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Abstract
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1 Introduction

1.1 General presentation

This paper is part of a general study of the large-time behaviour of diffusive
and reversible chemical reactions of the type

α1A1 + . . .+ αqAq ⇋ β1A1 + . . .+ βqAq αi, βi ∈ N , (1)

in a bounded box Ω ⊂ RN (N ≥ 1).
Systems of type (1) are well known in the numerous literature on reaction-

diffusion systems. For the large time behaviour of global classical solutions
(e.g. within invariant domains) we refer, for instance, to [Rothe, CHS] and
the references therein. For global weak solutions see e.g. [MP, Pie, PS] with
references. Many authors (e.g. [Zel, Mas, HMP, Web, HY88, HY94, KK]
and the references therein) have deduced compactness and a-priori bounds
from Lyapunov functionals. We recall in particular [Mor, FMS, FHM], where
generalized Lyapunov structures of reaction-diffusion systems yield a-priori
estimates to establish global existence of solutions. We mention also [Rio,
Mul] and the references therein where peculiar Lyapunov functionals are
designed to show optimized stability and instability properties for reaction-
diffusion systems.

As in [DF], we exploit as much as possible the free energy functional of
these systems. The basic idea consists in studying the large-time asymptotics
of a dissipative PDE by looking for a nonnegative Lyapunov functional E(f)
and its nonnegative dissipation D(f) = − d

dt
E(f(t)) along the flow of the

PDE, which are well-behaved in the following sense: firstly, E(f) = 0 ⇐⇒
f = f∞ for some equilibrium f∞ (usually, such a result is true only when all
the conserved quantities have been taken into account), and secondly, there
exists an entropy/entropy-dissipation estimate of the form D(f) ≥ Φ(E(f))
for some nonnegative function Φ such that Φ(x) = 0 ⇐⇒ x = 0. If
Φ′(0) 6= 0, one usually gets exponential convergence toward f∞ with a rate
which can be explicitly estimated.

This line of ideas, sometimes called the “entropy method”, is an alter-
native to the linearization around the equilibrium and has the advantage of
being quite robust. This is due to the fact that it mainly relies on functional
inequalities which have no direct link with the original PDE.

The entropy method has lately been used in many situations: nonlinear
diffusion equations (such as fast diffusions [DelPD, CV], equations of fourth
order [CCT], Landau equation [DV00], etc.), integral equations (such as the
spatially homogeneous Boltzmann equation [TV1, TV2, V]), or kinetic equa-
tions ([CCG], [DV01, DV05], [FNS]).
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In the context of reaction-diffusion systems, especially in the theory of
semiconductors, the entropy method has been used e.g. in [Grö, GGH, GH].
In [GGH], for instance, exponential convergence towards equilibrium for gen-
eral systems of the type (1) (coupled with an equation for the electric poten-
tial) was shown provided that globally existing solutions are known. Note
that in general global existence of weak solutions for systems of type (1) is
unknown and that boundedness of the entropy is insufficient to guarantee
that the reaction terms belong to L1 (see [DFPV]).

At variance with the work that we propose here, the method of proof in
[GGH] is based on a contradiction argument which does not lead to explicit
constants. With the above notation, it is shown there that assuming a se-
quence of functions fn such that D(fn) = CnE(fn) for constants Cn → 0 as
n → ∞, and such that E(fn) is bounded, it is possible to extract a subse-
quence of fn which converges to a limit, causing finally a contradiction (once
the conservation laws have been taken into account).

In our previous paper [DF], we have proven quantitative exponential con-
vergence to equilibrium with explicit rates (all constants are also explicit)
for the systems modelling the reactions 2A1 ⇋ A2 and A1 +A2 ⇋ A3. The
proven entropy/entropy-dissipation estimate used global L∞ bounds on the
concentrations, which are known for these systems (they are consequences of
maximum principle type properties).

In this paper, we prove exponential convergence in L1 (and consequently
for any Sobolev norms) for a system with four species

A1 +A3 ⇋ A2 +A4, (2)

for which a global L∞ bound was so far - up to our knowledge - unknown,
but for which, at least in 1D, a polynomially growing L∞ bound can be es-
tablished. We focus on this particular system to present in a simple way the
proposed method, which is our primary aim rather than the actual asymp-
totic result.

Note that for the equation that we consider, existence and uniqueness of
classical solutions in 1D is a consequence of [Ama] and [Mor, theorem 2.4].
Global existence of weak solutions in any dimension follows e.g. from [Pie].

The method that we present here is very different from the tools used
in these works and can be summarized in this way: Firstly, we prove a
polynomially growing L∞ bound for the solution of our equation (this a
priori bound is therefore called “slowly growing”). Then, we establish a
precise entropy/entropy-dissipation estimate, for which the constant depends
logarithmically on the L∞ norm of the solution thanks to a somewhat lengthy,
but elementary computation. Thus, a Gronwall type lemma implies “almost
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exponential” decay in L1 towards the steady state. Secondly, we prove an
explicit, uniform in time L∞ bound by interpolation of the almost exponential
L1 decay with a polynomially growing H1 bound. Finally, thanks to this
global L∞ bound, the entropy/entropy-dissipation estimate can be used a
second time and yields exponential decay towards the steady state.

Note that slowly growing a priori bounds have already been used in the
context of entropy methods in kinetic theory (cf. [TV2]), as well as inter-
polation between an explicit decay in weak norm and controlled growth in
strong norm (cf. [DM]). The last step (getting the exponential decay) is
however a new result in the context of entropy methods.

To state the problem, we denote with ai ≡ ai(t, x) ≥ 0, i = 1, 2, 3, 4,
the concentrations of the species Ai at time t ≥ 0 and point x ∈ Ω (Ω is a
bounded interval of R), and assume that reactions (2) are taken into account
according to the principle of mass action kinetics, which leads to the system

∂tai − di∂xxai = (−1)i(l a1a3 − k a2a4) , (3)

with the strictly positive reaction rates l, k > 0 and with ai satisfying homo-
geneous Neumann conditions

∀x ∈ ∂Ω, t ≥ 0, ∂xai(t, x) = 0 , (4)

and the nonnegative initial condition

∀x ∈ Ω, ai(0, x) = ai,0(x) ≥ 0 . (5)

Without loss of generality - we assume

l = k = 1 , |Ω| = 1 , (6)

thanks to the rescaling t → 1
k
t, x → |Ω| x, ai → k

l
ai. Finally, thanks to a

translation, we can suppose that Ω = [0, 1].

The solutions of (3) – (5) conserve the masses, that we assume to be
strictly positive:

Mjk =

∫

Ω

(aj(t, x) + ak(t, x)) dx =

∫

Ω

(aj,0(x) + ak,0(x)) dx > 0 , (7)

where we introduce the indices j ∈ {1, 3} and k ∈ {2, 4}. Note that only
three of the four Mjk’s can be chosen independently since they are linked via
the total mass

M = M12 +M34 = M14 +M32 . (8)
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Moreover, the conserved quantities provide naturally the following bounds

sup
t≥0

∫

Ω

aj(t, x) dx ≤ min
k∈{2,4}

{Mjk,Mjk} := Mj ,

sup
t≥0

∫

Ω

ak(t, x) dx ≤ min
j∈{1,3}

{Mjk,Mjk} := Mk . (9)

When all the diffusivity constants di are strictly positive, there exists a
unique equilibrium state ai,∞ for (3) – (6) satisfying (7). It is defined by the
unique positive constants solving a1,∞ a3,∞ = a2,∞ a4,∞ provided aj,∞+ak,∞ =
Mjk for (j, k) ∈ ({1, 3}, {2, 4}), that is:

a1,∞ = M12M14

M
> 0, a3,∞ = M32 − M12M32

M
= M32M34

M
> 0 ,

a2,∞ = M12M32

M
> 0, a4,∞ = M14 − M12M14

M
= M14M34

M
> 0 . (10)

Finally, we introduce the entropy (free energy) functional E(ai) and the
entropy dissipation D(ai) = − d

dt
E(ai) associated to (3) – (6):

E(ai) =

∫

Ω

4
∑

i=1

ai(ln(ai)− 1) dx , (11)

D(ai) = 4

4
∑

i=1

di

∫ T

0

∫

Ω

|∂x
√
ai|2 dxdt+

∫

Ω

(a1 a3 − a2 a4) ln(
a1 a3
a2 a4

) dx .

Outline of the paper: In section 2, we start by studying a priori bounds
entailed by the decay of the entropy functional. These bounds allow to boot-
strap an explicit, polynomially-growing (in time) L∞ bound on the concen-
trations ai (proposition 2.1), implying global existence of classical solutions
(this result of existence can be proven by other means, Cf. for example
[Ama, Mor]).

In section 3, we establish an entropy/entropy-dissipation estimate with a
constant depending logarithmically on the (polynomially growing) L∞ bound
(proposition 3.1).

Hence, by a Gronwall lemma, we obtain in section 4 (proposition 4.2) an
almost exponential decay in L1 towards the steady state ai,∞ of the form

4
∑

i=1

M−1
i ‖ai(t, ·)− ai,∞‖2L1([0,1]) ≤ 2

√
2(E(ai,0)− E(ai,∞)) e−

C1 t

ln(e+t) , (12)

with a constant C1 which can be computed explicitly (Cf. appendix 5).
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Furthermore, the almost exponential decay interpolates with a polynomi-
ally growing H1 bound and we obtain an explicit, uniform in time L∞ bound
(13). Finally, in return, exponential decay towards the steady state can be
proven, and we obtain our main theorem:

Theorem 1.1 Let Ω be the interval [0, 1], and let di > 0 for i = 1, 2, 3, 4
be strictly positive diffusion rates. Let the initial data ai,0 be nonnegative
functions of L∞(Ω) with strictly positive masses Mjk (defined by (7)) for
(j, k) ∈ ({1, 3}, {2, 4}). Then, the unique classical solution ai of (3) – (6) is
globally bounded in L∞:

‖ai(t)‖L∞(Ω) ≤ C2,i, (13)

and decay exponentially towards the steady state ai,∞ given in (9) – (10) :

4
∑

i=1

M−1
i ‖ai(t, ·)− ai,∞‖2L1(Ω) ≤ 2

√
2(E(ai,0)−E(ai,∞)) e−C3 t ,

where C2,i and C3 can be computed explicitly (Cf. appendix 5).

Remark 1.1 Note that exponential decay towards equilibrium in all Sobolev
norms follows subsequently by interpolation of the decay of theorem 1.1 with
polynomially growing Hk bounds, which follow iteratively for k > 1 from
(13) and (68) inserted into the Fourier-representation used in lemma 2.3
and presented in appendix 5 (Sobolev norms of any order are created even
if they do not initially exist, thanks to the smoothing properties of the heat
kernel).

Notations: The letters C, C1, C2,i, . . . denote various positive constants
(most of them are made explicit in appendix 5). It will also be convenient
to introduce capital letters as a short notation for square roots of lower case
concentrations and overlines for spatial averaging (remember that |Ω| = 1)

Ai =
√
ai , Ai,∞ =

√
ai,∞ , Ai =

∫

Ω

Ai dx , i = 1, 2, 3, 4 .

Finally, we denote ‖f‖22 =
∫

Ω
f 2 dx for a given function f : Ω → R.

2 A-priori estimates

In this section, we establish a polynomially growing L∞ estimate (proposition
2.1) for the solution of eq. (3) – (6). We start with the
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Lemma 2.1 (A-priori estimates due to the decay of the entropy)
Let ai, i = 1, 2, 3, 4, be solutions of the system (3)-(6) with initial data such
that ai,0 ln(ai,0) ∈ L1([0, 1]). Then, for all T > 0 (and with Mi defined in
(9)),

‖∂xAi‖2L2([0,T ]×[0,1]) ≤ 1

4di

∫ 1

0

4
∑

j=1

aj,0 ln(aj,0) dx+ 4e−1 := C4,i ,(14)

sup
t∈[0,T ]

‖ai ln(ai)‖L1([0,1]) ≤
∫ 1

0

4
∑

i=j

aj,0 ln(aj,0) dx+ 5e−1 := C5 , (15)

sup
t∈[0,T ]

‖Ai‖2L2([0,1]) ≤ Mi . (16)

Proof of lemma 2.1: Integration of the entropy dissipation (11) yields

∫

Ω

4
∑

i=1

ai ln(ai) dx(T ) + 4

4
∑

i=1

di

∫ T

0

∫

Ω

|∂xAi|2 dxdt ≤
∫

Ω

4
∑

i=1

ai,0 ln(ai,0) dx ,

so that (since −ai| ln(ai)| ≤ e−1), estimates (14) and (15) hold. Then, esti-
mate (16) is just the conservation of masses. �

Lemma 2.2 (A-priori bounds in L2([0, T ]× [0, 1]))
For i = 1, 2, 3, 4, the solutions ai of (3)-(6) with initial data ai,0 ln(ai,0) ∈
L1([0, 1]) satisfy for T > 0,

‖ai‖2L2([0,T ]×[0,1]) ≤ C6,i (1 + T ) , (17)

where the constants C6,i are stated explicitly in appendix 5.

Proof of lemma 2.2: Note first that

|Ai(t, x)−
∫ 1

0

Ai(t, y) dy| =
∣

∣

∣

∣

∫ 1

0

∫ x

u=y

∂uAi(t, u) dudy

∣

∣

∣

∣

≤
∫ 1

u=0

|∂uAi(t, u)| du .

Hence

|Ai(t, x)|2 ≤ 2

∫ 1

0

|∂uAi(t, u)|2 du+ 2

∫ 1

0

|Ai(t, u)|2 du ,

which yields (17) (using (16) and (14)), thanks to the following computation:

‖ai‖2L2([0,T ]×[0,1]) ≤
∫ T

0

(

sup
y∈[0,1]

|Ai(t, y)|2
)(

∫ 1

0
|Ai(t, x)|2 dx

)

dt

≤ 2Mi

∫ T

0

∫ 1

0
|∂uAi(t, u)|2 dudt+ 2M2

i T ≤ C6,i(1 + T ) .
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The next technical lemma provides classical polynomially growing bounds
for the solution of the 1D heat equation, which can be proven in an elementary
way.

The main steps of this proof are explained in appendix 5, together with
a formula for the constant C7 which appears in (19).

Lemma 2.3 (Explicit Lr bounds (r ≥ 1) for the 1D heat equation)
Let a denote the solution of the 1D heat equation (t > 0, x ∈ [0, 1], with
constant diffusivity da) with homogeneous Neumann boundary condition, i.e.

∂ta− da ∂xxa = g , ∂xa(t, 0) = ∂xa(t, 1) = 0 , (18)

and assume for the initial data a(0, x) = a0(x) and for the source term g(t, x)
that

a0 ∈ L∞([0, 1]) , g ∈ Lp([0,+∞)× [0, 1]) .

Then, for the exponents r, p ≥ 1 and q ∈ [1, 3) satisfying 1
r
+ 1 = 1

p
+ 1

q
and

for all T > 0, the norm ‖a‖Lr([0,T ]×[0,1]) grows at most polynomially in T like

‖a‖Lr([0,T ]×[0,1]) ≤ T 1/r‖a0‖L∞[0,1] + C7 (1 + T
1
q
+ 1

2 )‖g‖Lp([0,T ]×[0,1]) . (19)

Next, we apply lemma 2.3 to the right-hand side g = a1a3 − a2a4 of our
system, which is bounded in L1 by lemma 2.2. As result, we obtain an Lr

bound with r < 3 on the ai and thus an improved bound on g. Hence, after
three iterations (detailed below), we obtain that the L∞ norm increases at
most polynomially in time:

Proposition 2.1 Let ai, i = 1, 2, 3, 4, be solutions of the system (3)-(6) with
bounded initial data ai,0 ∈ L∞(Ω). Then, for T > 0,

‖ai‖L∞([0,T ]×[0,1]) ≤ C8,i

(

1 + T
21
2

)

.

The constants C8,i and the constants in the proof are stated in appendix 5.

Proof of proposition (2.1): By lemma 2.2, we have

‖a1a3 − a2a4‖L1([0,T ]×[0,1]) ≤
1

2

4
∑

i=1

C6,i (1 + T ) .
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Then, by lemma 2.3 with p = 1 and r = q ∈ [1, 3), for i = 1, 2, 3, 4,

‖ai‖Lr([0,T ]×[0,1]) ≤ T
1
r ‖ai,0‖L∞[0,1] +

C7

2

∑4
i=1C6,i (1 + T

1
r
+ 1

2 )(1 + T ) ,

≤ (‖ai,0‖L∞[0,1] +
3
2
C7

∑4
i=1C6,i)(1 + T

1
r
+ 3

2 ) . (20)

Next, for any s ∈ [2, 3),

‖a1a3 − a2a4‖L s
2 ([0,T ]×[0,1])

≤ C15 (1 + T
2
s
+3) .

Using again lemma 2.3, but with p = s
2
, q ∈ [1, 3) and r ∈ [1,∞), it follows

that

‖ai‖Lr([0,T ]×[0,1]) ≤ T
1
r ‖ai,0‖L∞[0,1] + C7C15 (1 + T

1
q
+ 1

2 )(1 + T
2
s
+3)

≤ C16,i(1 + T
1
r
+ 9

2 ) , (21)

since T
1
q
+ 1

2T
2
s
+3 = T

1
r
+ 9

2 , and with the constants C16,i given in appendix 5.
Then, for s ∈ [2,∞), we see that

‖a1a3 − a2a4‖L s
2 ([0,T ]×[0,1])

≤ 1

2

4
∑

i=1

‖ai‖2Ls([0,T ]×[0,1]) ≤
4
∑

i=1

C2
16,i (1 + T

2
s
+9) ,

(22)
and, secondly, by a last application of lemma 2.3 with p = s

2
, r = ∞, and

1 = 1
p
+ 1

q
,

‖ai‖L∞([0,T ]×[0,1]) ≤ ‖ai,0‖L∞[0,1] + C7

∑4
i=1C

2
16,i (1 + T

1
q
+ 1

2 )(1 + T
2
s
+9)

≤ C8,i (1 + T
21
2 ) ,

since T
1
q
+ 1

2T
2
s
+9 = T

21
2 , and with the constant C8,i defined in appendix 5. �

3 Entropy/entropy dissipation estimate

In this section, we prove proposition 3.1, which details an entropy/entropy-
dissipation estimate for E(ai), D(ai) defined in (11). The proof uses the
technical (but elementary) lemmata 3.1 and 3.2. Despite being lengthy, we
believe that the lemmata 3.1 and 3.2 provide a strategy which extends to
more general reaction-diffusion systems. In particular, in the special case
of spatial-independent (nonnegative) concentrations, lemma 3.1 establishes
a control of a L2-distance towards the steady state in terms of a reaction
term, which - due to the conservation laws (7) - can’t cease until the steady
state is reached. Lemma 3.2 generalizes this control to spatial-dependent
concentrations.

We begin with the :
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Lemma 3.1 Let Ai,∞, i = 1, 2, 3, 4, denote the positive square roots of the
steady state (10). Let Ai ≥ 0 be constants satisfying the conservation laws

(7), i.e. Aj
2
+ Ak

2
= A2

j,∞ + A2
k,∞ for (j, k) ∈ ({1, 3}, {2, 4}). Then,

4
∑

i=1

‖Ai −Ai,∞‖22 ≤ C9 ‖A1A3 − A2A4‖22 , (23)

where C9 is given in appendix 5.

Proof of lemma 3.1: The proof exploits the ansatz

Ai
2
= A2

i,∞(1 + µi)
2 , −1 ≤ µi , for i = 1, 2, 3, 4 . (24)

The conservation laws (7), more precisely the relations

A2
1,∞(2µ1 + µ2

1) + (−1)iA2
i,∞(2µi + µ2

i ) = 0 , i = 2, 3, 4, (25)

allow to express µ2, µ3, and µ4 as functions of µ1 :

µi = µi(µ1) = −1 +

√

1− (−1)i
A2

1,∞
A2

i,∞
(2µ1 + µ2

1) , i = 2, 3, 4. (26)

The function µ1 7→ µ3(µ1) is monotone increasing, while µ1 7→ µ2(µ1) and
µ1 7→ µ4(µ1) are monotone decreasing. Moreover, µi(µ1) = 0 if and only if
µ1 = 0 (for i = 2, 3, 4).

Since µ2(µ1), µ3(µ1), µ4(µ1) are real, µ1 is restricted to

µ1,min ≤ µ1 ≤ µ1,max , (27)

with

µ1,min = −1 +

√

1− min{A2
1,∞,A2

3,∞}
A2

1,∞
, µ1,max = −1 +

√

1 +
min{A2

2,∞,A2
4,∞}

A2
1,∞

.(28)

Due to the above monotonicity properties, we see that

−1 ≤ µ3(µ1,min) ≤ µ3(0) = 0 ≤ µ3(µ1,max) , (29)

−1 ≤ µi(µ1,max) ≤ µi(0) = 0 ≤ µi(µ1,min) , i = 2, 4. (30)

We now quantify how µ1 7→ µi(µ1) (for i = 2, 3, 4) are “close to proportional”
to µ1. In particular, for µ3, we Taylor-expand

√

1 +
A2

1,∞

A2
3,∞

(2µ1 + µ2
1) = 1 + 1+ζ√

1+(A2
1,∞/A2

3,∞)(2ζ+ζ2)

A2
1,∞

A2
3,∞

µ1 ,
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for some ζ ∈ (0, µ1), and consider the remainder

R3(µ1) =
A1,∞(1+ζ)√

1+(A2
1,∞/A2

3,∞)(2ζ+ζ2)
=

A2
3,∞

A1,∞

1
µ1

(

−1 +

√

1 +
A2

1,∞

A2
3,∞

(2µ1 + µ2
1)

)

,

for µ1 ∈ [µ1,min, µ1,max]. It is straightforward that R3(µ1) is continuous at
µ1 = 0 with R3(0) = A1,∞, and monotone increasing or decreasing in µ1 ∈
[µ1,min, µ1,max] if and only if A1,∞ < A3,∞ or A1,∞ > A3,∞, respectively.
Therefore,

0 < R3(µ1,min) < R3(µ1,max) ≤ A3,∞ , for A1,∞ ≤ A3,∞ ,

0 < R3(µ1,max) < R3(µ1,min) < 2A1,∞ , for A1,∞ ≥ A3,∞ ,

so that
0 < R3 ≤ max{2A1,∞, A3,∞} . (31)

For µ2 (and analogously for µ4), we expand

√

1− A2
1,∞

A2
2,∞

(2µ1 + µ2
1) = 1− 1+ζ√

1−(A2
1,∞/A2

2,∞)(2ζ+ζ2)

A2
1,∞

A2
2,∞

µ1 ,

for some ζ ∈ (0, µ1), and consider the remainder

R2(µ1) =
A1,∞(1+ζ)√

1−(A2
1,∞/A2

2,∞)(2ζ+ζ2)
= −A2

2,∞

A1,∞

1
µ1

(

1−
√

1− A2
1,∞

A2
2,∞

(2µ1 + µ2
1)

)

,

which is continuous with R2(0) = A1,∞, and increases with respect to µ1.
Therefore,

0 < R2(µ1,min) < R2(µ1,max) ≤ A1,∞ +
√

A2
1,∞ +min{A2

2,∞, A2
4,∞} ,

so that finally,

0 < R2, R4 ≤ A1,∞ +
√

A2
1,∞ +min{A2

2,∞, A2
4,∞} . (32)

Using the ansatz (24) to expand (23) (and using the identity A1,∞A3,∞ =
A2,∞A4,∞), we see that in order to prove lemma 3.1, we only have to establish
that

A2
1,∞µ2

1 + A2
2,∞µ2

2 + A2
3,∞µ2

3 + A2
4,∞µ2

4

A2
1,∞A2

3,∞ (µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4)
2 ≤ C9 , (33)

for µ1 ∈ [µ1,min, µ1,max].
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Considering the numerator of (33), we estimate thanks to (31), (32) that

4
∑

i=1

A2
i,∞µ2

i ≤ µ2
1A

2
1,∞

(

1 +
R2

2

A2
2,∞

+
R2

3

A2
3,∞

+
R2

4

A2
4,∞

)

≤ µ2
1A

2
1,∞A2

3,∞C9 , (34)

where C9 is given in the appendix 5. Regarding the denominator of (33), we
assume first that µ1 < 0. Then, thanks to the properties of monotonicity
of µ1 7→ µi(µ1), we observe in the sum µ1 + µ3 + µ1µ3 + (−µ2) + (−µ4) +
(−µ2µ4) that only the term µ1µ3 is nonnegative and all the other terms are
nonpositive. Moreover, we know in this case that −1 ≤ µ1 and −1 ≤ µ3; and
therefore µ3 ≤ −µ1µ3, implying

µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4 ≤ µ1 − µ2 − µ4 − µ2µ4 ≤ −|µ1| . (35)

If we secondly consider the case µ1 > 0, only the term −µ2µ4 is nonpositive
and −1 ≤ µ2 as well as −1 ≤ µ4, therefore µ2 ≤ −µ2µ4 and

µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4 ≥ µ1 + µ3 + µ1µ3 − µ4 ≥ |µ1| . (36)

Altogether, by (35) and (36), we estimate the denominator of (33) by

A2
1,∞A2

3,∞ (µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4)
2 ≥ A2

1,∞A2
3,∞µ2

1 ,

which proves (with (34)) that we can take the constant (73), and lemma 3.1
is obtained. �

The following lemma extends lemma 3.1 to nonnegative functions Ai

which satisfy the conservation laws (7).

Lemma 3.2 Let Ai,∞, i = 1, 2, 3, 4, denote the positive square roots of the
steady state (10), and Ai be measurable, nonnegative functions satisfying the

conservation laws (7), i.e. A2
j + A2

k = Mjk = A2
j,∞ + A2

k,∞ for (j, k) ∈
({1, 3}, {2, 4}). Then,

4
∑

i=1

‖Ai − Ai,∞‖22 ≤ C10 ‖A1A3 −A2A4‖22 + C11

4
∑

i=1

‖Ai −Ai‖22 , (37)

where

C10 = max

{

C9,max
j=1,3

{

4M

Mj2Mj4

}

,max
k=2,4

{

4M

M1kM3k

}}

, (38)

with C9 defined in (73) and

C11 =











C10

(√
M14M32 +M

)

, if

√

A2
i ≤ εi for some i = 1, 2, 3, 4 ,

C9

√
M14M32

(

1 + max
i=1,2,3,4

{

2
√
M

εi

}

)

+ max
i=1,2,3,4

{

2Ai,∞

εi

}

, else.

(39)
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Here

εj =

√

M Mj2Mj4

Mj2 +Mj4

(

√

1 +
Mj2 +Mj4

2M
− 1

)

, j = 1, 3 , (40)

εk =

√
M M1k M3k

M1k +M3k

(

√

1 +
M1k +M3k

2M
− 1

)

, k = 2, 4 . (41)

Proof of lemma 3.2: In order to apply lemma 3.1, we expand around the
mean values

Ai = Ai + δi(x) , δi = 0 , i = 1, 2, 3, 4 , (42)

and consider the ansatz in lemma 3.1:

A2
i = A2

i,∞(1 + µi)
2 , −1 ≤ µi , (43)

which preserves the relations (25) and thus all the sequel of lemma 3.1.
The ansatz (42), (43) implies readily for the right-hand side of (37) that

‖Ai − Ai‖22 = A2
i − Ai

2
= δ2i , (44)

Since
δ2i

√

A2
i + Ai

=

√

A2
i −Ai , (45)

it follows that

Ai = Ai,∞(1 + µi)−
1

√

A2
i + Ai

δ2i . (46)

For the left-hand side of (37), we use (46) to expand

‖Ai − Ai,∞‖22 = A2
i,∞µ2

i +
2Ai,∞

√

A2
i + Ai

δ2i . (47)

Thus the expansions in terms of δ2i is unbounded for vanishing A2
i ≥ Ai

2
and

we consider firstly the
Case A2

i ≥ ε2i : (leaving the case for small A2
i for later). We factorize

‖A1A3 −A2A4‖22 = ‖A1A3 − A2A4‖22 + 2(A1A3 −A2A4)(δ1δ3 − δ2δ4)

+‖A1δ3 + A3δ1 + δ1δ3 − A2δ4 − A4δ2 − δ2δ4‖22 . (48)

13



Since Ai ≤
√

A2
i by Jensen’s inequality and A2

1A
2
3 ≤ M14M32, A2

2A
2
4 ≤

M14M32 by the conservation laws (7), we estimate the second term on the
right-hand side of (48) using Young’s inequality:

2(A1A3 −A2 A4)(δ1δ3 − δ2δ4) ≥ −|A1A3 − A2A4| (δ21 + δ22 + δ23 + δ24)

≥ −
√

M14M32 (δ
2
1 + δ22 + δ23 + δ24) . (49)

Then, we insert (46) (recalling A1,∞A3,∞ = A2,∞A4,∞) into

‖A1A3 −A2A4‖22 = A2
1,∞A2

3,∞(µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4)
2

−2

(

√

A2
1A

2
3 −

√

A2
2A

2
4

)( √
A2

3 δ
2
1√

A2
1+A1

+

√
A2

1 δ
2
3√

A2
3+A3

− δ21 δ23

(
√

A2
1+A1)(

√
A2

3+A3)

−
√

A2
4 δ

2
2√

A2
2+A2

−
√

A2
2 δ

2
4√

A2
4+A4

+
δ22 δ24

(
√

A2
2+A2)(

√
A2

4+A4)

)

+

∥

∥

∥

∥

√
A2

3 δ
2
1√

A2
1+A1

+ . . .+
δ22 δ24

(
√

A2
2+A2)(

√
A2

4+A4)

∥

∥

∥

∥

2

2

. (50)

For the second factor on the right-hand side of (50), we estimate like above
∣

∣

∣

∣

√

A2
1A

2
3 −

√

A2
2A

2
4

∣

∣

∣

∣

≤
√
M14M32 and use (45) to compute

√
A2

3 δ
2
1√

A2
1+A1

+

√
A2

1 δ
2
3√

A2
3+A3

− δ21 δ23

(
√

A2
1+A1)(

√
A2

3+A3)
= 1

2

√
A2

3+A3√
A2

1+A1

δ21 +
1
2

√
A2

1+A1√
A2

3+A3

δ23

and we compute in the same way the product proportional to δ22δ
2
4. Thus, by

Ai ≤
√

A2
i <

√
M for all i = 1, 2, 3, 4, we obtain

−
√
M14M32

∣

∣

∣

∣

√
A2

3+A3√
A2

1+A1

δ21 +

√
A2

1+A1√
A2

3+A3

δ23 −
√

A2
4+A4√

A2
2+A2

δ22 −
√

A2
2+A2√

A2
4+A4

δ24

∣

∣

∣

∣

≥ −
√
M14M32 max

i=1,2,3,4

{

2
√
M√
A2

i

}

(

δ21 + δ22 + δ23 + δ24

)

. (51)

Therefore, inserting (47) into the left-hand side of (37) and combining
(44) and (48)–(51) for the right-hand side of (37) we have to prove that

4
∑

i=1

A2
i,∞µ2

i ≤ C10A
2
1,∞A2

3,∞ (µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4)
2

+

(

C11 − C10

√
M14M32

(

1 + max
i

{

2
√
M√
A2

i

})

−max
i

{

2Ai,∞√
A2

i+Ai

})

4
∑

i=1

δ2i .

14



When C10 ≥ C9 with C9 stated in (73), then lemma 3.1 (see (33)) implies
∑4

i=1A
2
i,∞µ2

i ≤ C9A
2
1,∞A2

3,∞ (µ1 + µ3 + µ1µ3 − µ2 − µ4 − µ2µ4)
2 and we look

for

C11 ≥ C9

√
M14M32

(

1 + max
i=1,2,3,4

{

2
√
M√
A2

i

})

+ max
i=1,2,3,4

{

2Ai,∞√
A2

i

}

. (52)

We now treat the case
Case A2

i ≤ ε2i : More precisely, we suppose that A2
i ≤ ε2i , where εi are con-

stants to be specified later. In particular for A1 ≤ A2
1

1/2 ≤ ε1, we estimate

(using A3 <
√
M , A2 ≤

√
M12, A4 ≤

√
M14 and A2

2
A4

2
= (A2

2−δ22)(A
2
4−δ24)

with (7) for the product A2
2A

2
4) that

‖A1A3 − A2A4‖22 = A1
2
A3

2 − 2A1A3A2 A4 + A2
2
A4

2
(53)

≥ −2ε1
√

M M12 M14 + (M12 − ε21)(M14 − ε21)−A2
4 δ

2
2 − A2

2
δ24 .

Moreover by (7), a straightforward expansion yields

4
∑

i=1

‖Ai − Ai,∞‖22 ≤ 2M . (54)

Thus, combining the left-hand side of (37) with (54) and the right-hand

side with (48), (49), and (53) where A2
4, A2

2 ≤ M , we must prove that

2M ≤ C10

(

M12 M14 − 2ε1
√

M M12 M14 − ε21(M12 +M14) + ε41

)

+ (C11 − C10

√

M14 M32 − C10M)
(

δ21 + δ22 + δ23 + δ24

)

. (55)

We treat the first bracket on the right-hand side of (55). After neglecting ε41,
we denote the nonnegative solution of the (in terms of ε) quadratic equation
xy − 2ε

√
M xy − ε2(x+ y) = h for 0 ≤ h ≤ xy by

ε(x, y, h) := −
√
M xy

x+ y
+

√

M xy

(x+ y)2
+

xy − h

x+ y
. (56)

In the present case, where x = M12 and y = M14, choosing in particular
h = xy

2
confirms (55) with

C10 ≥ 2M
h

= 4M
M12M14

,

C11 ≥ C10

(√
M14M32 +M

)

,

}

for

√

A2
1 ≤ ε1 := ε(M12,M14,

M12 M14

2
) .

(57)
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Similarly, for the cases A2
i ≤ ε2i , i = 2, 3, 4, we obtain the same C11 and

C10 ≥ 4M

M32M34
, for

√

A2
3 ≤ ε3 := ε(M32,M34,

M32 M34

2
) , (58)

C10 ≥ 4M

M1kM3k
, for

√

A2
k ≤ εk := ε(M1k,M3k,

M1k M3k

2
) , k = 2, 4 ,

and this yields (38) and (39). �

We are now in position to state the entropy/entropy-dissipation estimate
for E,D defined in (11), which holds for admissible functions regardless if or
if not they are solutions (at a given time t) of eq. (3) – (6).

Proposition 3.1 Let ai be (measurable) functions from [0, 1] to R such that

0 ≤ ai ≤ ‖ai‖L∞([0,1]), and
∫ 1

0
(aj + ak) = Mjk for (j, k) ∈ ({1, 3}, {2, 4}).

Then,

D(ai) ≥
4

C12
min

{

1

C10
,
min{d1, d2, d3, d4}

C11P ([0, 1])

}

(E(ai)−E(ai,∞)) (59)

where P ([0, 1]) is the Poincaré constant of interval [0, 1], C10 ≡ C10(Mjk) is
defined in (38), C11 ≡ C11(Mjk) in (39), and

C12(‖ai‖L∞([0,1]),Mjk) = max
i

{

Φ(‖ai‖L∞([0,1]), ai,∞)
}

. (60)

Here, Φ is the function defined by the formula

Φ(x, y) =
x (ln(x)− ln(y))− (x− y)

(
√
x−√

y)2
, Φ(x, y) = O(ln(x)) . (61)

Proof of proposition 3.1: Using the inequality (a1a3 − a2a4)(ln(a1a3) −
ln(a2a4)) ≥ 4(A1A3 − A2A4)

2 and Poincaré’s inequality, we obtain the esti-
mate

D(ai) ≥ 4 ‖A1A3 − A2A4‖22 +
4
∑

i=1

4di
P (Ω)

∥

∥Ai − Ai

∥

∥

2

2
. (62)

We show in the sequel that the right-hand side of (62) is bounded below by
the relative entropy E(ai)−E(ai,∞).

First, we use the conservation laws (7) to rewrite the relative entropy as

E(ai)−E(ai,∞) =

∫

Ω

4
∑

i=1

(

ai ln
ai
ai,∞

− (ai − ai,∞)

)

dx
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and we use the boundedness of the function Φ defined in (61), (see [DF,
lemma 2.1]) to estimate

E(ai)− E(ai,∞) ≤ C12

4
∑

i=1

‖Ai −A1,∞‖22 , (63)

with C12 as defined in (60). The statement of proposition 3.1 follows now
from lemma 3.2 by comparison with (62). �

4 Estimates of convergence towards equilib-

rium

In this section, we use the estimates of the two previous sections in order to
obtain proposition 4.2 and theorem 1.1. We begin with a Cziszar-Kullback
type inequality relating convergence in entropy with L1 convergence.

Proposition 4.1 For all (measurable) functions ai : [0, 1] → R+, i = 1, 2, 3, 4,

for which
∫ 1

0
(aj+ak) = Mjk for (j, k) ∈ ({1, 3}, {2, 4}), we have the inequality

2
√
2(E(ai)− E(ai,∞)) ≥

4
∑

i=1

Mi
−1‖ai − ai,∞‖21 ,

with Mi defined in (9) and for the entropy functional E(ai) defined in (11).

Proof of proposition 4.1: We define q(ai) = ai ln ai − ai and rewrite

E(ai)−E(ai,∞) =
4
∑

i=1

∫

Ω

ai ln
ai
ai

dx+
4
∑

i=1

(q(ai)− q(ai,∞)). (64)

Using the conservation laws (7), we define moreover

Qjk(Mjk, aj) = q(aj) + q(Mjk − aj) = Qjk(Mjk, ak) for aj , ak ∈ [0,Mjk] ,

and rewrite the second sum on the right-hand side of (64) as

4
∑

i=1

(q(ai)− q(ai,∞)) = Qjk(Mjk, aj)−Qjk(Mjk, aj,∞)

+Qj′k′(Mj′k′, aj′)−Qj′k′(Mj′k′, aj′,∞)

= Qjk(Mjk, ak)−Qjk(Mjk, ak,∞)

+Qj′k′(Mj′k′, ak′)−Qj′k′(Mj′k′, ak′,∞) ,
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with j 6= j′ and j, j′ ∈ {1, 3} and k 6= k′ and k, k′ ∈ {2, 4}. Since the
derivatives Q′

jk and Q′′
jk satisfy

Q′
jk(Mjk, aj) +Q′

j′k′(Mj′k′, aj′) = Q′
jk(Mjk, ak) +Q′

j′k′(Mj′k′, ak′) = 0 ,

and

Q′′
jk(Mjk, aj) ≥

4

Mjk
, Q′′

jk(Mjk, ak) ≥
4

Mjk
,

we Taylor-expand (64) (where the first order terms vanish due to a1−a1,∞ =
a3 − a3,∞ and a2 − a2,∞ = a4 − a4,∞, respectively) and get

4
∑

i=1

(q(ai)− q(ai,∞)) ≥
4
∑

i=1

M−1
i |ai − ai,∞|2 .

Secondly, for the first term on the right-hand side of (64), we estimate with
the classical Cziszar-Kullback-Pinsker inequality (Cf. [Csi])

∫

Ω

ai ln
ai
ai

dx ≥ 1

2ai
‖ai − ai‖21 ,

for which moreover ai ≤ Mi. Alltogether, we obtain (by Young’s inequality
‖ai − ai,∞‖21 ≤

√
2‖ai − ai‖21 + 2

√
2|ai − ai,∞|2)

E(ai)− E(ai,∞) ≥
4
∑

i=1

‖ai − ai,∞‖21
2
√
2Mi

.

This ends the proof of proposition 4.1. �

We now are in a position to state the

Proposition 4.2 Let di > 0 for i = 1, 2, 3, 4 be strictly positive diffusion
rates. Let the initial data ai,0 be nonnegative functions of L∞([0, 1]) with
strictly positive masses Mjk for (j, k) ∈ ({1, 3}, {2, 4}). Then, the unique
classical solution (t, x) 7→ ai(t, x) to eq. (3) – (6) satisfies (for Mi defined in
(9) and E in (11)) the decay (12), i.e.

4
∑

i=1

M−1
i ‖ai(t, ·)− ai,∞‖2L1([0,1]) ≤ 2

√
2(E(ai,0)− E(ai,∞)) e−

C1 t

ln(e+t) ,

with a constant C1 which can be computed explicitly (Cf. appendix 5).
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Proof of proposition 4.2: Thanks to the entropy identity d
dt
E(ai) =

−D(ai), proposition 3.1 yields

d

dt
ln(E(ai)−E(ai,∞)) ≥ 4

C12(t)
min

{

1

C10
,
min{d1, d2, d3, d4}

C11P

}

, (65)

where C12(t) = maxi=1,2,3,4{Φ(‖ai‖L∞([0,t]×[0,1]), ai,∞)} with Φ(x, y) defined in
(61) (this function is monotone increasing in x, Cf. [DF], lemma 2.1), and
C10, C11 and P defined in proposition 3.1.

Moreover, it is easy to see that for k > 1,

Φ(ky, y) =
k ln(k)− (k − 1)

(
√
k − 1)2

≤
√
k + 1√
k − 1

ln(k) , ∀k > 1 . (66)

Note that the factor (
√
k+1)/(

√
k− 1) is strictly monotone decreasing in k.

Next, we know thanks to lemma 2.1 that ‖ai‖L∞([0,t]×[0,1]) ≤ C8,i (1+ t
21
2 ).

Thus, in order to apply (66) with e.g. k ≥ 2, we estimate ‖ai‖L∞([0,t]×[0,1]) ≤
max{C8,i, 2ai,∞} (1 + t

21
2 ) so that

Φ(‖ai‖L∞([0,t]×[0,1]), ai,∞) ≤ Φ
(

max
{

C8,i

ai,∞
, 2
}(

1 + t
21
2

)

ai,∞, ai,∞

)

≤
√
2+1√
2−1

(

ln
(

max
{

C8,i

ai,∞
, 2
})

+ ln
(

1 + t
21
2

))

and therefore

C12(t) ≤ (
√
2 + 1)2

(

max
i=1,2,3,4

{

ln

(

C8,i

ai,∞

)

, ln 2

}

+ ln
(

1 + t
21
2

)

)

.

Next, we notice that

∫ T

0

dt

max{ln C8,i

ai,∞
, ln 2}+ ln(1 + t

21
2 )

≥ 1

(max{ C8,i

ai,∞
, ln 2}+ 21

2
)

T

ln(e+ T )
,

(67)
since both sides vanish at T = 0 and the time-derivatives of the left-hand
side can be estimated below by

≥ 1

max{ln C8,i

ai,∞
, ln 2}+ 21

2
ln(e+ T )

≥ 1

(max{ C8,i

ai,∞
, ln 2}+ 21

2
)

1

ln(e + T )

>
1

(max{ C8,i

ai,∞
, ln 2}+ 21

2
)

1

ln(e+ T )

(

1− T

e+ T

1

ln(e + T )

)

,

which is the time-derivative of the right-hand side of (67).
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Finally, estimate (12) follows from integrating (65) on [0, T ] and the
Cziszar-Kullback type proposition 4.1. �

We now present the proof of theorem 1.1, which is based on interpola-
tion properties, and a second application of the entropy/entropy-dissipation
estimate (proposition 3.1).

Proof of theorem 1.1: To establish an H1 bound on the solution of eq.
(3) – (6), proposition 2.1 and (14) yield

T inf
t∈[0,T ]

‖∂xai‖2L2([0,1]) ≤ ‖∂xai‖2L2([0,T ]×[0,1]) ≤ 4C4,i C8,i

(

1 + T
21
2

)

,

for all T > 0. Since the function (T−1 + T
19
2 ) assumes its minimum value at

time T = (2/19)2/21, there exists a time τ ∈ [0, (2/19)2/21] when

‖∂xai(τ)‖2L2([0,1]) ≤ 4C4,i C8,i
21

2

(

2

19

)
19
21

.

Next, multiplying eq. (3) formally with ∂xxai yields with Young’s inequality

d

dt

∫ 1

0

|∂xai|2 dx+di

∫ 1

0

(∂xxai)
2 dx ≤ 1

4di
‖a1a3−a2a4‖2L2([0,1])+di

∫ 1

0

(∂xxai)
2 dx .

We integrate over a time interval T > (2/19)2/21 ≥ τ this formula and obtain

‖∂xai(T )‖2L2([0,1]) ≤ ‖∂xai(τ)‖2L2([0,1]) +
1

4di
‖a1a3 − a2a4‖2L2([0,T ]×[0,1]) .

Using the bound (22), i.e. ‖a1a3 − a2a4‖L2([0,T ]×[0,1]) ≤
∑4

i=1C
2
16,i (1 + T

19
2 ),

we obtain

‖∂xai(T )‖2L2(Ω) < C17

(

1 + T 19
)

for T > (2/19)2/21 , (68)

with the constant C17 given in the appendix 5. This formal argument can be
made rigorous by approximations of the solution (see e.g. [MP]).

Next, we use (see e.g. [Tay]) the Gagliardo-Nirenberg-Moser interpolation
inequality

‖ai‖L∞([0,1]) ≤ G([0, 1])‖∂xai‖
1
2

L2([0,1])‖ai‖
1
2

L2([0,1]) . (69)

Then, interpolating the almost exponentially decaying L1 norm of proposition
4.2 for T > (2/19)2/21 ≥ τ , we get

‖ai(T )‖L∞([0,1]) ≤ ai,∞ + ‖ai − ai,∞‖L∞([0,1]) ≤ ai,∞ +

G([0, 1])‖∂x(ai − ai,∞)‖
1
2

L2([0,1])‖ai − ai,∞‖
1
4

L∞([0,1])‖ai − ai,∞‖
1
4

L1([0,1]) ≤ C13,i ,
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where (68), proposition 2.1 and proposition 4.2 lead to the constants C13,i

given by (74) in appendix 5. Moreover, for 0 < τ ≤ (2/19)2/21, the L∞

bound of theorem 1.1, i.e. the value of C2,i (70) follows from proposition 2.1.
Finally, using this global L∞ bound, the right-hand side of (65) is bounded
below by a constant and the exponential decay stated in the theorem can be
obtained by the standard Gronwall’s lemma. �

5 Appendix

In order to convince the reader that all constants in this work are explictly
computable, we provide the following formulas:

Lemma 5.1 (Explicit constants)

C1 =
4min

{

1
C10

,
min{d1,d2,d3,d4}

C11P ([0,1])

}

(
√
2+1)2

(

maxi=1,2,3,4

{

C8,i
ai,∞

,ln 2

}

+ 21
2

) ,

C2,i ≤
{

21
19
C8,i , 0 < t ≤ ( 2

19
)2/21 ,

C13,i , t > ( 2
19
)2/21 ,

(70)

C3 =

(

4min

{

1
C10

,
mini=1,2,3,4{di}

C11P ([0,1])

}

max
i=1,2,3,4

{Φ(C13,i,ai,∞})

)

, C6,i = 2Mi(Mi + C4,i) ,

C7 = d
− 1

q
a 2

4q2−3q−2
q(2q−1)

(

π
q

)
2+q

2q(2q−1)
(

1
3−q

)
2+q

q(2q−1)
(

1
2+q

)
q−3

q(2q−1)
+ d

1
2
a 23+

2
q

(

1
2+q

)
1
q

,(71)

C8,i = ‖ai,0‖L∞[0,1] + 3C7

∑4
i=1C

2
16,i , (72)

C9 =
1+max{4

A2
1,∞

A2
3,∞

,1}

A2
3,∞

+
(

1
A2

2,∞
+ 1

A2
4,∞

)

(A1,∞+
√

A1,∞+min{A2
2,∞,A2

4,∞})
2

A2
3,∞

, (73)

C13,i = ai,∞ +G(Ω)C
1
4
17C

1
4
8,i

(

2
3
2 Mi(E(ai,0)− E(ai,∞))

)
1
8
3

1
4 C14 , (74)

C14 = sup
t∈[0,∞)

{

(

1 + t
59
2

)
1
4
exp

(

− t
ln(e+t)

min
{

1
C10

,
min{d1,d2,d3,d4}

C11P ([0,1])

}

2(
√
2+1)2

(

max
i=1,2,3,4

{

C8,i
ai,∞

}

+ 21
2

)

)}

,

C15 =
∑4

i=1

(

‖ai,0‖L∞[0,1] +
3
2
C7

∑4
i=1C6,i

)2
, (75)

C16,i = ‖ai,0‖L∞[0,1] + 3C7C15 , (76)

C17 = 4C4,iC8,i
21
2

(

2
19

)
19
21 + 1

2di

(
∑4

i=1C
2
16,i

)2
, (77)

where Mi is defined in (9), C4,i is given in (14), C10 is defined in (38) (de-
pending on C9 given in (73)), C11 is defined in (39), C15 in (75)), C16,i

in (76), and the function Φ is given in (61). Moreover, P ([0, 1]) denotes
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the Poincaré constant of [0, 1] and G([0, 1]) denotes the Gagliardo-Nirenberg-
Moser constant in (69).

We also provide a short proof of lemma 2.3 for the sake of completeness.

Proof of lemma 2.3: The proof uses Fourier series, which simplify when
(18) is mirrored evenly around x = 0, i.e. when the functions are extended
like

ã(t, x) =

{

a(t, x) x ∈ [0, 1],
a(t,−x) x ∈ [−1, 0],

(78)

and when g̃ and ã0 are defined analogously. Then, the eigenvalue-problem
ϕ̃xx = λϕ̃ on [−1, 1] with homogeneous Neumann boundary and periodicity
conditions is satisfied by the eigenvalue-eigenfunction pairs

(λk, ϕ̃k(x)) = (−(kπ)2, cos(kπx)) for k = 0, 1, 2, . . .

and yields the Fourier representation

ã(t, x) =
∫ 1

−1
ã0(y) dy + 2

∞
∑

k=1

eλkdat
(

∫ 1

−1
ã0(y)ϕ̃k(y) dy

)

ϕ̃k(x)

+
∫ t

0

∫ 1

−1
g̃(s, y) dyds+ 2

∞
∑

k=1

∫ t

0
eλkda(t−s)

(

∫ 1

−1
g̃(s, y)ϕ̃k(y)dy

)

ds ϕ̃k(x) .(79)

Thanks to Poisson’s summation formula, we can write down

ã(t, x) = 1
2
√
π

∫ 1

−1
ã0(y)

∞
∑

k=−∞

1√
dat

e−
(2k+x−y)2

4dat dy (80)

+ 1
2
√
π

∫ t

0

∫ 1

−1
g̃(s, y)

∞
∑

k=−∞

1√
da(t−s)

e−
(2k+x−y)2

4da(t−s) dyds .

This yields the estimate

‖ã‖Lr([0,T ]×[−1,1]) ≤ 1
2
√
π
‖ã0 ∗x S‖Lr([0,T ]×[−1,1])

+ 1
2
√
π
‖g̃ ∗t,x S‖Lr([0,T ]×[−1,1]) , (81)

where S(t, x) :=
∑∞

k=−∞
1√
dat

e−
(2k+x)2

4dat satisfies (for q ∈ [1, 3))

‖S(t, ·)‖L1([−1,1]) = 2
√
π , ‖S‖Lq([0,T ]×[−1,1]) ≤ C7

(

1 + T
1
q
+ 1

2

)

. (82)

The second formula of (82) can be obtained by using (when n 6= 0)

(2n+ x)2 ≥ |2n+ x| ≥ 2n− 1
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in order to estimate

‖S‖Lq([0,T ]×[−1,1]) ≤
∥

∥

∥

∥

∥

(dat)
− 1

2

(

e−
x2

4dat + 2
∞
∑

n=1

e−
2n−1
4dat

)
∥

∥

∥

∥

∥

Lq([0,T ]×[−1,1])

≤
∥

∥

∥

∥

(dat)
− 1

2 e−
x2

4dat

∥

∥

∥

∥

Lq([0,T ]×[−1,1])

+2
∥

∥

∥
(dat)

− 1
2

(

e1/4dat − e−1/4dat
)−1
∥

∥

∥

Lq([0,T ]×[−1,1])

≤
(

∫ T

0

(dat)
−q/2 2

√
π

√

dat

q
erf

( √
q

2
√
dat

)

dt
)1/q

+4
(

∫ T

0

|2(dat)1/2|q dt
)1/q

.

Returning to (81), we can estimate each term in the right-hand side in
order to obtain lemma 2.3, the fourth term being the most difficult. In
order to treat it, we apply Young’s inequality ‖g̃ ∗ S‖Lr ≤ ‖g̃‖Lp‖S‖Lq for
1
r
+ 1 = 1

p
+ 1

q
and estimate (82) for ‖S‖Lq . �
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Kutató Int. Közl. 8 (1963), pp. 85–108.

[CV] J. Carrillo, J.L. Vazquez, Fine asymptotics for fast diffusion equations.
Comm. Partial Differential Equations 28, no. 5-6 (2003), pp. 1023–1056.

23



[DelPD] M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg
inequalities and applications to nonlinear diffusions. J. Math. Pures
Appl. 81, no. 9 (2002), pp. 847–875.

[DF] L. Desvillettes, K. Fellner, Exponential Decay toward Equilibrium via
Entropy Methods for Reaction-Diffusion Equations, J. Math. Anal. Appl.
319, (2006), pp. 157–176.

[DFPV] L. Desvillettes, K. Fellner, M. Pierre, J. Vovelle About Global Ex-
istence for Quadratic Systems of Reaction-Diffusion, to appear in Ad-
vanced Nonlinear Studies

[DM] L. Desvillettes, C. Mouhot, Large time Behavior of the a priori bounds
for the solutions to the spatially homogeneous Boltzmann equations with
soft potentials. Preprint HYKE2005-029 available at www.hyke.org.

[DV00] L. Desvillettes, C. Villani, On the spatially homogeneous Landau
equation for hard potentials. II. H-theorem and applications. Comm.
Partial Differential Equations 25, no. 1-2 (2000), pp. 261–298.

[DV01] L. Desvillettes, C. Villani, On the trend to global equilibrium in
spatially inhomogeneous entropy-dissipating systems: the linear Fokker-
Planck equation. Comm. Pure Appl. Math. 54, no. 1 (2001), pp. 1–42.

[DV05] L. Desvillettes, C. Villani, On the trend to global equilibrium for
spatially inhomogeneous kinetic systems: the Boltzmann equation. In-
ventiones Mathematicae. 159, no. 2, (2005) pp. 245–316.

[FNS] K. Fellner, L. Neumann, C. Schmeiser, Convergence to global equilib-
rium for spatially inhomogeneous kinetic models of non-micro-reversible
processes, Monatsh. Math. 141, no. 4 (2004), pp. 289–299.

[FMS] W. E. Fitzgibbon, J. Morgan, R. Sanders, Global existence and bound-
edness for a class of inhomogeneous semilinear parabolic systems. Non-
linear Analysis, Theory, Methods & Application, 19, no.9 (1992), pp.
885-899.

[FHM] W. Fitzgibbon, S. Hollis, J. Morgan, Stability and Lyapunov func-
tions for reaction-diffusion systems. SIAM J. Math. Anal. 28, no. 3
(1997), pp. 595–610.
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