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Summary. In this work, we present an approach for the Landau equation based
on the relationship between entropy and entropy dissipation. Thanks to the same
estimate, we recover on one hand an explicit bound on the long time behavior of the
spatially homogeneous equation, and on the other hand the strong L1 compactness
of the solutions of the spatially inhomogeneous equation.

1 Introduction

1.1 Presentation of Landau’s kernel

Different forms of the kernel

We study in this paper a quadratic collision kernel for plasmas, which models
the binary grazing collisions between charged particles, usually called Lan-
dau’s (or Fokker-Planck-Landau’s) operator (Cf. [21]).

If f ≡ f(v) ≥ 0 is the density of particles with velocity v ∈ RN , the

evolution of f due to those collisions (sometimes denoted by

(
∂f
∂t

)

coll

(v)) is

given by the kernel :

LΦ(f)(v) = ∇v ·
∫

v∗∈RN

Φ(|v − v∗|2)
{
|v − v∗|2 Id− (v − v∗) ⊗ (v − v∗)

}

{
f(v∗)∇f(v) − f(v)∇f(v∗)

}
dv∗, (1)

with N = 3 and Φ(|x|2) = |x|−3.
This kernel can also be rewritten as a parabolic operator :

LΦ(f)(v) = ∇v ·
(

(aΦ ∗ f)∇vf − (bΦ ∗ f) f

)
,
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= (aΦ ∗ f) : ∇v∇vf − (cΦ ∗ f) f,

with

aΦ(x) = Φ(|x|2)
{
|x|2 Id− x⊗ x

}
,

bΦ(x) = ∇ · aΦ(x) = − (N − 1)Φ(|x|2)x,
cΦ(x) = ∇ · bΦ(x) = −2 (N − 1)Φ′(|x|2)x2 −N(N − 1)Φ(|x|2).

Note that we used here (and we shall use in the sequel) the notation

A : B =
∑

i,j

Aij Bji

when A and B are N ×N matrices.
Under this form, the Landau operator is reminiscent of the linear Fokker-

Planck kernel

FP (f)(v) = ∇v ·
(
∇vf(v) + v f(v)

)
. (2)

However, under the form (1), its quadratic, non-local aspect is rather remi-
niscent of Boltzmann’s kernel (Cf. [6]) :

QB(f)(v) =

∫ ∫ ∫

v∗,v′,v′∗∈RN

{
f(v′) f(v′∗) − f(v) f(v∗)

}

×B(|v − v∗|, ̂(v − v∗, v′ − v′∗)) δv+v∗=v′+v′∗ δ|v|2+|v∗|2=|v′|2+|v′∗|2 dv
′dv′∗dv∗

which can be parametrized by

QB(f)(v) =

∫

v∗∈RN

∫

σ∈SN−1

{
f

(
v + v∗

2
+
|v − v∗|

2
σ

)
f

(
v + v∗

2
− |v − v∗|

2
σ

)

− f(v) f(v∗)

}
B(|v − v∗|, θ) dσdv∗,

with cos θ = v−v∗
|v−v∗| · σ.

Many weak forms of the kernel LΦ are useful. We shall use in particular
the following ones (valid when f, φ are smooth enough) :

∫
LΦ(f)(v)φ(v) dv = −

∫

v∈RN

∫

v∗∈RN

Φ(|v−v∗|2)
{
|v−v∗|2 Id−(v−v∗)⊗(v−v∗)

}

(
f(v∗)∇f(v) − f(v)∇f(v∗),∇φ(v)

)
dvdv∗

= −1

2

∫

v∈RN

∫

v∗∈RN

Φ(|v − v∗|2)
{
|v − v∗|2 Id− (v − v∗) ⊗ (v − v∗)

}
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(
f(v∗)∇f(v) − f(v)∇f(v∗),∇φ(v) −∇φ(v∗)

)
dvdv∗

=

∫

v∈RN

{
∇∇φ(v) : (aΦ ∗ f)(v) f(v) + 2∇φ(v) · (bΦ ∗ f)(v) f(v)

}
dv.

In those formulas, we have used the notation M (x, x) for xT M x when M is
a symmetric matrix.

Relationship with other collision kernels

The link between the Boltzmann and the Landau collision kernels is de-
scribed for example in [7]. One has (at least formally, that is, when f ∈ C2

c )
LΦ(f) = limε→0QBε

(f), when Bε concentrates on the grazing collisions. This
is obtained for example thanks to the scaling (Cf. [11]):

Bε(|v − v∗|, θ) = ε−3B

(
|v − v∗|,

|θ|
ε

)
.

The link between Φ and B is then given by

Φ(|v − v∗|2) = C

∫ π

θ=−π
θ2B(|v − v∗|, |θ|) dθ,

where C is some strictly positive constant.
Another scaling, adapted to the Coulomb case, is explained in [10]. The

two approaches are unified and generalized in [1].

A simple computation illustrating this link is made in dimension 2, and
starts from the weak formulation of Boltzmann’s kernel (written here with a
slightly different parametrization) :

∫
QBε

(f)(v)φ(v) dv =

∫

v∈R2

∫

v∗∈R2

∫ π

θ=−π
f(v) f(v∗)

×
(
φ

(
v + v∗

2
+R−θ(

v − v∗
2

)

)
− φ(v)

)
Bε(|v − v∗|, |θ|) dθdvdv∗,

where R−θ denotes the rotation of angle −θ. It uses the following asymptotic
formula (where x⊥ denotes Rπ/2x) :

φ

(
v + v∗

2
+ cos(εθ)

v − v∗
2

− sin(εθ)
(v − v∗)⊥

2

)
− φ(v)

= − εθ
(v − v∗)⊥

2
· ∇φ(v) − ε2θ2

2

v − v∗
2

· ∇φ(v)

+
ε2θ2

2

(v − v∗)⊥

2
⊗ (v − v∗)⊥

2
: ∇∇φ(v) +O(ε3).
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For more details, we refer to [7] and [11].
The link between Landau’s kernel and the linear Fokker–Planck operator is

described in [28]. One considers the important particular case when Φ = Φ0

N−1 ,

where Φ0(|v − v∗|2) = 1 is the so-called Maxwellian molecules cross section.
Then,

aij,Φ =
1

N − 1

(
|v|2 δij − vivj

)
, bi,Φ = −vi, cΦ = −N.

Supposing now that f is radially symmetric and that it satisfies the following
normalization (those properties are propagated by the spatially homogeneous
flow) :

∫
f(v∗)




1
v∗

|v∗|2


 dv∗ =




1
0
N


 ,

we get

aij,Φ ∗ f =
1

N − 1
(|v|2 δij − vivj) + δij ,

bi,Φ ∗ f = −vi, cΦ ∗ f = −N.
Noticing that ∇f(v) is parallel to v (remember that f is radially symmetric),
we obtain ∑

j

(|v|2 δij − vivj) ∂jf = 0,

and finally
LΦ(f) = ∇ · (∇f + fv).

Properties of Landau’s kernel

As a limit of Boltzmann’s kernel, Landau’s kernel inherits its properties (that
is, the properties which are independant of the cross section). In particular,
the conservations of mass, momentum and energy hold :

∫
QB(f)(v)




1
v

|v|2/2


 dv =

∫
LΦ(f)(v)




1
v

|v|2/2


 dv =




0
0
0


 . (3)

Moreover, the dissipation of entropy is nonnegative (first part of Boltz-
mann’s H-theorem) :

DΦ(f) ≡ −
∫
LΦ(f)(v) log f(v) dv ≥ 0.

Finally, it is possible to prove that when Φ > 0 a.e., the second part of
Boltzmann’s H-theorem also holds :

DΦ(f) = 0 ⇐⇒ ∀v ∈ RN , LΦ(f)(v) = 0
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⇐⇒ ∃ρ ≥ 0, u ∈ RN , T > 0, f(v) =
ρ

(2π T )N/2
exp

(
− |v − u|2

2T

)

as soon as f is smooth enough.

1.2 Presentation of Landau’s equation

Landau’s kinetic equation concerns the number density f(t, x, v) of particles
which at time t and point x move with velocity v. It writes

∂tf + v · ∇xf = LΦ(f). (4)

We add to this equation the initial datum f(0, x, v) = fin(x, v).

A particular case that we shall study in the sequel is that of the spatially
homogeneous solutions, that is those solutions which do not depend on x. The
equation then becomes

∂tf = LΦ(f),

together with its initial datum f(0, v) = fin(v).

The basic a priori estimates for equation (4) are consequences of the prop-
erties of Landau’s kernel. We first notice that the solution of eq. (4) (formally)
satisfies thanks to (3) :

∂t

∫

RN

∫

RN

f(t, x, v)




1
|v|2

|x− vt|2


 dvdx =




0
0
0


 ,

whence the a priori estimate

sup
t∈[0,T ]

∫

RN

∫

RN

f(t, x, v)

(
1 + |x|2 + |v|2

)
dvdx

≤
∫

RN

∫

RN

fin(x, v)

(
1 + 2 |x|2 + (2T 2 + 1) |v|2

)
dvdx, (5)

and this quantity is finite as soon as

∫

RN

∫

RN

fin(x, v)

(
1 + |x|2 + |v|2

)
dvdx < +∞.

Because the function x 7→ log x is not nonnegative, it is not completely obvious
to convert the H-theorem in an a priori estimate. The following computation
is extracted from [14]. We first observe (still formally) that the solution of eq.
(4) satisfies

∂t

∫

RN

∫

RN

f(t, x, v) log f(t, x, v) dvdx = −
∫

x∈RN

DΦ(f)(t, x) dx ≤ 0.
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As a consequence,

∫

RN

∫

RN

f(T, x, v) log f(T, x, v) dvdx

+

∫ T

0

∫

x∈RN

DΦ(f)(t, x) dxdt =

∫

RN

∫

RN

fin(x, v) log fin(x, v) dxdv. (6)

Then, we observe that for all function f ,

∫ ∫
f | log f | −

∫ ∫
f log f = 2

∫ ∫

f≤1

−f log f

= 2

∫ ∫

exp

(
−1− |x|2+|v|2

2

)
≤f≤1

−f log f + 2

∫ ∫

f≤exp

(
−1− |x|2+|v|2

2

)−f log f

≤
∫
f

(
2 + |x|2 + |v|2

)
dvdx+ (2π)N (N + 1) e−1.

Finally,

sup
t∈[0,T ]

∫

RN

∫

RN

f(t, x, v) | log f(t, x, v)| dvdx

+

∫ T

0

∫

x∈RN

DΦ(f)(t, x) dxdt

≤
∫

RN

∫

RN

fin(x, v)

(
log fin(x, v) + 2 + 2 |x|2

+(2T 2 + 1) |v|2
)
dvdx+ (2π)N (N + 1) e−1, (7)

and this quantity is finite as soon as fin ∈ A = ∪kAk, i.-e.

∫

RN

∫

RN

fin(x, v)

(
log fin(x, v) + 1 + |x|2 + |v|2

)
dvdx ≤ k.

We denote by IC,Φ the set of all functions f : [0, T ] × RN × RN → R+

verifying

sup
t∈[0,T ]

∫

RN

∫

RN

f(t, x, v)

(
1 + |x|2 + |v|2 + | log f(t, x, v)|

)
dvdx

+

∫ T

0

∫

x∈RN

DΦ(f)(t, x) dxdt ≤ C.

Thanks to our computations, we see that (formally), a solution of Landau’s
equation (with cross section Φ) lies in IC,Φ for some well-chosen constant C
(only depending on k) as soon as fin ∈ Ak.
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1.3 Presentation of some tools for the study of Landau’s equation

We now list some of the ideas and tools that will be used in the sequel.

Estimates for the dissipation of entropy

For the linear Fokker–Planck’s equation (2), we know that the dissipation of
free energy

DFP (f) := −
∫

(log f + |v|2/2)∇v · (∇vf + v f) dv

is equal to the relative Fisher information :

DFP (f) =

∫ ∣∣∣∣
∇vf

f
(v) + v

∣∣∣∣
2

f(v) dv. (8)

Then, it is possible to use the logarithmic Sobolev inequality (Cf. [18],
[19]) to get an estimate on the speed of return to equilibrium (Cf. [2], [24]).
We shall detail in the sequel how to adapt those ideas to Landau’s equation.

Criterions of compactness in Lp

Strong compactness will be the consequence of “Rellich-Kondrachov” type
theorems (Cf. [3] for example) :

Proposition 1: Let p ∈ [1,+∞[, and Ω ⊂ RQ be an open set. If F is a
set of functions which is bounded in W s,p

loc (Ω) for some s > 0, it is (strongly)
compact in Lploc(Ω).

The following property (of uniform boundedness) will also be of constant
use :

Proposition 2: Let p ∈ [1,+∞[, and F = (fn)n∈N be a bounded sequence
of functions of Lploc(Ω). We suppose that the following decomposition holds :
for all ε > 0, fn = gεn + hεn, with gεn ∈ Kε a (strong) compact set of Lploc(Ω),
and limε→0 supn∈N ||hεn||Lp(K) = 0 for all compact set K of Ω. Then, F is
relatively (strongly) compact in Lploc(Ω).

Finally, weak (L1(RN )) compactness will be a consequence of Dunford–
Pettis criterion (Cf. also [23] for example) :

Proposition 3: Let F = (fn)n∈N be a sequence of bounded functions of
L1(Ω). Then, the three following properties are equivalent :

1. F is weakly relatively compact in L1(Ω),
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2.

lim
|A|→0

sup
n∈N

∫

A

|fn| + lim
R→+∞

sup
n∈N

∫

Ω∩B(0,R)c

|fn| = 0,

3.

∃φ1, φ2 : R+ → R+, such that lim
x→+∞

φ1(x)

x
, φ2(x) = +∞ (9)

and sup
n∈N

∫

Ω

φ1(|fn|) + |fn|φ2(|x|) < +∞.

Averaging lemmas

Those are lemmas which yield an extra smoothness on the averages of f like∫
f(t, x, v)φ(v) dv (for φ smooth enough) when f and ∂tf+v·∇xf are bounded

in certain spaces (Cf. [16], [17], [15]).

Renormalized formulations

Quadratic kinetic equations of Boltzmann or Landau type cannot be written in
the sense of distributions when only the natural a priori estimates are satisfied
(that is, mass, energy, entropy and entropy dissipation are controled). This is
due to the fact that they contain quadratic terms which are local in x whereas
the a priori estimates at best yield an L logL estimate. One then has to find
a more complicated way of writing the equation, using nonlinear functions of
the solution, which has a sense as soon as mass, energy, entropy and entropy
dissipation are controled. This is called a renormalized formulation and was
first introduced by R. DiPerna and P.-L. Lions in [14].

1.4 Plan of the sequel

In section 2, we first present a proof of an entropy/entropy dissipation estimate
extracted from [13]. Then, this estimate is used to get a quantitative explicit
estimate (also extracted from [13]) of exponentially fast convergence towards
equilibrium for the spatially homogeneous Landau equation.

In section 3, we transform our entropy/entropy dissipation estimate in
a smoothness estimate in the v-variable. Then, using variants of the proofs
devised by P.-L. Lions in [34] (and also of C. Villani in [27] and R. Alexandre,
C. Villani in [1]), we recover a strong compactness result first obtained in this
work. In particular, we use the notions of averaging lemmas and renormalized
formulations.
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2 Large time behavior

2.1 Entropy dissipation estimate

We begin with an estimate which relates the entropy dissipation of Landau’s
kernel (with Maxwellian molecules) and the relative Fisher information. The
proof that we propose here is a variant of one of the proofs of [13]. The
linearization of the result of this section is very close to the results of [9].

Definition 1 : We denote by Φ0 = 1 the “Maxwellian” cross section. For
f ≡ f(v), we also denote the macroscopic quantities

ρf =

∫
f dv, ρf uf =

∫
f v dv, Nρf Tf =

∫
f |v − uf |2 dv,

the pressure tensor Kf
ij =

∫
f (vi − ufi ) (vj − ufj ) dv, the Maxwellian

Mf =
ρf

(2πTf )N/2
e
− |v−uf |2

2Tf ,

the relative Fisher information

I(f |Mf ) =

∫ ∣∣∣∣
∇f
f

− ∇Mf

Mf

∣∣∣∣
2

f,

and finally the quantity

qf = inf
e∈SN−1

∫
((v − uf ) · e)2 f(v) dv.

Proposition 4 : The following functional estimate holds for all (smooth
enough) function f :

I(f |Mf ) ≤
2

N − 1
q−1
f DΦ0

(f). (10)

Proof : It is enough to prove (10) when ρf = 1, uf = 0, Tf = 1, Kf
ij =

T fi δij . The estimate then becomes

∫ |∇f |2
f

−N ≤ 2

N − 1

DΦ0
(f)

infk T
f
k

. (11)

This is a consequence of the invariance of I(f |Mf ) and DΦ0
(f) with respect to

rotations on one hand, and of the following laws of transformation of I(f |Mf ),
DΦ0

(f), qf with respect to the dilations (dλf)(v) = f(λ v) on the other hand :

DΦ0
(dλf) = λ−2N DΦ0

(f), I(dλf |Mdλf ) = λ2−N I(f |Mf ), qdλf = λ−2−N qf .
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Those laws are applied when changing f in T
−N/2
f ρ−1

f f

(
R
v−uf√
Tf

)
, where R

is a rotation.
We now prove (11). For i 6= j, we use the notation :

Sfij(v, v∗) = (v−v∗)i
(
∂jf

f
(v)−∂jf

f
(v∗)

)
−(v−v∗)j

(
∂if

f
(v)−∂if

f
(v∗)

)
. (12)

Noticing that

(
|x|2Id− x⊗ x

)
(a, a) = |x|2|a|2 − (x · a)2

=
1

2

∑∑

i6=j
|xiaj − xjai|2,

we see that

DΦ0
(f) =

1

2

∑∑

i6=j

∫ ∫
|Sfij(v, v∗)|2f(v)f(v∗) dvdv∗.

Integrating (12) against f(v∗)φ(v∗), using the (classical) shorthand f∗ =
f(v∗), φ∗ = φ(v∗) and dropping the index f whenever this is possible (like in

Sij instead of Sfij for example), we get when i 6= j :

[
vi
∂jf

f
(v) − vj

∂if

f
(v)

] ∫
f∗φ∗ +

∫
f∗φ∗v

∗
j

∂if

f
(v) −

∫
f∗φ∗v

∗
i

∂jf

f
(v)

=

∫
∂if∗φ∗v

∗
j −

∫
∂jf∗φ∗v

∗
i − vj

∫
∂if∗φ∗ + vi

∫
∂jf∗φ∗ +

∫
Sijf∗φ∗

= −
∫
∂iφ∗f∗v

∗
j +

∫
∂jφ∗f∗v

∗
i + vj

∫
∂iφ∗f∗ − vi

∫
∂jφ∗f∗ +

∫
Sijf∗φ∗.

Taking φ(v) = vi, we see that

∂jf

f
Ti = −vj +

∫
Sijf∗v

∗
i .

Thanks to the Cauchy–Schwarz inequality, for i 6= j,

∫ ∣∣∣∣
∂jf

f
+
vj
Ti

∣∣∣∣
2

f ≤ 1

Ti

∫ ∫
|Sij |2ff∗.

Therefore,

∑∑

i6=j

∫ |∂jf |2
f

+
Tj
|Ti|2

− 2

Ti
≤ 1

infk Tk

∑∑

i6=j

∫ ∫
|Sij |2ff∗.
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But ∑∑

i6=j

∫ |∂jf |2
f

= (N − 1)

∫ |∇f |2
f

,

∑∑

i6=j

Tj
|Ti|2

− 2

Ti
=
∑

i

N

T 2
i

−
∑

i

1

Ti
− 2(N − 1)

∑

i

1

Ti

= −N(N − 1) + (N − 1)
∑

i

(
1

Ti
− 1

)2

+
∑

i

1

T 2
i

−
∑

i

1

Ti
.

Then, we notice that (∑

i

1

Ti

)2

≤ N
∑

i

1

T 2
i

,

so that ∑

i

1

Ti
≤ N∑

i
1
Ti

∑

i

1

T 2
i

.

But ∑

i

1

Ti
≥ N,

so that finally : ∑

i

1

Ti
≤
∑

i

1

T 2
i

.

Then,

(N − 1)

∫ |∇f |2
f

−N(N − 1) ≤ 2
DΦ0

(f)

infk Tk
,

whence the desired inequality (that is, (11)).
¤

2.2 Return to equilibrium

We begin by recalling Gross’ logarithmic Sobolev inequality (Cf. [18], [19]).

Proposition 5 (Logarithmic Sobolev inequality) : Let f : RN → R+ such
that

∫
f(v)




1
v

|v|2


 dv =




1
0
N


 .

Then
I(f |Mf ) ≥ 2H(f |Mf ),

where the relative Fisher information I(f |Mf ) has been defined in def. 1 and
the relative entropy H(f |Mf ) is given by



188 Laurent Desvillettes

H(f |Mf ) =

∫
f log

f

Mf
=

∫
f log

f

(2π)−N/2 exp(−|v|2/2) .

When f does not satisfy the previous normalization, this proposition be-
comes

Proposition 6 : Let f : RN → R+. Then,

I(f |Mf ) ≥
2

Tf
H(f |Mf ).

Proof : We use the translations and dilations dλf(v) = f(λ v). The quan-
tities I and H are transformed in the following way :

I(dλf |Mdλf ) = λ2−N I(f |Mf ), H(dλf |Mdλf ) = λ−N H(f |Mf ).

Moreover, the temperature becomes

Tdλf = λ−2Tf .

¤

Then, we state our main theorem (first proven in [13]) on the large time
behavior of the spatially homogeneous Landau equation :

Theorem 1 : Let fin be an initial datum with finite mass, energy and
entropy. Then, any (smooth enough) solution of the spatially homogeneous
Landau equation with Maxwellian molecules and initial datum fin converges
exponentially rapidly (and with constants that can be explicitly estimated) in
L1 towards its associated Maxwellian :

Mfin
(v) =

ρfin

(2πTfin
)N/2

e
−

|v−ufin
|

2Tfin .

Proof : We know that

∂tH(f |Mf ) = −1

2
DΦ0

(f),

and (thanks to the use of propositions 4 and 6)

DΦ0
(f) ≥ N − 1

2
qf I(f |Mf ) ≥ (N − 1)

qf
Tf

H(f |Mf ).

Note then that Tf is constant. Supposing that qf is bounded below, the ex-
ponential convergence of the (relative) entropy towards 0 becomes a simple
consequence of Gronwall’s lemma.
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We now prove that qf is bounded below. We suppose (without loss of
generality) that ρf = 1, uf = 0, Tf = 1. Then

qf = inf
e∈SN−1

∫
f(v · e)2 ≥ δ2ε2 inf

e∈SN−1

∫

ε≤|v|≤R,|v·e|≥δ|v|
f

≥ δ2ε2
(

1 −
∫

|v|≥R
f −

∫

|v|≤ε
f −

∫

|v·e|≤δ|v|,|v|≤R
f

)
.

Denoting now A = {v ∈ RN , |v| ≤ ε or (|v · e| ≤ δ|v| and |v| ≤ R)}, we see
that

|A| ≤ (2ε)N + Cte δ RN ,

so that (for any S > 1)

∫

A

f =

∫

A

f
| log f |
| log f | 1f≥S +

∫

A

f 1f≤S

≤ 1

logS

∫
f | log f | + S

(
(2ε)N + Cte δ RN

)
.

Then,

δ2ε2
(

1 −
∫

|v|≥R
f −

∫

|v|≤ε
f −

∫

|v·e|≤δ|v|,|v|≤R
f

)

is strictly positive (with a lower bound independant of time) when ε, δ are
small enough and R,S are large enough.

We now know that the (relative) entropy converges exponentially rapidly.
The exponential convergence in L1 is then a simple consequence of Csiszar-
Kullback’s inequality (Cf. [8], [20]):

H(f |Mf ) ≥
1

2
||f −Mf ||2L1

(under the assumption that ρf = 1).
¤

Remark: The same theorem holds in the so-called “overMaxwellian” case,
that is when the cross section is larger than some constant. It can be somehow
extended to hard potential cross sections (Cf. [13]). The situation is much more
complex in the case of the Boltzmann equation. After the pioneering works
of [4] and [5], this problem was almost completely solved by G. Toscani and
C. Villani in [25], [26] and by C. Villani in [29]. We also refer to [9] for an
interesting result in the linearized setting.
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3 Compactness for the Landau equation

3.1 Smoothness in the space of velocities

We show here how the entropy dissipation estimate (10) can be converted in
a smoothness estimate for the velocity variable.

Proposition 7: We consider cross sections which satisfy

Φ(|v − v∗|2) e
|v|2+|v∗|2

2 ≥ CΦ. (13)

Then, for f ≡ f(v),

∫
|∇
√
f |2 e− |v|2

2 dv ≤
(

DΦ(f)

(N − 1)CΦ
+N ρ2

f

)
q−1

fe−|v|2/2
+ 2 e−1 ρf .

In other words, a weighted variant of the Fisher information is bounded by
the entropy dissipation (provided that ρf and q−1

fe−|v|2/2
are also bounded).

Proof: We begin by the estimate

DΦ(f) ≥ CΦ

∫ ∫
e−

|v|2+|v∗|2

2

(
|v − v∗|2Id− (v − v∗) ⊗ (v − v∗)

)

(∇f
f

(v) − ∇f
f

(v∗),
∇f
f

(v) − ∇f
f

(v∗)

)
f(v) f(v∗) dv∗dv

= CΦDΦ0
(f e−|v|2/2)

(with Φ0 = 1).
Then, using the estimate of entropy dissipation (10),

DΦ(f) ≥ N − 1

2
CΦ qfe−|v|2/2

∫ ∣∣∣∣
∇f
f

+
v − ufe−|v|2/2

Tfe−|v|2/2

− v

∣∣∣∣
2

f e−|v|2/2 dv.

Thanks to the elementary inequality (a+ b)2 ≥ 1
2 a

2 − b2,

∫ |∇f |2
f

e−
|v|2

2 dv ≤ 4

(N − 1)CΦ
q−1

fe−|v|2/2
DΦ(f)

+ 4

∫ (∣∣∣∣
v − ufe−|v|2/2

Tfe−|v|2/2

∣∣∣∣
2

+ |v|2
)
f e−|v|2/2 dv

≤ 4

(N − 1)CΦ
q−1

fe−|v|2/2
DΦ(f) + 4N

ρfe−|v|2/2

Tfe−|v|2/2

+ 8 e−1 ρf .

Noticing that (for all g smooth enough)
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T−1
g ≤ ρg q

−1
g ,

we see that
∫

|∇
√
f |2 e− |v|2

2 dv ≤
(

DΦ(f)

(N − 1)CΦ
+N ρ2

f

)
q−1

fe−|v|2/2
+ 2 e−1 ρf . (14)

¤

We now consider a function f ≡ f(t, x, v) ≥ 0 (which will be in the sequel
a solution of the Landau equation). For η ≤ 1, we denote the set of “bad”
points (t, x) ∈ R+ × RN by

Aη(f) =

{
(t, x), ρf ≥ η−1

}
∪
{

(t, x), qfe−|v|2/2 ≤ η

}
.

As a consequence of estimate (14), we see that (for f ≡ f(t, x, v) ≥ 0), the
following inequality holds when (t, x) ∈ Aη(f)c :

∫
|∇
√
f |2 e− |v|2

2 dv ≤ η−3

[
DΦ(f)

(N − 1)CΦ
+N + 1

]
. (15)

We now show that the “bad” points (t, x), that is those points which lie
in Aη(f), constitute a set of small measure when η is itself small enough, and
f ∈ IC,Φ. More precisely, we prove the

Proposition 8: For all ε > 0, C > 0,

lim
η→0

sup
f∈IC,Φ

|Aη(f) ∩ {ρf ≥ ε}| = 0.

Proof: We define λk(ν) = infδ>0[δ ν + k (log δ)−1]. We observe that
limν→0 λk(ν) = 0. Then, if B ⊂ RNv is such that |B| ≤ ν (|B| denoting
the Lebesgue measure de B) and if

∫
f | log f | ≤ k,

∫

B

f ≤
∫

B∩{f≤δ}
f +

∫

B∩{f≥δ}
f

≤ δ |B| + (log δ)−1

∫
f | log f |

≤ λk(ν).

Assume now that (t, x) ∈ [0, T ] × RN is such that ρf (t, x) ≥ ε. Then, we
observe that (for some e ∈ SN−1) for all θ,R > 0,
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qfe−v2/2(t, x) =

∫
f e−v

2/2

(
(v − ufe−v2/2) · e

)2

≥ e−R
2/2 θ2

∫

{|v|≤R,|(v−u
fe−v2/2 )·e|≥θ}

f

≥ e−R
2/2 θ2

(
ε− 1

R2

∫
f |v|2 − sup

D⊂RN
v ,|D|≤2NRN−1θ

∫

D

f

)
.

We now denote by Bk the set of (t, x) ∈ [0, T ]×RN such that
∫
f(t, x, v) (1+

|v|2 + | log f(t, x, v)|) dv ≤ k. Then, for (t, x) ∈ Bk such that ρf (t, x) ≥ ε,

taking R =
√

2k/ε,

qfe−v2/2(t, x) ≥ e−k/ε θ2
(
ε/2 − λk(2

N (2k/ε)(N−1)/2 θ)

)
.

Choosing now θ = θ(k, ε) > 0 in such a way that

λk(2
N (2k/ε)(N−1)/2 θ(k, ε)) ≤ ε/4

(this is possible because limν→0 λk(ν) = 0), we get the estimate

qfe−v2/2(t, x) ≥ e−k/ε θ(k, ε)2 ε/4.

Moreover (still for (t, x) ∈ Bk),

ρf (t, x) ≤ k.

Now since f ∈ IC,Φ, we know that

k |Bck| ≤
∫

Bc
k

[ ∫
f(t, x, v) (1 + |v|2 + | log f(t, x, v)|) dv

]
dxdt

≤ T sup
t∈[0,T ]

∫

x∈RN

∫

v∈RN

f(t, x, v) (1 + |v|2 + |x|2 + | log f(t, x, v)|) dvdx

≤ C T,

so that |Bck| ≤ C T/k. Finally,

lim
η→0

sup
f∈IC,Φ

∣∣∣∣Aη(f) ∩ {ρf ≥ ε}
∣∣∣∣ = 0.

¤

Heuristically, propositions 7 and 8 can be summarized in this way : if
a function f ≡ f(t, x, v) ≥ 0 satisfies the natural a priori estimates of the
Landau equation, then

√
f lies in a weighted H1 space in the v variable,

except for a set of (t, x) of arbitrarily small measure.

We now introduce in the two next sections two analytical tools that we
shall use when we state the theorem of strong compactness that we intend to
prove (that is, theorem 2).
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3.2 The renormalized formulation of the equation

The concept of renormalized solutions was introduced by R. DiPerna and P.-
L. Lions in 1989 in order to prove the existence of global solutions of the
Boltzmann equation (Cf. [14]). It enables to define solutions belonging to
L1 (or L logL) to quadratic equations. We describe in this subsection the
computation corresponding to this concept.

Let β be a function of class C2 on R+, concave, and γ, ζ defined in such a
way that

∀x ∈ R+, γ′(x)2 = −β′′(x), ζ(x) = β(x) − xβ′(x).

When f is a (smooth) solution of Landau’s equation, one has (with a, b, c
defined in section 1, without mentioning the dependance with respect to Φ
except when it is necessary, and the convolution being with respect to v) :

(∂t + v · ∇x)f = ∇v ·
(

(a ∗ f)∇vf − (b ∗ f) f

)
. (16)

Then,

(∂t + v · ∇x)β(f) = β′(f)∇v ·
(

(a ∗ f)∇vf − (b ∗ f) f

)

= ∇v ·
(
β′(f) (a ∗ f)∇vf

)
− (a ∗ f)β′′(f) : ∇vf∇vf

−β′(f) (b ∗ f)∇vf − β′(f) (c ∗ f) f

= ∇v ·
(

(a ∗ f)∇vβ(f)

)
− (a ∗ f)β′′(f) : ∇vf∇vf

− (b ∗ f)∇vβ(f) − β′(f) f (c ∗ f)

= ∇v∇v :

(
(a ∗ f)β(f)

)
− ∇v

(
(b ∗ f)β(f)

)
+ (a ∗ f) : ∇vγ(f)∇vγ(f)

−∇v ·
(

(b ∗ f)β(f)

)
+ (c ∗ f)β(f) − β′(f) f (c ∗ f)

= ∇v∇v :

(
(a ∗ f)β(f)

)
+ (c ∗ f) ζ(f)

− 2∇v ·
(

(b ∗ f)β(f)

)
+ (a ∗ f) : ∇vγ(f)∇vγ(f). (17)

While there is no hope of defining in the sense of distributions the quantity

∇v ·
(

(a ∗ f)∇vf − (b ∗ f) f

)
appearing in (16) when f ∈ IC,Φ, it is possible

to define (still when f ∈ IC,Φ, and in the sense of distributions) the three first
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terms of (17) provided that β and x 7→ xβ′(x) are bounded, and under the
(reasonable) condition on Φ :

∀R ≥ 0, KR,Φ ≡ sup
z

∫

w∈B(z,R)

[
Φ(|w|2) + |w|Φ′(|w|2)

]
< +∞. (18)

This is due to the fact that aΦ ∗ f , bΦ ∗ f and cΦ ∗ f lie in L1
loc as soon as

f ∈ IC,Φ. More precisely, we state the

Lemma 1 : For f ≡ f(v) ≥ 0, one has

∫

|v|≤R
|(aΦ ∗ f)(v)| dv ≤ 2KR,Φ

(
R2

∫
f dv +

∫
f |v|2 dv

)
, (19)

∫

|v|≤R
|(bΦ ∗ f)(v)| dv ≤ KR,Φ

(
(R+

1

2
)

∫
f dv +

1

2

∫
f |v|2 dv

)
, (20)

∫

|v|≤R
|(cΦ ∗ f)(v)| dv ≤ 2KR,Φ

∫
f dv. (21)

Proof : We treat only the first term, since the other ones lead to the same
kind of computations :

∫

|v|≤R
|(aΦ ∗ f)(v)| dv ≤

∫

v∗

f(v∗)
∫

|w+v∗|≤R
Φ(|w|2) |w|2 dwdv∗

≤
∫

(R+ |v∗|)2 f(v∗) dv∗ × sup
z

∫

B(z,R)

Φ(| · |)2.

¤

Finally, the last term in (17) cannot be easily bounded (under the assump-
tion that f ∈ IC,Φ) but this will not be a problem in the sequel because this
term is nonnegative.

A typical example of function β that can be used is β(x) = x/(1 + x).
Then, β′(x) = (1 + x)−2, β′′(x) = −2 (1 + x)−3, γ(x) =

√
2 (1 + x)−3/2, and

ζ(x) = (x/(1 + x))2.
We shall not use directly in this work the notion of renormalized solutions

of the Landau equation, and therefore we shall not try to give a precise defini-
tion of this concept. We shall however use eq. (17) and lemma 1 for sequences
of smooth solutions of the Landau equation (in other words, we shall use the
renormalized formulation of the equation for solutions which are smooth) in
the proof of the theorem of strong compactness (theorem 2).
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3.3 Averaging lemmas

Those lemmas were introduced at the beginning of the eighties in [16] and
[17] in order to treat transport problems. They turned out to be a key tool in
the general theory of kinetic equations. The theorem given here is a variant
of lemmas which can be found in [15].

Proposition 9 : Let p > 1. We suppose that g ∈ C([0, T ];D′(RNx ×RNv )),
g ∈ Lploc([0, T ] × RNx × RNv ), and that

∂tg + v · ∇xg ∈Wα,p(]0, T [;Wα,p
loc (RNx ;W β,p

loc (RNv ))),

with p ∈]1,+∞[, α > −1 and β ∈ R. Finally, we suppose that g(0) ∈
Lploc(R

N
x × RNv ). Then, there exists s(p, α, β,N) > 0 such that for all φ ∈

D(RN ), Mφ(g) :=
∫
g φ dv ∈W s,p(]0, T [;W s,p

loc (RNx )). Moreover, for all R > 0,
there exists R′ > 0 such that (for some function F ),

||Mφ(g)||W s,p(]0,T [×Bx
R) ≤ F (φ, ||g||Lp(]0,T [×Bx

R′×Bv
R′ )
,

||g(0)||Lp(Bx
R′×Bv

R′ )
, ||∂tg + v · ∇xg||Wα,p([0,T ]×Bx

R′ ;W
β,p(Bv

R′ ))
).

3.4 Strong compactness

We prove here a variant of a theorem due to P.-L. Lions (Cf. [34]). The proof
presented here is itself a variant of that of [34].

Theorem 2 : Let Φ be a cross section satisfying (13) and (18). Let (fn)n∈N

be a sequence of L∞(R+;L1(RN × RN )) verifying

1. For some k > 0, fn(0) ∈ Ak, i.-e.

sup
n∈N

∫

RN

∫

RN

fn(0, x, v) (1 + |x|2 + |v|2 + | log fn(0, x, v)|) dvdx ≤ k,

2. Each fn is smooth and bounded below by a Gaussian function in x, v
locally uniformly in t, but not uniformly in n,

3. Each fn is a (strong) solution of Landau’s equation.

Then, it is possible to extract from (fn)n∈N a subsequence which converges
strongly in L1

loc([0, T ] × RN × RN ) towards some function f (for all T > 0).

Remark : Note that in this theorem, one does not suppose that fn(0)
converges strongly in L1. This means that the Landau equation has a regu-
larizing effect in all variables. This behavior is at variance with that of the
Boltzmann equation with angular cutoff.
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Proof: We begin by writing down the a priori estimates (5) and (7).
Thanks to the first hypothesis of theorem 2, there exists C (= C(k), inde-
pendant of n) such that fn ∈ IC,Φ.

We get therefore the existence (thanks to Dunford-Pettis theorem) of a
subsequence converging weakly in L1 towards some function f . This subse-
quence will still be denoted by (fn)n∈N.

We write down the renormalized equation (17) on βq(fn) with βq =
√·∧√q

(or on a smooth approximation of this function).
Then, β′

q(x) = 1
2 x

−1/2 1x≤q, ζq(x) = 1
2 x

1/2 1x≤q +
√
q 1x≥q. The terms

in (a ∗ fn)βq(fn), (b ∗ fn)βq(fn), (c ∗ fn) ζq(fn) of the right-hand side of the
equation are bounded (for a given q, and uniformly in n) in L1

loc([0, T ] ×
RNx ;W−2,1

loc (RNv )), thanks to the estimates (19), (20), (21).
Moreover, for any cutoff function χ : RN → R+,

∫ ∫
βq(fn)(T )χ(x)χ(v) −

∫ ∫
βq(fn)(0)χ(x)χ(v)

=

∫ ∫
v · ∇xχχ(v)βq(fn)

+

∫ ∫
χ(x)∇v∇vχ (a ∗ fn)βq(fn) + 2

∫ ∫
χ(x)∇vχ (b ∗ fn)βq(fn)

+

∫ ∫
χ(x)χ(v) (c∗fn) ζq(fn)+

∫ ∫
χ(x)χ(v) (a∗fn) : ∇vγq(fn)∇vγq(fn).

Noticing that 0 ≤ βq(fn) ≤ fn ∧ 1, we use again estimates (19), (20), (21),
and obtain that (a ∗ fn) : ∇vγq(fn)∇vγq(fn) ∈ L1

loc([0, T ]×RNx ×RNv ). Note
that here, the nonnegativity of

(a ∗ fn) : ∇vγq(fn)∇vγq(fn)

plays a decisive role.
Finally, all the terms in the right-hand side of the equation satisfied by

βq(fn) (that is, (17)) are bounded in L1
loc([0, T ] × RNx ;W−2,1

loc (RNv )). Because
of the Sobolev embeddings, they are also bounded in

W−ε,p(ε)(]0, T [;W
−ε,p(ε)
loc (RNx ;W

−2−ε,p(ε)
loc (RNv ))) for ε small enough and some

p(ε) > 1 verifying p(ε) → 1 when ε→ 0.
Then, according to the averaging lemma (that is, proposition 9), the quan-

tity
∫
βq(fn)φ(v) dv is bounded in

W s(p(ε),−ε,−2−ε,N),p(ε)(]0, T [;W
s(p(ε),−ε,−2−ε,N)
loc (RN )) for ε small enough, and

φ ∈ D(RN ).
In particular, thanks to Rellich–Kondrachov characterization (that is,

proposition 1), the strong compactness holds in L
p(ε)
loc ([0, T ] × RN ) (for ε > 0

small enough), and consequently in L1
loc([0, T ] × RN ), for

∫
βq(fn)φ(v) dv.

We write down



Plasma kinetic models: the Fokker-Planck-Landau equation 197

∫ √
fn φ(v) dv =

∫
βq(fn)φ(v) dv +

∫ (√
fn − βq(fn)

)
φ(v) dv,

and
∣∣∣∣
∫ T

0

∫ ∫ (√
fn − βq(fn)

)
φ(v) dvdxdt

∣∣∣∣ ≤ ||φ||L∞

∫ T

0

∫ ∫
2
√
fn 1fn≥q

≤ 2 ||φ||L∞ q−1/2 C T.

Then, for all φ ∈ D(RN ),
∫ √

fn φ(v) dv is (strongly) compact in L1
loc([0, T ]×

RN ) (thanks to proposition 2, as sum of a sequence which is compact for all
q and a sequence which tends to 0 with q uniformly in n).

We now want to show that
√
fn is strongly compact in L1. Since we know

that its averages in v are strongly compact (in t, x), it remains to use a prop-
erty of smoothness in v of

√
fn. This smoothness holds thanks to proposition

7, except on a set (in t, x) of arbitrarily small measure thanks to proposition
8.

We now introduce the decomposition which enables to perform in a precise
way the program described above :

√
fn =

√
fn ∗v χδ +

(√
fn −

√
fn ∗v χδ

)
,

where χδ is a mollifying sequence (Cf. [3] for example).
The first term converges strongly in L1

loc([0, T ]×RN ×RN ) for all δ ∈]0, 1]
thanks to the previous estimates (the whole sequence converges thanks to the
uniqueness of the weak limit).

Therefore, according to proposition 2, it is sufficient (in order to get the
strong compactness of

√
fn in L1

loc) to prove that the second term tends to 0
(in L1

loc, uniformy with respect to n) when δ goes to 0.
For any compact set K ⊂ [0, T ] × RN , one has

Qn,δ =

∣∣∣∣
∫

K

∫

B(0,R)

(√
fn −

√
fn ∗v χδ

)
dvdxdt

∣∣∣∣

≤
∫

K∩{ρfn≤ε}

∫

B(0,R)

√
fn dvdxdt

+

∫

K∩{ρfn≤ε}

(∫

B(0,1)

χδ dv

)(∫

B(0,R+1)

√
fn dv

)
dxdt

+

∣∣∣∣
∫

K∩{ρfn≥ε}

∫

B(0,R)

(√
fn −

√
fn ∗v χδ

)
dvdxdt

∣∣∣∣
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≤ 2 |K| |B(0, R+ 1)|1/2 ε1/2

+

∣∣∣∣
∫

K∩{ρfn≥ε}∩Aη(fn)

∫

B(0,R)

(√
fn −

√
fn ∗v χδ

)
dvdxdt

∣∣∣∣

+

∣∣∣∣
∫

K∩{ρfn≥ε}∩Aη(fn)c

∫

B(0,R)

(√
fn −

√
fn ∗v χδ

)
dvdxdt

∣∣∣∣

≤ 2 |K| |B(0, R + 1)|1/2ε1/2

+2 |{ρfn
≥ ε} ∩Aη(fn)|1/2 C1/2 |B(0, R+ 1)|1/2

+

∫

K∩Aη(fn)c

∣∣∣∣
∫

B(0,R)

(√
fn −

√
fn ∗v χδ

)
dv

∣∣∣∣dxdt.

This last quantity can be bounded thanks to proposition 7 (or, more precisely,
thanks to estimate (95)) by

∫

K∩Aη(fn)c

∫

B(0,R)

∫

RN

∣∣∣∣
∫ 1

θ=0

v∗ · ∇v

√
fn(v − θ v∗) dθ

∣∣∣∣χδ(v∗) dv∗dvdxdt

≤
∫

K∩Aη(fn)c

(∫

RN

|v∗|χδ(v∗) dv∗
)(∫

B(0,R+1)

|∇
√
fn(v)| dv

)
dxdt

≤ δ e(R+1)2/4 |B(0, R+ 1)|1/2 |K|1/2η−3/2

(
C

(N − 1)CΦ
+ (N + 1) |K|

)1/2

.

Taking ε and η small enough, and using proposition 8, we see that
limδ→0 supn∈N Qn,δ = 0. As we previously noticed, we get in this way the
(strong) compactness in L1

loc of
√
fn. This immediately ensures the (strong)

compactness in L1
loc of fn, and concludes the proof of theorem 2.

¤
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