SOME ASPECTS OF THE ASYMPTOTICS LEADING FROM GAS-PARTICLES
EQUATIONS TOWARDS MULTIPHASE FLOWS EQUATIONS

LAURENT DESVILLETTES AND JULIEN MATHIAUD

REsuME. This paper is devoted to the establishment at the formal level of a scaling leading from gas-
particles (also called Eulerian-Lagrangian) models for monodisperse thick sprays towards multiphase
flows models (also called Eulerian-Eulerian) including the volume fraction as an unknown. This
passage to the limit involves the study of an inelastic collision operator acting on internal energies
as well as velocities.

1. INTRODUCTION

Sprays are flows involving a continuous gaseous phase and a disperse phase (typically constituted
of liquid droplets) whose volume fraction is not too big. We consider in this paper only monodisperse
sprays (that is, all the droplets in the disperse phase have the same radius r). Moreover, we shall
also suppose that all droplets are incompressible and that no evaporation occurs, so that r will be
in the sequel an absolute constant.

We denote by a := «a(t,x) € [0,1] the volume fraction of gas at time ¢ € Ry and point x € Q
(Q being a subset of R3). Considering this quantity makes sense when the volume %777"3 of a
typical droplet is much smaller than a small (but macroscopic) elementary volume of fluid. We
say that the spray is thick (it was first introduced in [Duk80| and then used in the KIVA code
[O’R81, AOB89, AO89, OZS09]) when 1 — «(t,z) is not negligible in at least part of Ry x
(typically 1 — a(t,z) >> 1073) but not too big either (typically, 1 — a(t,z) < 0.2 at worst). We
refer to [Duk80, O’R81] for the concept of thick spays.

Thick sprays are modeled by a coupling of a kinetic equation and a fluid equation. This coupling
is done through the volume fraction « and the drag between the two phases. We write below the
set of equations described in [Duk80], with a few differences that we explain in the sequel.

We denote by p, := py(t,z) € Ry, p:=p(t,x) € Ry, uy := uy(t,z) € R3, e, 1= ¢,(t,x) € Ry,
Ey = Ey(t,x) = ey4(t,x) + & |ug(t,z)[> € Ry and T, := Ty(t,x) € Ry the respective density (of
mass), pressure, velocity, internal energy (per unit of mass), total (internal + kinetic) energy (per
unit of mass), and temperature of the gas. Those quantities satisfy the following balance laws:

(1) (915(04,09) + V- (apgug) =0,

(2) (apgug) + Vi - (apguy @ ug) + Vap = —A,

(3) O(apgEy) + V- (apg (Eg + p£> ug> + pdya = — By — B,
g

where A is the momentum transferred to the (elementary volume at time ¢ and point x of) gas
by the dispersed phase and By, Bs constitute the corresponding (resp. mechanical and thermal)
transfer.

The density in the phase space f := f(t, z, up, ep) > 0 of droplets which at time ¢ and point = have
velocity u, € R3 and internal energy e, € R satisfies the following Vlasov-Boltzmann equation:

(4) atf"i‘up : fo+ vup : (fr) + a@p(f(ﬁ) = Q(f7 f)7
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where I' and ¢ represent the transfer of momentum and energy of the gaseous phase on a given
droplet (which at time t and point z has velocity u, € R? and internal energy e, € R.). Accordingly,

m
(5) mpl’ = _p_pvxp — D (up — ug); mpd = @ (T, — Tp),
p
(6) A= / mpl' f dupdep,
Up,€Ep
Vi
(7) By = / my <r + p) cuy f duyde,,
Pp
Up,Ep
(8) By = / mp f duydey,
Up,€p

where m), is the mass of one droplet, p, is the density of the liquid constituting the droplets
(my = %wr?’ pp, and my, pp, r are absolute constants), and 7T}, is the temperature of the droplet.
In (5), the term D (u, — ug4) models the drag. The drag coefficient D is in general a function of py,
|ug — up| (and also 7, p, and the molecular viscosity of the gas [this last quantity being neglected
in the equation of momentum of the gas|).

Also in (5), the term @ (T, — T,) models the thermal exchanges between the droplets and the
gas. The coefficient @ in general depends upon the thermal viscosity of the particle and the Nusselt
number (and therefore upon r, |ug — |, etc.).

The system is closed thanks to the constitutive equations of the gas and the liquid:

(9) p(t,x) :Pl(pg(tax)’eg(tax))a Tg(tax) :Tl(pg(tax)’eg(t’x))’
(10) Ty = Ta(ep),
and the identity for the volume fraction of droplets:
4
(11) 1—at,x) = gwr?’//f(t,x,up,ep) dupdey,.
Up,€p

The set of equations (1) — (11) is sometimes called “Gas-particles” or “Eulerian-Lagrangian”. The
main differences with the model proposed by Dukowicz ([Duk80]) is that we take into account
collisions (they were neglected in the original model) and equations for the energy ([BDMO03]).

Note that the presence of a non-infinitesimal volume fraction 1 — « of droplets is not compatible
with the presence of a non-infinite Boltzmann kernel (this is a consequence of the Boltzmann-Grad
asymptotics: cf. [CIP94]). The situation in the classical work of Dukowicz [Duk80] is even worse
since no collision kernel is considered there. The scaling that we propose in next section partially
removes this incompatibility, since the collision kernel tends to infinity. The formulas for Q) that we
propose are original and thoroughly described in subsection 2.1.

We provide in this work a link between eq. (1) — (11) and a different class of systems, sometimes
called "Eulerian-Eulerian", which models two-phase flows (including thick sprays). Those systems
are thoroughly described in [IH06]. They are obtained at a heuristic level by taking averages of
Euler-type equations for both phases, and by imposing reasonable closures.

In the "Eulerian-Eulerian" approach, the phase space f of droplets is replaced by macroscopic
quantities, namely: the density (of mass) p := p(t,7) € Ry of liquid, its velocity v := v(t,z) € R?,
its internal energy (per unit of mass) e := e(t,z) € R, its total (internal + kinetic) energy (per
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unit of mass) E := E(t,z) = e(t,z) + 3 [v(t,z)|*> € R4 and its temperature T := T'(t,z) € R;. The
equations write

(12) d(apg) + Vi - (apgug) =0,
(13) O(apgug) + Vi - (apgug @ ug) + aVyp = — A,
(14) O(apgEy) + Vo - <apg <Eg + p£> ug> +pdya = —By — By,
9
(15) Bu((1 — 0)p) + Vi - (1 — a)ow) =0,
(16) (1 = @)pv) + Vo - (L = a)pr @ v) + (1 — @) Vap = 4,
(17) 9 (1 — a)pE) + V, - <(1 —a)p <E + %) v) +pdy(1 — o) = By + Bo.
Those balance laws are completed by the constitutive equations of the gas (similar to (9))
(18) p(t, ) = Pi(pg(t, @), e4(t,2));  Ty(t,z) = Ti(pg(t, x), eq4(t, 2)),
together with the constitutive equations of the liquid (incompressible) phase
(19) T(t,x) = Ta(e(t,x)), p(t,z) = pp.
Finally, the transfer terms A, B;, Bo of momentum and energy write
~ P = ~ P =

20 A=—-(1—-—a)—D(v-— Bi=—(1—-a)—D(v-— .
(20) (1-0a) my (v —ug), 1 (I-a) my (v —ug) - v,
(21) By=-(1-a) L &@T-1).

mp

The terms A, By, By respectively represent the drag force term, its deposit in terms of energy, and
the thermal exchanges. The constants D, ® respectively represent the drag force coefficient and the
thermal conduction coefficient. They can be fitted using experimental data and in general depend
upon «, v — ug4|, etc . Note that systems like (12) — (19) appear not only in the theory of sprays,
but also in many other kinds of multiphase flows (stratified, churning flows, etc.), the transfer terms
(like A, etc.) depend in general of the type of flows which are considered and are generally obtained
by using statistical averages ([IH06, AOB89, O’R81, OZS09)).

Our goal in this paper is to provide a clear scaling which enables to derive “rigorously at the
formal level” macroscopic equations such as (12) — (21) from “gas-particles” equations such as (1)
— (11). It is clear that eq. (15) — (17) will be obtained by taking moments (with respect to v, e)
of eq. (4). This stategy has already been used in many works concerning the modeling of sprays
([Mas96, Lau02, Duf05]), in the more complicated case when the spray is polydisperse: it uses
however heuristic closures in order to derive the "Eulerian-Eulerian" equations.

Our approach, though it is restricted to the simpler case of monodisperse sprays, is quite different
since:

i) It is based on a scaling of the sprays equation obtained after a non-dimensionalization of those
equations;

ii) It provides non heuristical closures (that is, a mathematical link between A, By, By and A, By,
Bs);

iii) It involves the description of a new variant of the Boltzmann kernel where all the parameters
are assessed.

3



In the scaling that we propose, the collision term ) appearing in (4) must be dominant. This
exactly corresponds in the context of standard kinetic theory to the limit of small Knudsen number,
in which % is put in front of the collision kernel, and which leads from the Boltzmann equation
of rarefied gases towards the compressible Euler equations of fluid dynamics (Cf. [KMN79] for a
rigorous proof in the context of very smooth solutions on a small time interval, and [Gol05] for a

general survey on the question).

Our paper is structured as follows: in section 2, the gas-particles equations are specified in detail,
including the collision kernel ). Then, a non-dimensional version of those equations is provided
in section 3. The distributions which cancel @) are described in section 4. Then, equations for the
macroscopic quantities (for both phases) are written down and the system is closed (in section 5).
Some conclusions and perspectives are presented at the end of the paper (section 6).

2. PRESENTATION OF THE INELASTIC COLLISION KERNEL

2.1. General form of the collision kernel. We recall here the main assumptions that we pre-
sented in the introduction of this work about the flow we consider.

We assume that the flow is constituted of a surrounding gas and of a dispersed liquid phase. This
phase is itself assumed to be of relatively small volume fraction (typically between 1073 and 0.2),
and to be constituted of very tiny spherical incompressible droplets having all the same radius r
(that is, the spray is monodisperse). The flow inside the droplets is not modeled.

As stated in the introduction, a system which models the spray under this assumption can be
written down by considering the unknown f := f(¢,2,up,ep) > 0 for the droplets and p, :=
pe(t,z) € Ry, uy = uy(t,x) € R®, p:=p(t,z) € Ry, E; := Ey(t,x) € Ry for the gas. The set of
equations is then (1) — (11), and it remains to precisely define the collision operator Q.

The assumptions that underly the establishment of this operator are the following: First, since the
spray is monodisperse, no complex phenomena of coalescence or breakup of droplets are considered.
For the same reason, all collisions are supposed to be binary (that is, two droplets are present at
the beginning of the collision and produce two droplets at the end of the collision).

Then, since droplets are macroscopic objects, the cross section will be that of hard spheres.
For the same reason, kinetic energy conservation during the process of collision is not expected in
general. As a consequence, one needs to write down a model in which part of the kinetic energy is
lost: models of granular media (Cf. [BCGO00, Vil02, CCC09]) provide a good solution for that.

Moreover, since the internal energy of the droplets is one of the variables in f, one needs a
rule to exchange internal energy during the process of collision: models for polyatomic gases (Cf.
[BL75, Des97|) provide a simple solution for this physical phenomenon.

Finally, the kinetic energy which is lost has to be converted in internal energy, and to be dis-
tributed between the two outgoing droplets. Since those droplets have the same volume, we choose
to divide it equally. Collecting all those ideas, we end up with a collision kernel which writes

(22) QUf, [tz up, ep) = ////(ﬁ% ft,z/ up*,’ep*) f(t,x"up’/ep)

0€S?up, €R?
ep, ERT

.- f(t,x,up*,ep*)f(t,x,up,ep)> X 1{,%,6;20} 2 lup — up, | dodu,, de,,
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where the pre-collisional velocities ‘u,_ and 'u, are defined as

Up+up, 1-—0 1+0

up = 5 Y (up — up,) +ﬂ|up—up*|0a
up+up, 1-0 1+0

,up* = 9 43 (up - up*) - W’up - up*\a.

Here, o belongs to the unit sphere S?, and faeSQ do = 4m. The pre-collisional internal energies ‘e,
and ‘e, are defined as

2—a a 1
To, = _ _ - AE
DT g P T g gy T 3 2
, a 2—a 1
- — 2 AE
e T To 9, T 5 g T 5 A

where
1, o 2 1- 5 1-p
(23) AE = 5(/% +up,” = up,® —wp?) = <W Jup — up,|* ~ W’Up —up,| (up = up,) -0
is the loss of kinetic energy (or gain of internal energy) [divided by mass].
In those formulas, (5 := 3(|u, —up,|) is a measure of the inelasticity of the collision (the collision

is elastic when 3 = 1), and a := a(|up — up,|) is the parameter which measures what part of the
internal energy is exchanged during a collision (no internal energy is exchanged when a = 0).

Note that the prefactor

1 @ is related to the Jacobian of the pre-collisional transform
—a

(ups €p, Up,,, €p,) — (up, €p, up, ) €p,), and to the cross section of hard spheres ([Vil06]). The model
presented here is strongly reminiscent of models appearing in granular gases. The only difference is

the treatment of the internal energy of the droplets.

2.2. Weak form of the collision kernel and conservations. The following weak form of the
collision kernel can be obtained (at the formal level) (see [BCGO00, Vil02, CCCO09]): For all test
function ¥ := W (u,, ep),

[ @t nutupe,) duyde,

Up,Ep

- //// ffs [\I/’ — \Il] r? [up — uy| dupdeyduy, dey,

Up,EpyUp 4 1€p 4,0

1 x
= 3 //// I s [\Iffk +VU -, — \If] r? [up — uy| dupdepduy, dey

Up,Ep Up 4 1€p 4,0

(24)

with the following formulas for the post-collisional velocities and internal energies:

up = up—;up* + 1;B (up — up,) — #‘uz) — up,|o,
Uy, = upzup* - 1;ﬁ (up _up*) + #Wp — up,|o,
e;:t—aep%—gep*—i—%AE, ep;:gep+2_Taep*+%AE
AE = 5(“1/02 +u; ? _up*2 _up2) = ! _8ﬁ2 |up _up*|2 1 _8ﬁ2|up — up,| (up _up*) o
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(remember that W), := W(t,x,uy.,ep.), etc.). Specializing the weak formulation to the functions

1 .
U(up, ep) = mp, V(up, ep) = mpu, and Y(uy, e,) = impug + mpep, we get the conservations of
mass, momentum and total energy :

(25) [ @) uper) my dude, =0,

(26) //Q(fa ) (up, ep) my up duyde, = 0,
(27) //Q(f, Fup, ep) [%mpuz + mpep} dupdep = 0.

Up,€p

2.3. Formulas for the inelasticity and energy exchange parameters. It remains to give a
formula for the parameters a and 3 which appear in our model of collisions. This is done in this
subsection, under the assumption that viscosity is the main reason why kinetic energy is lost during
collisions. A more complete description of the procedure together with numerical values in a typical
experiment (in the context of the nuclear industry) can be found in [Mat06].

2.3.1. Probability laws of exchange of internal energy. We first explain the process of transfer of
internal energy during the collisions. We obtain a hint of the expression of a.

A collision of droplets can be considered as a coalescence of two particles which split after some
time. The droplets remain stuck together for a while, and they exchange internal energy through
thermal conduction.

The time A7,y of collision between two droplets p (with velocity u,, internal energy e, and
temperature 7)) and p, (with velocity wu,,, internal energy e,, and temperature T}, ) is generally

2 (see [Cer88, Hyl99]).
’up - up*’

Because of heat transfers, an amount 477\, (T, — T}, ) of internal energy is exchanged by unit of
time (with A, the thermal conductivity of the droplets, supposed to be constant) from p towards
p«. The 47 factor might not be the good geometric factor because one particle does not surround
the other during the collision as the gas surrounds a particle, but this quantity gives at least the
right order of magnitude. Hence, we get

d 4mr ),

—(ep. —ep) = —— (T, = Tp.)-
dt P i my PP

assessed as Aoy =

Supposing that the specific heat C), of the liquid is a constant, we end up with the following evolution
for the difference of internal energy between the two droplets during the collision:

4mrA
(. = ) () = exp (=21 (e = ) 0
Using the last equality for ¢ = A7y, one gets

4 2
(28) a = 1l—exp (— Ty ! > .
Comyp |up — up, |
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2.3.2. Estimate of the inelasticity parameter. We assess the effect of inelasticity through some
computations using the T.A.B. (Taylor Analogy Break-up) model used in the Kiva code (see [Bar04]
and [AO89]), under the assumption that viscosity is the main factor of loss of kinetic energy during
collisions between liquid droplets ([JUL92| and [WO03]).

More precisely, the distortion of sphericity y satisfies the following ordinary differential equation
(see [Bar04]),

- 2py |up — ug\Q _ 8or 10upy
3 pp 72 Pst Pprz 7

where o7 is the surface tension of the liquid constituting the droplets, and p, is the dynamic
viscosity of this same liquid. Assuming that the surface tension plays a negligible role (w.r.t. the
viscosity) in the loss of kinetic energy during a collision, we find a characteristic time 7, (viscous
time):

Since the oscillatory energy is proportional to /2, we see that the kinetic energy (in the center of
mass) of the two droplets E(t) (at a time ¢ after the beginning of a collision) is controlled through
the following exponential evolution:

2t 1 2t
E(t) = E(0)exp <—T—> = Z\up — up*]2exp <——> ,

c Te

so that the loss of kinetic energy AFE during a collision is

1 2A
AE = ~|u, — up, 2 (1 — exp (—ﬂ>> .
4 Te

Since we also have defined AE through

1,2 2 1— 1-p?
AE:§( le +ujlv* _up*2_up2): 3 |Up_up*|2_ 3 |up—up*|(up_up*)'a’
the loss is (at worst)
1— 2

T|Up — Up,
We end up with

ATeo 20
(29) B = exp <— T ”> = exp <—¢> .

Ppr|up — up,

This procedure of course only provides a rough order of magnitude for 3. This is nevertheless
enough to determine if the regime of collision is elastic or not.

The equations for thick sprays being now complete, we introduce in next section a scaling based
on the dimensional analysis of those equations.
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3. NON DIMENSIONAL FORM OF THE VLASOV-BOLTZMANN EQUATION

We write down in this short section the dimensional analysis which enables to obtain a formal
limit for the Vlasov-Boltzmann equation (4). In order to do so, we first introduce the following
time/space typical quantities:

e t,: typical time of the experiment,
e [: typical length of the experiment.

Next, we introduce quantities related to the gas and the droplets (remember that r, m,, p, are the
radius, mass and density of droplets, and that D, ® are the coefficients for drag force and thermal
exchanges)

e N: typical number of droplets of the experiment,
e V: typical mean velocity of the droplets. We shall assume that it is also the typical thermal
velocity of the droplets [that is, the square root of the variance of the velocity distribution],
and the typical velocity of the gas. One has V¢, = L.
e [,: typical internal energy of the droplets per mass unit,
e [,: typical internal energy of the gas per mass unit,
e Trp: typical temperature of the droplets. We shall assume that it is also the typical temper-
ature of the gas.
e P: Typical pressure of the gas
e P’ = p,V?: this quantity has the dimension of a pressure
It is customary to introduce at this level the mean free path o = ré—?\/ Finally, we denote by e the
Knudsen number € = 7 This quantity is at the basis of the passage from Boltzmann eq. towards

Euler eq. (see [Cer88] and [CC70]). The orders of magnitude of the terms appearing in (4) are then

given by the following formulas:

e Time derivative term:
N
(30) ohf ~ T V33

e Transport term:

(31) ~ O f.

e Pressure term:

VD N VP
Vo (51) ~

Pp I,V3L3 L P
P
(52) ~ Zoaf
e Drag force term:
D N D
Vo - | = (u, — ~
p (mp (up ug)f) I, V3L313p,
Dt

33 ~ 9) o f.
(33) <T3 Pp> '/



e Energy exchange term:

d N S Tr
0, — (T, -1, ~
€p (mp( g p) f) Ip V3 L33 PpIp

(34) ~

e Collisional term:

N 2
QU.f) ~ VIV (W)

(we recall that we use the hard sphere cross section)

(35) ~ laf

We now introduce non-dimensional quantities (denoted with a tilde) for the unknowns and param-
eters entering eq. (4). That is, we consider

-t T U e ~ T,
t: — T —= — Uy = —p e, — —p T = —p
tga x La up V, ep Ip, P T’
- I,L3V3 -
ft, 2,1y, 8) = N fQgt, Lz, Vi, I)ép),
for the particles and
- tyt, L7 . T,(tyt, LE - tyt, LT . tgt, LT
iy, ¥) = ug(tgt, x)’ T,(i, %) = g(tgt, x)’ &,(f, %) = eq(tgl, x)’ P(t,fc)p( gt, L%)
Vv Tr I,
for the gas. B
The equation satisfied by f then becomes
_— - e - 1 - -
(36) Oif + 1y -Vaf+Va, - (fT) + 0, (f¢) = gQ(f,f),
where
~ P B B B
I'= FVEP‘{'CQ (Tp — Tg)
(;5 = 03( ~!] - Tp)’
D
Cy = —tyg,
mp
OTrt
O3 = —14
mplp

We shall now study the limit of eq. (36) when ¢ — 0. We see that this limit makes sense when the
typical parameters of the experiment under study are such that

(37a) from (30) and (31), 1> e,
Pl

(37b) from (32), 5~ 1,

(37¢) from (33) Dm—fg ~1,
mplp

(37d) from (34), STt 1.
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A typical situation appearing in the nuclear industry where those assumptions are fulfilled is de-
scribed in [Mat06]. Note that other scalings, based on a different ordering of the various terms
appearing in (36) can be performed. In the context where collisions are replaced by a diffusion
operator (in the w, variable), we wish to point out two such scalings, performed in [GJV04a| and
[GJV04b]. One of the main differences with our own work is the fact that in those papers, the drag
force is of order e~!. In our setting, the drag force is of order 1 because in the application to the
nuclear industry that we have in mind (Cf. [Mat06]), the spray is produced by the introduction of
"not too small" droplets of liquid tin in a gas (air) at a "not too big" relative velocity.

4. LIMIT OF THE PDF IN THE SCALING

In order to pass to the limit (at the formal level) in eq. (36) when £ — 0, we study the solutions
of the functional equation Q(f,f) = 0, when collisions are truly inelastic, that is when g :=

B(|up — up,|) € [0,1[. The computation of the exchange of kinetic energy leads to
1 2 1- ﬁQ 2 3
(38) Q(f, f) 3 mpu, dupde, = — 5 fFdmrempluy, — up |° duy dey duyde), |
Up,Ep Up,Ep,Ups ,Cpx

so that the effect of inelastic collisions is to concentrate the velocities of the droplets. Note first
that when considering only the evolution of velocities, in absence of internal energy exchange, the
convergence towards a Dirac mass is rigorously proven in [BCGO00], [Vil02] or [FMO05] for solutions
of the spatially homogeneous Boltzmann equation d;f = Q(f, f) (for 3 constant).

We now wish to show, at the formal level, that when considering the evolution of both velocities
and internal energies in 0, f = Q(f, f),
(39) t_1§+moo f(t,up, €p) = Goyp—y(up) ® be,=c(€p),
with v € R3,G > 0,e > 0.

Note that this cannot be done directly by the study of the solutions of Q(f, f) = 0 since all
densities of the form

(40) fup,ep) = 5up:v(up) ® p(ep),

where p is a positive measure, are such solutions (equilibria).

The explanation of what at first glance seems an inconsistency between (39) and (40) is the
following: when p is not a Dirac mass, the equilibria of the form d,,—,(u,) ® u(e,) are unstable.
More precisely, as soon as the density f is not exactly a Dirac mass w.r.t. the variable u,, some
collisions occur and consequently some energy will be exchanged between the droplets, so that u
will converge towards a Dirac mass.

Note that other instabilities in the context of granular media have been studied. We refer in
particular to [BCGO0| for the instability of the constant states (as far as mass and velocity are
concerned; the temperature behaving like t=2) w.r.t. large waves perturbations for solutions of
dissipative Euler systems.

4.1. The case of constant coefficients of inelasticity and energy exchange. We assume in
the following computation that a and [ are constant, for the sake of simplicity. An extension of
this computation in a case in which a and 3 are not constant is given in subsection 4.2.

In order to do so, we first recall Haff’s law ([Haf83]): For f := f(t,u,) satisfying the spatially
homogeneous equation d;f = Q(f, f) (with § € [0,1] and no exchange of energy involved), the
10



following estimate holds:

m M
41 <T(t) <
(41) 1+t2 — ()_1+t2’
/ f(t up) mp — v)*du,
where T'(t , and where m and M are constants depending on initial
[t up)mpduy,
Up

data. A rigorous proof of this result can be found in [MMO06] and [MMRRO06] (when (3 is a constant).

A first hint of the proof can be found in [BCG00] when one assumes that |v — v,| is replaced by
a term proportional to v/T. Our goal here is to estimate the evolution of the mean internal energy
along the solutions of the equation

(42) Of (t,up,ep) = Q(f, f)(t, up, ep).

The computations that we provide are only approximations. They give an idea of what should be

the evolution of the quantity
// F(t,up, ep)my, (e, — e(t))? duyde,
Up,Ep

/ f (t, up, ep)my, dupde,

p7

)

that is the variance of f w.r.t. e,. They will be sustained in next subsection by numerical simula-
tions. Note first that thanks to the conservation of mass,

/ QUf, f)(t ups ep)mp(ep — e(t)) duyde,
/ f(t, up, ep)my duydey,
a Lo, 2 2
= |(-a(l- 5) §ff dmre(ep — ep,)" |up — up, |dupduy, depdey,
+ % //// 42 f f* [%AEQ + AFE (ep +ep, — 2e)| |up — up*|dupdup*depdep*>

/ / Fduyde,, .

We use the following approximation based on Haff’s law: in all computations we replace |u, — up, |

(43) 4(t) =

by V6T (the 6 comes from the fact that we are in 3D): it is more or less the same approach as in
[BCGOO0|. Then,

g'(t) ~ (—a(l - g)\/G_T / / / / % FFramr(ep — ep,) dupduy, deyde,,
/ / / / o f ( (1 o )2 L1- ﬁ26T(ep +ep, — )) \/6_Tdupdup*depdep*>
(44) / / /u » fduyde,, .

We use the identities
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/// FI7(ep = ep,)*dupduy, depde,, = /// 5 [(ep — €2 + (e — ep,)?] dupduy, deyde,,

(45) — 2(t) ( / /u fdupdep> 2 ,

and
(46) /// ff*(ep+ep, — 2e) dupduy,, deydey,, = 0.

As a consequence, we obtain the following (approximate) ODE for the evolution of g:

@ d0 ~ 1-a (—a<1—§>¢6§T<t>1/2g<t>+1(1‘ﬁ2)2§<6T<t>>5/2>,

4 4 r

4
where 1 — a = / / f gwrgdupdep is the volume occupied by the droplets (in the homogeneous
u

p>€p
setting that we consider, this quantity is a constant). Using now (according to Haff’s law) the
2
approximation T'(t) = ﬁ where ¢; and ¢z > 0, we solve eq. (47) and obtain (except in the
2

3
exceptional case when —(1 — a)ﬂ\/ga(l —a/2) =4):
r Co

9(0)

(1 + CQt)%(lfa)%\/éa(lfa/Q)

H(57) ot
31-a

(48) g(t) ~

S(1-a) 2L VBa(1-a/2)]

+ (L4cot)™ = (L4 cat)”
4 4 aV6a(l —a/2) -4
3
We now discuss the behavior of g according to the sign of —(1 — a)c—lx/éa(l —a/2) —4.
T (&)

e When 4 < §(1 - a)c—l V6a(l — a/2): we get
T Co

Cst

(49) g(t) ~ 0+ et

This is the situation when thermal exchanges are predominant: ,/g¢(t) then converges to
zero as rapidly as the temperature T'(¢) (note that /g has the same dimension as an energy).

e When 4 > §(1 - oz)c—1 V6a(l — a/2), we get
T Co

Cst

t ~Y
g() (1+czt)%(1fa)% 6(1(17(1/2)7

so that /g(t) still converges towards 0, but this convergence is slower than that of the
temperature 7'(t). It can even be very slow when a is close to 0 (that is, when the exchanges
of internal energy are of small amplitude).

3
Note finally that the exceptional case —(1 — a)c—lx/éa(l —a/2) = 4 leads to a formula close to (49)
T C

[but with a logarithmic correction].
12



The previous computations show (though not rigorously) that the only stable equilibrium of
O f = Q(f, f) in the case of inelastic collisions (5 € [0, 1]) are functions defined by (39).

We now present a numerical simulation which confirms the approximate computations presented
above. We present some numerical tests for the spatially homogeneous Boltzmann equation 0, f =
Q(f, f), when @ is the inelastic collision kernel defined by (22), with a and 3 fixed constants. The
computations are performed thanks to a particle method (Cf. [Bar04, PR05|), where the density
f = f(t,up,ep) is approximated by a sum of Dirac masses with the same numerical weight (that
is, f(t,up,ep) ~ w le\il Oup=uyisep=ep;)- Lhis set of numerical particles then evolves according to
Bird’s method (Cf. [Bir94|). The tests which are presented correspond to the following parameters:

—4
r=10""%, f(0,up,ep) = Cst 1y, c[_101,1043;e,€[5.105,5.106] -
About 10* numerical particles are used.

First test: Convergence towards the Dirac mass w.r.t. velocity; Haff’s law

We check that Haff’s law holds for ¢ = 1 and 6 = 0.99,0.95,0.8: we plot the results in logarithm
scale: we expect to get a (asymptotically) straight line whose slope is —2 (since Haff’s law means
that T'(t) ~ t~2).

It is indeed what we observe in the figure below. Note also that, as expected, the convergence is
slower when [ increases.

18

161

14

12r

10

In(T(V)

-18 -16 -14 -12 -10 -8 -6
In(t)

Fic. 1. Behavior of kinetic temperature: In7T" as a function of Int for different g

Second test: Convergence towards the Dirac mass w.r.t. the internal energy

We now check the convergence towards the Dirac mass w.r.t internal energy. We fix 8 = 0.99 and
let a vary between 0.01 and 1.0. We plot

W =In (// f(t, up,ep)le, — e(t)|depdup/// f(t,up,ep)depdup>

as a function of In(t).

As can be seen in figure 2, the more a increases, the more the coefficients of the asymptotic
straight line tend to —2. More precisely (in accordance with the theoretical computation), we see
that there exists a critical a (around 0.06) which separates a zone in which the behavior of W seems
to bein =2, and a zone in which it is rather in =%, with 6 €]0, 2[ depending on a. Finally, we observe
that for small a, the function W increases during a certain amount of time: thermal exchanges are

13



Convergence of f towards a Dirac mass in internal energy
16 T T T T

14

12r

101

In(_[f|ep—e(t)|depdup)
o

18 -16 -14 -12  -10 -8 -6 -4 -2
In(t)

F1G. 2. Convergence in internal energy: In ([ f(t,up, €p)|ep — e(t)|depduy,/ [[ f(t, up, ep)depduy,)
as a function of Int for various values of parameters

then not significant enough to completely counterbalance the positive term in equation (47) (that
is, the transfer of kinetic energy to internal energy) at all times.

4.2. The case when the coefficients of inelasticity and internal energy exchange depend
on relative velocity. We (briefly) present here a formal computation showing that the results
of subsection 4.1 obtained when a and (3 are constant still hold when a and [ are given by (28)
and (29). The computation performed in subsection 4.1 for the evolution of temperature (with the
approximation |u, — u,,| ~ v/6T) leads to the following ODE, when 3 is given by formula (29):

d C ATCO” 3
%T ~o <1 — exp <—2 - >> (1—a)T>
¢
T

(50) ~ - <1 —exp <_\/6iTTTC>> (1—a)T3,

d 4C
for some C' > 0. When T is large, %T ~ —— (1 — a)T so that T decays exponentially. When T
Tc
d C
becomes small enough, 7" satisfies aT ~——(1- oz)T% and we are back to the situation that we

studied in subsection 4.1 with 3 constant (agd close to 0). Similar computations can be done for
the quantity g. We now present a numerical simulation which sustains those computations.

We use the expression of a and 3 found in paragraphs 2.3.1 and 2.3.2. The numerical code is
similar to the code used previously. As one can see in figure 3, the temperature 7'(¢t) does converge
to zero. At the beginning, this convergence is exponential, whereas as soon as T becomes small

1
enough, the rate of convergence corresponds to Haff’s law, i.e. is in 2 Next we observe the
convergence of the internal energy in figure 4. We see that the internal energy indeed converges to
a Dirac mass in this simulation.

14



Convergence towards the Dirac Mass in velocity
15 T T T T T T

10

In(T(V)

5t

-10}

-15}+

-20

FiG. 3. Convergence towards the Dirac mass in velocity: InT" as a function of Int

Convergence toward the Dirac mass in internal energy
T T T T T T T T

In(g()°.5)
N

=)
T

-2t

-4t

6 . . . . . . . . .
22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2
In(t)

Fia. 4. Convergence towards the Dirac mass in internal energy:

In (// f(t, up,ep)le, — e(t)|depdup///f(t,up,ep)depdup> as a function of

Int

5. FLUID OF PARTICLES:

According to the dimensional analysis of section 3, we end up with the following set of scaled
equations for the spray:

(51)
(52)

(53)

o(apy) + V- (apgug) =0,
(afpjug) + Vi - (apjug @ ug) + Vap® = — A%,
(3
OuapgBy) + Va - <0f,0§ (ES + %) “Z) +p 00 = —Bf - B},

g

Ouf + 1S Vaf + Va, - (fT°) + 0, (f°¢°) = éQ(f’i f9),

T = = 2BVt = Dl =) mpd” = & (1]~ T,),
P
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(56) A = / mpl® f€ duyde,,

Up,€p
()
(57) B = [ [ (0 T2y 1 duiey,
Up,€p ?
(58) B5 :/ mp@° € duyde,.
Up,€p

In this section, we present the computations which enable to pass to the limit at the formal level
in eq. (51) — (58), when & — 0. These formal computations are based on the same principle as
the traditional passage from the Boltzmann eq. towards fluid mechanics: we first take moments
of eq. (54), and then close the corresponding equations thanks to the study (in section 4) of the
solutions of Q(f, f) = 0 (more precisely, of the large time behavior of the solutions of the spatially
homogeneous equation 9y f = Q(f, f)).

We define the following quantities associated with the moments of order zero (mass), one (mo-
mentum), two (energy, pressure (Reynolds’) tensor) and three (flux of energy) of the fluid of particles
(the notations used here are coherent with those of section 1):

(I-a)p= / fmydupde,, (1 —a)pv = / fmpup duydey,

Up,€p Up,€p
1
(I-a)pec= //ifﬁhv|up|2 dupdep, (1 —a)pe = / frmpep duydey,
Up,€p Up,€p
1
(I-a)pE = //f {imp’upF + mpep} dupdey,
Up,€p
(=P = [ [ e =) (0 = 1) duyde,
Up,€p
(1-—a)g = / Fmp(v —up)?(up — v) duydey,.
Up,€p

Note that the pressure tensor P’ will appear in our set of equations because the fluid of droplets does
not "see" the same pressure as the gas. This extra term of pressure, sometimes called interfacial
pressure, appears (usually in a non tensorial form) in many works concerned with the modeling of
two-phase flows (see [Sai95] and [GHSO04]| for example). This pressure tensor vanishes when all the
droplets have the same velocity (in the limit ¢ — 0).

We now integrate the Boltzmann equation against mpduyde, (mass conservation), myu,du,de,
(momentum conservation), and my[|uy|? + e, du,de, (energy conservation). We use properties
(25), (26) and (27) of the collision kernel. This leads to

(1= a)p) + Vo - (1 - a)pw) = 0

(remember that p = p, is a constant),
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(1= a)pv) + Vo - (1= a)pv @) + (1 = a)Vap+ Vo - (1 — )

// D (up — ug) fdupde,,

Up,€p

and

(59) @«1—amE»+vf(u—am<E+f§v>+p@u—a»+vf<u—axﬁv+@>

/ / D (u ) - up fduyde, + / / (T, — T,,) fduyde,.

Up,€Ep Up,€p

We now close the equations by formally letting € go to 0 in (51) — (58). According to the results of
section 4, we know (at the formal level) that f¢ — f, with

(60) f(t, T, Up, ep) = G(ta ‘T) 5up:v(t,z) (up) 5ep:e(t,:v) (ep)'

We end up with a system of 6 equations which write (remember that e, = E4— %ug ande = EF— %02):

(61) I(apg) + Va - (apgug) =0,
(62) 0((1 = a)p) + Vo - (1 —a)pv) =0,
(63) O(apgug) + Vo - (apgug ® ug) + aVap = —A,
(64) O (1 = a)pv) + Vo - (1 = a)pv @ v) + (1 — ) Vap =
(65) A,
(66) 8t(angg) + Vg - <apg (Eg + %) Ug) +pat04 = _Bl - EQ,
(67) O ((1—a)pE)+ V- ((1 —a)p (E + %) v) + pdi(1 — ) = By + Bo,

where A, B; and By are defined in the introduction, the functions D and @ being the same as D,
®, but taken at points v, e instead of u,,e,. We recall the equations of state which complete this
system:

(68) b= Pl(/og, eg)a Tg = Tl(pg, eg),

(69) p=pp T =The).

At the end, we obtain the announced link between the set of Eulerian-Lagrangian equations and
the set of Fulerian-Eulerian equations.

Remark: When collisions are elastic (that is, § = 1), the computation runs thus: first, f¢ — f
(formally), with

T U €)= Z(tv‘r) ex _(up_v(t’x))z e
(70 st p) = o2 o (I ) bt

where Z,v,e,T are macroscopic moments which satisfy the following closed set of seven equations
for seven unknowns, that is
17



(71) Ot(apg) + Vi - (apgug) = 0,
(72) 2u((1— a)p) + Vo (1 — a)pw) =0,

(73) Or(apgug) + Vg - (apgug @ ug) + aVep = M(p,1 — o, v,T,ug, D),

(74) O(1—)pv)+ V- (1—a)pr@v)+(1—a)Vop+V, (1 — a)pT) = —M(p,1—c,v,T,uy, D),

(75) O(apgEy) + Vs - (ong <Eg + p£> ug> + pora =
9

1 —
I(,O,l _O‘,vaTaug’D) - (I)(Tg _T)ﬂ’
myp

(76)0 (1 — a)pec) + Va - (1 —a)plec+T)v) + (1 —a)v - Vop = =Z(p,1 — a,v, T, uq, D),

(77) 9 (1 = a)pe) + V- (L = a)pev) +p (9(1 — @) + Vs - (1 = a)v)) =

1—
® (T, — T)ﬂ’
myp
where By = eg+3 ug|?, ec = 3 T+3 [v]?, and M, T are "almost" explicit functions. Their expression
can be found in [Mat06]. Remember also that the following equations of state are added to (71) —
(77):

(78) b= Pl(pg, eg), Tg = Tl(/)ga eg)a T, = T2(€)a P = Pp-

Note that this system is not found in textbooks about two-phase flows since usually the collisions
between droplets are considered to be inelastic.

6. CONCLUSION AND PERSPECTIVES

We now wish to briefly comment some of the issues related to this paper.

Firstly, we wish to explain what can be the extensions of the asymptotics presented in this work:
the presence of (molecular or turbulent) diffusion in the gas equations does not change the compu-
tations. It is also possible in principle to take into account chemistry terms (e.g. combustion terms)
in the equations: this leads however to serious complications. Finally, it is known that polydisper-
sion plays a decisive role in the construction of macroscopic models starting from spray equations
(Cf. [DMVO03]). In general, it is not possible to guess the evolution of droplets w.r.t. radius, and
one has to cut into "sections" the various possible radiuses r. It however sometimes happens that
processes of coagulation/breakup lead to such specific profiles (Cf. for example [AB79]). In such
(unfortunately unrealistic, at least when sprays are concerned) situations, two-phase macroscopic
equations can be obtained (at the formal level) by an asymptotics.

Secondly, we would like to emphasize the extreme difficulty of making rigorous the passage to the
limit that we propose (even in a "small time" setting). This is related to the very bad mathematical
behavior of the limiting eq. (12) — (19). Those equations are not written in conservative form and
have a domain of non hyperbolicity (Cf. [Ram00]). Moreover, the set of eq. (1) — (11) has not yet
been studied from the mathematical point of view. It might indeed present a behavior as bad as the
limiting system [though this guess is not yet sustained by convincing arguments]. One possibility
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could be to try to pass to the limit in an analogous system, where the molecular viscosity of the gas
is not neglected (then the limiting equations are better behaved, Cf. [Ram00]).
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