)|v1 − v2|2−N (1 −R) dv1dv2dI1dI2drdRdω.

This concludes the proof of the lemma. �

If we choose the test functions ψi = 1, ψi = mi and ψi = mi v(k) in the weak form of the reactive kernels,
we obtain the conservation of total number of molecules, total mass and total momentum :

(45)

4
∑

i=1

∫

v∈RN

∫

I≥0

Qreact
i (v, I)





1
mi

mi v(k)



 ϕi(I) dI dv = 0.

Note that the total energy is not conserved when the reactive collisions are present.



A KINETIC MODEL FOR POLYTROPIC GASES 15

4. The hydrodynamical limit

4.1. The mechanical and chemical equilibria. In this subsection, we write down the H-theorems cor-
responding to the kernels defined earlier.

We begin with the non reactive kernels. We shall denote by qi the Laplace transform of ϕi (as a function
of 1/T ), that is

qi(T ) =

∫ +∞

0

ϕi(I) e
−I/T dI.

Proposition 1. We suppose that the cross sections Bi (i = 1, , 4) and Bij (i 6= j) are strictly positive a.e.,
as well as the functions φi (i = 1, , 4).

First part of the H-theorem : For all fi ≡ fi(v, I) ≥ 0 (i = 1, , 4) such that the following quantities are
defined, one has

4
∑

i=1

∫

v∈RN

∫ +∞

0

Qm
i (fi, fi)(v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI

+

4
∑

i=1

∑

j 6=i

∫

v∈RN

∫ +∞

0

Qb
Sij (fi, fj)(v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI ≤ 0.

Second part of the H-theorem : Moreover, the three following properties are equivalent

• For all i = 1, .., 4, j 6= i, v ∈ R
N , I > 0,

Qm
i (fi, fi)(v, I) = 0, Qb

Sij (fi, fj)(v, I) = 0,

•
4
∑

i=1

∫

v∈RN

∫ +∞

0

Qm
i (fi, fi)(v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI

+

4
∑

i=1

∑

j 6=i

∫

v∈RN

∫ +∞

0

Qb
Sij (fi, fj)(v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI = 0,

• There exists ni ≥ 0 (i = 1, , 4), u ∈ R
N and T > 0 such that

(46) fi(v, I) =
ni

qi(T )

( mi

2 π T

)N/2

e−
1
T

(
mi
2

|v−u|2+I).

Proof. We begin with the first part of the H-theorem. We use lemmas 2 and 3 for ψi(v, I) = log(fi(v,I)

mN
i

)

and observe that

ψi(v
′, I ′) + ψj(v

′
∗, I

′
∗) − ψi(v, I) − ψj(v∗, I∗) = log(fi(v

′, I ′) fj(v
′
∗, I

′
∗)) − log(fi(v, I) fj(v, I)),

so that
(

fi(v
′, I ′) fj(v

′
∗, I

′
∗) − fi(v, I) fj(v, I)

)(

ψi(v
′, I ′) + ψj(v

′
∗, I

′
∗) − ψi(v, I) − ψj(v∗, I∗)

)

≥ 0.

We now turn to the second part of the H-theorem.
It is easy and classical to show that the first property implies the second one, and that the third one

implies the first one. Suppose now that the second property holds. Since the term corresponding to the
collisions between molecules of the same specie (and in fact each part of this term corresponding to a given
specie) is equal to 0, we know (Cf. [2]) that there exists ni ≥ 0, ui ∈ R

N and Ti > 0 (i = 1, .., 4) such that

(47) fi(v, I) =
ni

qi(Ti)

(

mi

2 π Ti

)N/2

e
− 1

Ti
(

mi
2

|v−ui|
2+I)

.
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Then, it remains to show that ui = uj and Ti = Tj for all i 6= j.
Using the terms corresponding to the collisions between the molecules of species i and j (i 6= j), we see

that (still when i 6= j) :

(48) fi(v
′, I ′) fj(v

′
∗, I

′
∗) = fi(v, I) fj(v∗, I∗),

with v′, v′∗, I
′ and I ′∗ given by (5) - (12).

We plug (47) in formula (48). We get (for a.e. v, v∗, I, I∗, r, R)

(49)
1

Ti





mi

2

∣

∣

∣

∣

∣

miv +mjv∗
mi +mj

+
mj

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

− ui

∣

∣

∣

∣

∣

2

+ r(1 −R) ε





+
1

Tj





mj

2

∣

∣

∣

∣

∣

miv +mjv∗
mi +mj

− mi

mi +mj

√

2Rε

µij
Tω

[

v − v∗
|v − v∗|

]

− uj

∣

∣

∣

∣

∣

2

+ (1 − r)(1 −R) ε





=
1

Ti

[mi

2
|v − ui|2 + I

]

+
1

Tj

[mj

2
|v∗ − uj|2 + I∗

]

.

We consider in this identity the term of degree 1 in r, and get

1

Ti
− 1

Tj
= 0,

so that Ti = Tj.

Using this property and taking the term of (49) of lowest degree in
√
R, we get

1

2

|miv +mjv∗|2
mi +mj

− (miv +mjv∗)

mi +mj
· (miui +mjuj) +

µij

2
|v − v∗|2

=
1

2
miv

2 +
1

2
mjv

2
∗ −miui · v −mjuj · v∗.

Using the term in v, we get

−miui +mjuj

mi +mj
mi = −mi ui,

that is ui = uj . �

We now turn to the question of chemical equilibrium (assuming that mechanical equilibrium is reached).

Proposition 2. We suppose that the cross sections Breact
i (i = 1, , 4) are strictly positive a.e., as well as

the functions φi (i = 1, .., 4).
First part of the H-theorem : For all fi ≡ fi(v, I) ≥ 0 (i = 1, , 4) such that the following quantities are

defined, one has
4
∑

i=1

∫

v∈RN

∫ +∞

0

Qreact
i (v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI ≤ 0.

Second part of the H-theorem : Moreover, let fi be defined by (46) (that is, assume that the mechanical
equilibrium is reached). Then the three following properties are equivalent

• For all i = 1, .., 4, v ∈ R
N , I > 0,

Qreact
i (v, I) = 0,
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•
4
∑

i=1

∫

v∈RN

∫ +∞

0

Qreact
i (v, I) log

(

fi(v, I)

mN
i

)

ϕi(I) dvdI = 0,

• The following mass action law holds :

n1n2

n3n4
=

(

m3m4

m1m2

)−N/2

eE/T q1(T ) q2(T )

q3(T ) q4(T )
.

Proof. The first part of the H-theorem is a consequence of lemma 5, when we take ψi(v, I) = log(fi(v,I)

mN
i

).

This is due to the identity :
(

m−N
3 f3(v3, I3)m

−N
4 f4(v4, I4) −m−N

1 f1(v1, I1)m
−N
2 f2(v2, I2)

)

×
(

ψ3(v3, I3) + ψ4(v4, I4) − ψ1(v1, I1) − ψ2(v2, I2)

)

=

(

m−N
3 f3(v3, I3)m

−N
4 f4(v4, I4) −m−N

1 f1(v1, I1)m
−N
2 f2(v2, I2)

)

×
(

log

(

m−N
3 f3(v3, I3)m

−N
4 f4(v4, I4)

)

− log

(

m−N
1 f1(v1, I1)m

−N
2 f2(v2, I2)

))

≥ 0.

The (non obvious implication) of the second part of the H-theorem is obtained by plugging eq. (46) in
the indentity

m−N
3 f3(v3, I3)m

−N
4 f4(v4, I4) = m−N

1 f1(v1, I1)m
−N
2 f2(v2, I2).

�

4.2. Reactive Euler equations. We introduce at this level the Hilbert expansion related to the Boltzmann
system :

(50)
∂fη

i

∂t
+ v · ∇xf

η
i =

1

η
Qm

i (fη
i , f

η
i ) +

1

η

(

∑

j 6=i

Qb
Sij (f

η
i , f

η
j )

)

+Qreact
i .

That is (keeping in mind that η will tend to 0), we consider a situation in which there are many non
reactive collisions (with respect to macroscopic scales) but not so many reactive collisions. As a consequence,
fη

i (v, I) converges (at the formal level) towards the mechanical equilibrium fi(v, I) described by formula
(46). That is, we have

(51) fi(v, I) =
ni

qi(T )

( mi

2 π T

)N/2

e−
1
T

(
mi
2

|v−u|2+I).

Note that the number of molecules of the i-th specie, their momentum and their total (kinetic + internal)
energy are given by

(52)

∫

RN

∫ +∞

0

fi(v, I)





1
mi v(k)

mi
|v|2

2 + I



ϕi(I) dvdI =







ni

mi ni u(k)

mi ni
|u|2

2 + N
2 ni T + ni

ηi(T )
qi(T )






,

where the index (k) indicates the k-th component and

ηi(T ) =

∫

I≥0

I ϕi(I) e
−I/T dI.
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The reactive Euler equations are obtained by integrating (and partly by summing over i = 1, ..4) the Hilbert
expansion (50) against the quantities that are conserved in non reactive collisions (number of molecules of
the i-th specie, total momentum and total energy) and by letting η go to 0.

Conservation of the number of molecules of the i-th specie

As announced, we multiply equation (50) by ϕi(I), and then we integrate with respect to v and I in
R

N × R+. We obtain thanks to properties (22) and (27) :

(53)
∂

∂t

∫

RN

∫ +∞

0

fη
i ϕi(I) dv dI +

N
∑

k=1

∂

∂xk

∫

RN

∫ +∞

0

v(k) f
η
i ϕi(I) dv dI =

∫

RN

∫ +∞

0

Qreact
i ϕi(I) dv dI,

where the notation v(k) means the k-th component of the vector v.
Letting η go to 0, we get

∂

∂t
ni +

N
∑

k=1

∂

∂xk
(niu(k)) = Si,

where Si = (−1)ri S, r1 = r2 = 1, r3 = r4 = 0, and

S =

∫

r′,R′∈[0,1]

∫

v3,v4∈RN

∫

I3,I4∈R+

∫

ω∈SN−1

exp

(

− 1

T

[m3

2
|v3 − u|2 + I3 +

m4

2
|v4 − u|2 + I4

]

)

×Breact
3 (v3, v4, I3, I4, R

′, r′, ω) (m3m4)
1−N |v3 − v4|2−N (1 −R′) dv3dv4dI3dI4dr

′ dR′ dω

×
[

(

m3m4

m1m2

)N
n1n2(m1m2)

N/2 exp(−E/T )

(2 π T )Nq1(T )q2(T )
− n3n4(m3m4)

N/2

(2 π T )Nq3(T )q4(T )

]

.

Conservation of momentum

In order to obtain the equation of conservation for the j-th component of the momentum (j = 1, .., N),
we multiply equation (50) by mi v(j) ϕi(I), we integrate with respect to v and I in R

N × R+, and we sum
over i (i = 1, .., 4). We get thanks to properties (22), (28) and (45) :

(54)
∂

∂t

4
∑

i=1

mi

∫

RN

∫ +∞

0

v(j) f
η
i ϕi(I) dv dI +

N
∑

k=1

∂

∂xk

4
∑

i=1

mi

∫

RN

∫ +∞

0

v(j) v(k) f
η
i ϕi(I) dv dI = 0.

Letting η go to 0, we obtain

∂

∂t

4
∑

i=1

mi

∫

RN

∫ +∞

0

ni

( mi

2 π T

)N/2

exp
[

−(
mi

2
|v − u|2 + I)/T

]

v(j)
ϕi(I)

qi(T )
dv dI+

+

N
∑

k=1

∂

∂xk

4
∑

i=1

mi

∫

RN

∫ +∞

0

ni

( mi

2 π T

)N/2

exp
[

−(
mi

2
|v − u|2 + I)/T

]

v(j)v(k)
ϕi(I)

qi(T )
dv dI = 0,

which, atfer having computed the integral in v and I, leads to

∂

∂t

[

4
∑

i=1

(mini)u(j)

]

+
N
∑

k=1

∂

∂xk

[

4
∑

i=1

(mini)u(j)u(k) +
4
∑

i=1

niTδjk

]

= 0.

Conservation of energy

Finally, the conservation law of energy is obtained by multiplying equation (50) by [mi|v|2/2 + I]ϕi(I),
by summing over i (i = 1, . . . , 4) and by integrating with respect to v and I in R

N × R+.
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We obtain in this way, thanks to properties (22) and (28) :

∂

∂t

4
∑

i=1

∫

RN

∫ +∞

0

[mi

2
|v|2 + I

]

fη
i ϕi(I) dv dI

+
N
∑

k=1

∂

∂xk

4
∑

i=1

∫

RN

∫ +∞

0

[mi

2
|v|2 + I

]

v(k) f
η
i ϕi(I) dv dI

=
4
∑

i=1

(∫

RN

∫ +∞

0

[mi

2
|v|2 + I

]

Qreact
i

)

ϕi(I) dv dI.

Letting η tend to 0, we get

∂

∂t

(

1

2

4
∑

i=1

(mini)|u|2 +
1

2

4
∑

i=1

ni

[

N T + 2
ηi(T )

qi(T )

]

)

+

N
∑

k=1

∂

∂xk

(

1

2

4
∑

i=1

(mini) |u|2 u(k) +
1

2

4
∑

i=1

ni

[

(N + 2)T + 2
ηi(T )

qi(T )

]

u(k)

)

= −E S.

Entropy inequality

We now multiply equation (50) by log

(

fi

mN
i

)

ϕi(I), we sum over i (i = 1, . . . , 4) and we integrate with

respect to v and I in R
N × R+.

We get thanks to the first parts of propositions 1 and 2 the following entropy inequality :

∂

∂t

4
∑

i=1

∫

RN

∫ +∞

0

fη
i

[

log

(

fη
i

mN
i

)

− 1

]

ϕi(I) dv dI

+

N
∑

k=1

∂

∂xk

4
∑

i=1

∫

RN

∫ +∞

0

fη
i

[

log

(

fη
i

mN
i

)

− 1

]

v(k) ϕi(I) dv dI ≤ 0.

Letting η tend to 0, we get the macroscopic entropy inequality :

∂

∂t

(

4
∑

i=1

ni

[

log

(

ni

qi(T )

(

1

2πTmi

)N/2)

−
(

1 +
N

2

)

− 1

T

ηi(T )

qi(T )

]

)

(55)

+

N
∑

k=1

∂

∂xk

(

4
∑

i=1

ni

[

log

(

ni

qi(T )

(

1

2πTmi

)N/2)

−
(

1 +
N

2

)

− 1

T

ηi(T )

qi(T )

]

u(k)

)

≤ 0.

4.3. Recapitulation and Comments. The system (of N + 5 equations) obtained in the previous subsec-
tion is nothing else than the Euler system of polytropic, perfect and reactive gases. We rewrite it here as a
whole (without repeating the entropy relation (55)) :

∂

∂t
ni +

N
∑

k=1

∂

∂xk
(niu(k)) = Si,

∂

∂t

[

4
∑

i=1

(mini)u(j)

]

+

N
∑

k=1

∂

∂xk

[

4
∑

i=1

(mini)u(j)u(k) +

4
∑

i=1

niTδjk

]

= 0,
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∂

∂t

(

1

2

4
∑

i=1

(mini)|u|2 +
1

2

4
∑

i=1

ni

[

N T + 2
ηi(T )

qi(T )

]

)

+

N
∑

k=1

∂

∂xk

(

1

2

4
∑

i=1

(mini) |u|2 u(k) +
1

2

4
∑

i=1

ni

[

(N + 2)T + 2
ηi(T )

qi(T )

]

u(k)

)

= −E S.

According to the equation of conservation of energy, the (internal) energy law of the mixture of gases
considered here is

e(n1, .., n4, T ) =
1

2

4
∑

i=1

ni

[

N T + 2
ηi(T )

qi(T )

]

.

A typical choice of the functions φi would consist in taking φi(I) = Iα for some α > 0. Then, the previous
law becomes

e(n1, .., n4, T ) =
1

2

4
∑

i=1

ni (N + 2(α+ 1))T,

and α = 0 corresponds to the law of diatomic gases.

We now recall the form of the reaction terms : Si = (−1)ri S, r1 = r2 = 1, r3 = r4 = 0, and

S =

∫

r′,R′∈[0,1]

∫

v3,v4∈RN

∫

I3,I4∈R+

∫

ω∈SN−1

exp

(

− 1

T

[m3

2
|v3 − u|2 + I3 +

m4

2
|v4 − u|2 + I4

]

)

×Breact
3 (v3, v4, I3, I4, R

′, r′, ω)(m3m4)
1−N |v3 − v4|2−N (1 −R′) dv3dv4dI3dI4dr

′ dR′ dω

×
[

(

m3m4

m1m2

)N
n1n2(m1m2)

N/2 exp(−E/T )

(2 π T )Nq1(T )q2(T )
− n3n4(m3m4)

N/2

(2 π T )Nq3(T )q4(T )

]

.

This shows that the temperature dependence of the reaction rate S involves power terms (namely,
(2 π T )Nq1(T )q2(T ) and (2 π T )Nq3(T )q4(T ) when φi(I) = Iαi), which do not disappear in the mass ac-
tion law as soon as α3 + α4 − α1 − α2 6= 0.
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Università degli Studi di Pavia, Dipartimento di Matematica, via Ferrata, 1, 27100 Pavia, ITALY. e-mail

salvarani@dimat.unipv.it


