
SOME ASPECTS OF THE ASYMPTOTICS LEADING FROM GAS-PARTICLESEQUATIONS TOWARDS MULTIPHASE FLOWS EQUATIONSLAURENT DESVILLETTES AND JULIEN MATHIAUDRésumé. This paper is devoted to the establishment at the formal level of a s
aling leading from gas-parti
les (also 
alled Eulerian-Lagrangian) models for monodisperse thi
k sprays towards multiphase�ows models (also 
alled Eulerian-Eulerian) in
luding the volume fra
tion as an unknown. Thispassage to the limit involves the study of an inelasti
 
ollision operator a
ting on internal energiesas well as velo
ities. 1. Introdu
tionSprays are �ows involving a 
ontinuous gaseous phase and a disperse phase (typi
ally 
onstitutedof liquid droplets) whose volume fra
tion is not too big. We 
onsider in this paper only monodispersesprays (that is, all the droplets in the disperse phase have the same radius r). Moreover, we shallalso suppose that all droplets are in
ompressible and that no evaporation o

urs, so that r will bein the sequel an absolute 
onstant.We denote by α := α(t, x) ∈ [0, 1] the volume fra
tion of gas at time t ∈ R+ and point x ∈ Ω(Ω being a subset of R
3). Considering this quantity makes sense when the volume 4

3 π r3 of atypi
al droplet is mu
h smaller than a small (but ma
ros
opi
) elementary volume of �uid. Wesay that the spray is thi
k (it was �rst introdu
ed in [Duk80℄ and then used in the KIVA 
ode[O'R81, AOB89, AO89, OZS09℄) when 1 − α(t, x) is not negligible in at least part of R+ × Ω(typi
ally 1 − α(t, x) >> 10−3) but not too big either (typi
ally, 1 − α(t, x) ≤ 0.2 at worst). Werefer to [Duk80, O'R81℄ for the 
on
ept of thi
k spays.Thi
k sprays are modeled by a 
oupling of a kineti
 equation and a �uid equation. This 
ouplingis done through the volume fra
tion α and the drag between the two phases. We write below theset of equations des
ribed in [Duk80℄, with a few di�eren
es that we explain in the sequel.We denote by ρg := ρg(t, x) ∈ R+, p := p(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, eg := eg(t, x) ∈ R+,

Eg := Eg(t, x) = eg(t, x) + 1
2 |ug(t, x)|2 ∈ R+ and Tg := Tg(t, x) ∈ R+ the respe
tive density (ofmass), pressure, velo
ity, internal energy (per unit of mass), total (internal + kineti
) energy (perunit of mass), and temperature of the gas. Those quantities satisfy the following balan
e laws:

∂t(αρg) + ∇x · (αρgug) = 0 ,(1)
∂t(αρgug) + ∇x · (αρgug ⊗ ug) + ∇xp = −A,(2)
∂t(αρgEg) + ∇x ·

(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B1 − B2,(3)where A is the momentum transferred to the (elementary volume at time t and point x of) gasby the dispersed phase and B1, B2 
onstitute the 
orresponding (resp. me
hani
al and thermal)transfer.The density in the phase spa
e f := f(t, x, up, ep) ≥ 0 of droplets whi
h at time t and point x havevelo
ity up ∈ R
3 and internal energy ep ∈ R+ satis�es the following Vlasov-Boltzmann equation:(4) ∂tf + up · ∇xf + ∇up

· (fΓ) + ∂ep
(fφ) = Q(f, f),1



where Γ and φ represent the transfer of momentum and energy of the gaseous phase on a givendroplet (whi
h at time t and point x has velo
ity up ∈ R
3 and internal energy ep ∈ R+). A

ordingly,(5) mpΓ = −mp

ρp
∇xp − D (up − ug); mpφ = Φ (Tg − Tp),(6) A =

∫∫

up,ep

mpΓ f dupdep,(7) B1 =

∫∫

up,ep

mp

(

Γ +
∇xp

ρp

)

· up f dupdep,(8) B2 =

∫∫

up,ep

mpφ f dupdep,where mp is the mass of one droplet, ρp is the density of the liquid 
onstituting the droplets(mp = 4
3 π r3 ρp, and mp, ρp, r are absolute 
onstants), and Tp is the temperature of the droplet.In (5), the term D (up − ug) models the drag. The drag 
oe�
ient D is in general a fun
tion of ρg,

|ug − up| (and also r, ρp and the mole
ular vis
osity of the gas [this last quantity being negle
tedin the equation of momentum of the gas℄).Also in (5), the term Φ (Tg − Tp) models the thermal ex
hanges between the droplets and thegas. The 
oe�
ient Φ in general depends upon the thermal vis
osity of the parti
le and the Nusseltnumber (and therefore upon r, |ug − up|, et
.).The system is 
losed thanks to the 
onstitutive equations of the gas and the liquid:(9) p(t, x) = P1(ρg(t, x), eg(t, x)), Tg(t, x) = T1(ρg(t, x), eg(t, x)),(10) Tp = T2(ep),and the identity for the volume fra
tion of droplets:(11) 1 − α(t, x) =
4

3
πr3

∫∫

up,ep

f(t, x, up, ep) dupdep.The set of equations (1) � (11) is sometimes 
alled �Gas-parti
les� or �Eulerian-Lagrangian�. Themain di�eren
es with the model proposed by Dukowi
z ([Duk80℄) is that we take into a

ount
ollisions (they were negle
ted in the original model) and equations for the energy ([BDM03℄).Note that the presen
e of a non-in�nitesimal volume fra
tion 1−α of droplets is not 
ompatiblewith the presen
e of a non-in�nite Boltzmann kernel (this is a 
onsequen
e of the Boltzmann-Gradasymptoti
s: 
f. [CIP94℄). The situation in the 
lassi
al work of Dukowi
z [Duk80℄ is even worsesin
e no 
ollision kernel is 
onsidered there. The s
aling that we propose in next se
tion partiallyremoves this in
ompatibility, sin
e the 
ollision kernel tends to in�nity. The formulas for Q that wepropose are original and thoroughly des
ribed in subse
tion 2.1.We provide in this work a link between eq. (1) � (11) and a di�erent 
lass of systems, sometimes
alled "Eulerian-Eulerian", whi
h models two-phase �ows (in
luding thi
k sprays). Those systemsare thoroughly des
ribed in [IH06℄. They are obtained at a heuristi
 level by taking averages ofEuler-type equations for both phases, and by imposing reasonable 
losures.In the "Eulerian-Eulerian" approa
h, the phase spa
e f of droplets is repla
ed by ma
ros
opi
quantities, namely: the density (of mass) ρ := ρ(t, x) ∈ R+ of liquid, its velo
ity v := v(t, x) ∈ R
3,its internal energy (per unit of mass) e := e(t, x) ∈ R+, its total (internal + kineti
) energy (per2



unit of mass) E := E(t, x) = e(t, x) + 1
2 |v(t, x)|2 ∈ R+ and its temperature T := T (t, x) ∈ R+. Theequations write(12) ∂t(αρg) + ∇x · (αρgug) = 0,(13) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,(14) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,(15) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(16) ∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp = Ã,(17) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2.Those balan
e laws are 
ompleted by the 
onstitutive equations of the gas (similar to (9))(18) p(t, x) = P1(ρg(t, x), eg(t, x)); Tg(t, x) = T1(ρg(t, x), eg(t, x)),together with the 
onstitutive equations of the liquid (in
ompressible) phase(19) T (t, x) = T2(e(t, x)), ρ(t, x) = ρp.Finally, the transfer terms Ã, B̃1, B̃2 of momentum and energy write(20) Ã = −(1 − α)
ρ

mp
D̃ (v − ug), B̃1 = −(1 − α)

ρ

mp
D̃ (v − ug) · v,(21) B̃2 = −(1 − α)

ρ

mp
Φ̃ (T − Tg).The terms Ã, B̃1, B̃2 respe
tively represent the drag for
e term, its deposit in terms of energy, andthe thermal ex
hanges. The 
onstants D̃, Φ̃ respe
tively represent the drag for
e 
oe�
ient and thethermal 
ondu
tion 
oe�
ient. They 
an be �tted using experimental data and in general dependupon α, |v − ug|, et
 . Note that systems like (12) � (19) appear not only in the theory of sprays,but also in many other kinds of multiphase �ows (strati�ed, 
hurning �ows, et
.), the transfer terms(like Ã, et
.) depend in general of the type of �ows whi
h are 
onsidered and are generally obtainedby using statisti
al averages ([IH06, AOB89, O'R81, OZS09℄).Our goal in this paper is to provide a 
lear s
aling whi
h enables to derive �rigorously at theformal level� ma
ros
opi
 equations su
h as (12) � (21) from �gas-parti
les� equations su
h as (1)� (11). It is 
lear that eq. (15) � (17) will be obtained by taking moments (with respe
t to v, e)of eq. (4). This stategy has already been used in many works 
on
erning the modeling of sprays([Mas96, Lau02, Duf05℄), in the more 
ompli
ated 
ase when the spray is polydisperse: it useshowever heuristi
 
losures in order to derive the "Eulerian-Eulerian" equations.Our approa
h, though it is restri
ted to the simpler 
ase of monodisperse sprays, is quite di�erentsin
e:i) It is based on a s
aling of the sprays equation obtained after a non-dimensionalization of thoseequations;ii) It provides non heuristi
al 
losures (that is, a mathemati
al link between A,B1, B2 and Ã, B̃1,

B̃2);iii) It involves the des
ription of a new variant of the Boltzmann kernel where all the parametersare assessed. 3



In the s
aling that we propose, the 
ollision term Q appearing in (4) must be dominant. Thisexa
tly 
orresponds in the 
ontext of standard kineti
 theory to the limit of small Knudsen number,in whi
h 1
ε is put in front of the 
ollision kernel, and whi
h leads from the Boltzmann equationof rare�ed gases towards the 
ompressible Euler equations of �uid dynami
s (Cf. [KMN79℄ for arigorous proof in the 
ontext of very smooth solutions on a small time interval, and [Gol05℄ for ageneral survey on the question).Our paper is stru
tured as follows: in se
tion 2, the gas-parti
les equations are spe
i�ed in detail,in
luding the 
ollision kernel Q. Then, a non-dimensional version of those equations is providedin se
tion 3. The distributions whi
h 
an
el Q are des
ribed in se
tion 4. Then, equations for thema
ros
opi
 quantities (for both phases) are written down and the system is 
losed (in se
tion 5).Some 
on
lusions and perspe
tives are presented at the end of the paper (se
tion 6).2. Presentation of the inelasti
 
ollision kernel2.1. General form of the 
ollision kernel. We re
all here the main assumptions that we pre-sented in the introdu
tion of this work about the �ow we 
onsider.We assume that the �ow is 
onstituted of a surrounding gas and of a dispersed liquid phase. Thisphase is itself assumed to be of relatively small volume fra
tion (typi
ally between 10−3 and 0.2),and to be 
onstituted of very tiny spheri
al in
ompressible droplets having all the same radius r(that is, the spray is monodisperse). The �ow inside the droplets is not modeled.As stated in the introdu
tion, a system whi
h models the spray under this assumption 
an bewritten down by 
onsidering the unknown f := f(t, x, up, ep) ≥ 0 for the droplets and ρg :=

ρg(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, p := p(t, x) ∈ R+, Eg := Eg(t, x) ∈ R+ for the gas. The set ofequations is then (1) � (11), and it remains to pre
isely de�ne the 
ollision operator Q.The assumptions that underly the establishment of this operator are the following: First, sin
e thespray is monodisperse, no 
omplex phenomena of 
oales
en
e or breakup of droplets are 
onsidered.For the same reason, all 
ollisions are supposed to be binary (that is, two droplets are present atthe beginning of the 
ollision and produ
e two droplets at the end of the 
ollision).Then, sin
e droplets are ma
ros
opi
 obje
ts, the 
ross se
tion will be that of hard spheres.For the same reason, kineti
 energy 
onservation during the pro
ess of 
ollision is not expe
ted ingeneral. As a 
onsequen
e, one needs to write down a model in whi
h part of the kineti
 energy islost: models of granular media (Cf. [BCG00, Vil02, CCC09℄) provide a good solution for that.Moreover, sin
e the internal energy of the droplets is one of the variables in f , one needs arule to ex
hange internal energy during the pro
ess of 
ollision: models for polyatomi
 gases (Cf.[BL75, Des97℄) provide a simple solution for this physi
al phenomenon.Finally, the kineti
 energy whi
h is lost has to be 
onverted in internal energy, and to be dis-tributed between the two outgoing droplets. Sin
e those droplets have the same volume, we 
hooseto divide it equally. Colle
ting all those ideas, we end up with a 
ollision kernel whi
h writes(22) Q(f, f)(t, x, up, ep) =

∫∫∫∫

σ∈S
2,up

∗
∈R

3

ep
∗
∈R+

(

1

1 − a

1

β2
f(t, x,′ up∗,

′ ep∗) f(t, x,′ up,
′ ep)

. − f(t, x, up∗, ep∗) f(t, x, up, ep)

)

× 1{′ep,′e∗p≥0} r2 |up − up∗| dσdup∗ dep∗,4



where the pre-
ollisional velo
ities ′up∗ and ′up are de�ned as
′up =

up + up∗
2

− 1 − β

4β

(

up − up∗
)

+
1 + β

4β
|up − up∗|σ,

′up∗ =
up + up∗

2
+

1 − β

4β

(

up − up∗
)

− 1 + β

4β
|up − up∗|σ.Here, σ belongs to the unit sphere S

2, and ∫σ∈S2 dσ = 4π. The pre-
ollisional internal energies ′ep∗and ′ep are de�ned as
′ep =

2 − a

2 − 2a
ep −

a

2 − 2a
ep∗ −

1

2
∆E,

′ep∗ = − a

2 − 2a
ep +

2 − a

2 − 2a
ep∗ −

1

2
∆E,where(23) ∆E =

1

2
(′up

2
+ ′up∗

2 − up∗
2 − up

2) =

(

1 − β2

8β2

)

|up − up∗|2 −
1 − β2

8β2
|up − up∗|

(

up − up∗
)

· σis the loss of kineti
 energy (or gain of internal energy) [divided by mass℄.In those formulas, β := β(|up − up∗|) is a measure of the inelasti
ity of the 
ollision (the 
ollisionis elasti
 when β = 1), and a := a(|up − up∗|) is the parameter whi
h measures what part of theinternal energy is ex
hanged during a 
ollision (no internal energy is ex
hanged when a = 0).Note that the prefa
tor 1

1 − a

1

β2
is related to the Ja
obian of the pre-
ollisional transform

(up, ep, up∗, ep∗) 7→ (′up,
′ ep,

′up∗,
′ ep∗), and to the 
ross se
tion of hard spheres ([Vil06℄). The modelpresented here is strongly reminis
ent of models appearing in granular gases. The only di�eren
e isthe treatment of the internal energy of the droplets.2.2. Weak form of the 
ollision kernel and 
onservations. The following weak form of the
ollision kernel 
an be obtained (at the formal level) (see [BCG00, Vil02, CCC09℄): For all testfun
tion Ψ := Ψ(up, ep),

∫∫

up,ep

Q(f, f)Ψ(up, ep) dupdep

=

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′ − Ψ
]

r2 |up − u∗
p| dupdepdup∗dep∗

=
1

2

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′
∗ + Ψ′ − Ψ∗ − Ψ

]

r2 |up − u∗
p| dupdepdup∗dep∗,(24)with the following formulas for the post-
ollisional velo
ities and internal energies:

u′
p =

up + up∗
2

+
1 − β

4

(

up − up∗
)

− 1 + β

4
|up − up∗|σ,

up
′
∗ =

up + up∗
2

− 1 − β

4

(

up − up∗
)

+
1 + β

4
|up − up∗|σ,

e′p =
2 − a

2
ep +

a

2
ep∗ +

1

2
∆E, ep

′
∗ =

a

2
ep +

2 − a

2
ep∗ +

1

2
∆E

∆E =
1

2
(u′

p
2
+ u′

p∗
2 − up∗

2 − up
2) =

1 − β2

8
|up − up∗|2 −

1 − β2

8
|up − up∗|

(

up − up∗
)

· σ5



(remember that Ψ′
∗ := Ψ(t, x, up

′
∗, ep

′
∗), et
.). Spe
ializing the weak formulation to the fun
tions

Ψ(up, ep) = mp, Ψ(up, ep) = mpup and Ψ(up, ep) =
1

2
mpu

2
p + mpep, we get the 
onservations ofmass, momentum and total energy :(25) ∫∫

up,ep

Q(f, f)(up, ep)mp dupdep = 0,(26) ∫∫

up,ep

Q(f, f)(up, ep)mp up dupdep = 0,(27) ∫∫

up,ep

Q(f, f)(up, ep)

[

1

2
mpu

2
p + mpep

]

dupdep = 0.2.3. Formulas for the inelasti
ity and energy ex
hange parameters. It remains to give aformula for the parameters a and β whi
h appear in our model of 
ollisions. This is done in thissubse
tion, under the assumption that vis
osity is the main reason why kineti
 energy is lost during
ollisions. A more 
omplete des
ription of the pro
edure together with numeri
al values in a typi
alexperiment (in the 
ontext of the nu
lear industry) 
an be found in [Mat06℄.2.3.1. Probability laws of ex
hange of internal energy. We �rst explain the pro
ess of transfer ofinternal energy during the 
ollisions. We obtain a hint of the expression of a.A 
ollision of droplets 
an be 
onsidered as a 
oales
en
e of two parti
les whi
h split after sometime. The droplets remain stu
k together for a while, and they ex
hange internal energy throughthermal 
ondu
tion.The time ∆τcoll of 
ollision between two droplets p (with velo
ity up, internal energy ep andtemperature Tp) and p∗ (with velo
ity up∗, internal energy ep∗ and temperature Tp∗) is generallyassessed as ∆τcoll =
2r

|up − up∗ |
(see [Cer88, Hyl99℄).Be
ause of heat transfers, an amount 4πrλp(Tp − Tp∗) of internal energy is ex
hanged by unit oftime (with λp the thermal 
ondu
tivity of the droplets, supposed to be 
onstant) from p towards

p∗. The 4π fa
tor might not be the good geometri
 fa
tor be
ause one parti
le does not surroundthe other during the 
ollision as the gas surrounds a parti
le, but this quantity gives at least theright order of magnitude. Hen
e, we get
d

dt
(ep∗ − ep) =

4πrλp

mp
(Tp − Tp∗).Supposing that the spe
i�
 heat Cp of the liquid is a 
onstant, we end up with the following evolutionfor the di�eren
e of internal energy between the two droplets during the 
ollision:

(ep∗ − ep) (t) = exp

(

−4πrλp

Cpmp
t

)

× (ep∗ − ep) (0).Using the last equality for t = ∆τcoll, one gets
a = 1 − exp

(

−4πrλp

Cpmp

2r

|up − up∗|

)

.(28) 6



2.3.2. Estimate of the inelasti
ity parameter. We assess the e�e
t of inelasti
ity through some
omputations using the T.A.B. (Taylor Analogy Break-up) model used in the Kiva 
ode (see [Bar04℄and [AO89℄), under the assumption that vis
osity is the main fa
tor of loss of kineti
 energy during
ollisions between liquid droplets ([JUL92℄ and [WO03℄).More pre
isely, the distortion of spheri
ity y satis�es the following ordinary di�erential equation(see [Bar04℄),
ÿ =

2

3

ρg

ρp

|up − ug|2
r2

− 8σT

ρpr3
y − 10µp

ρpr2
ẏ,where σT is the surfa
e tension of the liquid 
onstituting the droplets, and µp is the dynami
vis
osity of this same liquid. Assuming that the surfa
e tension plays a negligible role (w.r.t. thevis
osity) in the loss of kineti
 energy during a 
ollision, we �nd a 
hara
teristi
 time τc (vis
oustime):

τc = 1

/

10µp

ρpr2
.Sin
e the os
illatory energy is proportional to ẏ2, we see that the kineti
 energy (in the 
enter ofmass) of the two droplets E(t) (at a time t after the beginning of a 
ollision) is 
ontrolled throughthe following exponential evolution:

E(t) = E(0) exp

(

−2t

τc

)

=
1

4
|up − up∗|2 exp

(

−2t

τc

)

,so that the loss of kineti
 energy ∆E during a 
ollision is
∆E =

1

4
|up − up∗|

2

(

1 − exp

(

−2∆τcoll

τc

))

.Sin
e we also have de�ned ∆E through
∆E =

1

2
(u′

p
2
+ u′

p∗
2 − up∗

2 − up
2) =

1 − β2

8
|up − up∗|

2 − 1 − β2

8
|up − up∗|

(

up − up∗
)

· σ,the loss is (at worst)
∆E =

1 − β2

4
|up − up∗|

2.We end up with
β = exp

(

−∆τcoll

τc

)

= exp

(

− 20µp

ρpr|up − up∗ |

)

.(29)This pro
edure of 
ourse only provides a rough order of magnitude for β. This is neverthelessenough to determine if the regime of 
ollision is elasti
 or not.The equations for thi
k sprays being now 
omplete, we introdu
e in next se
tion a s
aling basedon the dimensional analysis of those equations. 7



3. Non dimensional form of the Vlasov-Boltzmann equationWe write down in this short se
tion the dimensional analysis whi
h enables to obtain a formallimit for the Vlasov-Boltzmann equation (4). In order to do so, we �rst introdu
e the followingtime/spa
e typi
al quantities:
• tg: typi
al time of the experiment,
• L: typi
al length of the experiment.Next, we introdu
e quantities related to the gas and the droplets (remember that r, mp, ρp are theradius, mass and density of droplets, and that D, Φ are the 
oe�
ients for drag for
e and thermalex
hanges)
• N : typi
al number of droplets of the experiment,
• V : typi
al mean velo
ity of the droplets. We shall assume that it is also the typi
al thermalvelo
ity of the droplets [that is, the square root of the varian
e of the velo
ity distribution℄,and the typi
al velo
ity of the gas. One has V tg = L.
• Ip: typi
al internal energy of the droplets per mass unit,
• Ig: typi
al internal energy of the gas per mass unit,
• TT : typi
al temperature of the droplets. We shall assume that it is also the typi
al temper-ature of the gas.
• P : Typi
al pressure of the gas
• P ′ = ρp V 2: this quantity has the dimension of a pressureIt is 
ustomary to introdu
e at this level the mean free path σ = L3

r2 N
. Finally, we denote by ε theKnudsen number ε =

σ

L
. This quantity is at the basis of the passage from Boltzmann eq. towardsEuler eq. (see [Cer88℄ and [CC70℄). The orders of magnitude of the terms appearing in (4) are thengiven by the following formulas:

• Time derivative term:
∂tf ∼ N

Ip V 3 L3

1

tg
.(30)

• Transport term:
∇x · (fup) ∼ N

Ip V 3 L3

V

L

∼ ∂tf.(31)
• Pressure term:

∇up
·
(∇xp

ρp
f

)

∼ N

Ip V 3 L3

V

L

P

P ′

∼ P

P ′ ∂tf.(32)
• Drag for
e term:

∇up
·
(

D

mp
(up − ug)f

)

∼ N

Ip V 3 L3

D

r3 ρp

∼
(

D tg
r3 ρp

)

∂tf .(33) 8



• Energy ex
hange term:
∂ep

(

Φ

mp
(Tg − Tp) f

)

∼ N

Ip V 3 L3

Φ TT

r3 ρpIp

∼ Φ TT tg
r3 ρpIp

∂tf.(34)
• Collisional term:

Q(f, f) ∼ r2V Ip V 3

(

N

Ip V 3 L3

)2(we re
all that we use the hard sphere 
ross se
tion)
∼ 1

ε
∂tf.(35)We now introdu
e non-dimensional quantities (denoted with a tilde) for the unknowns and param-eters entering eq. (4). That is, we 
onsider

t̃ =
t

tg
, x̃ =

x

L
, ũp =

up

V
, ẽp =

ep

Ip
, T̃p =

Tp

TT
,

f̃(t̃, x̃, ũp, ẽp) =
IpL

3V 3

N
f(tg t̃ , L x̃ , V ũp , Ip ẽp),for the parti
les and

ũg(t̃, x̃) =
ug(tg t̃ , L x̃)

V
, T̃g(t̃, x̃) =

Tg(tg t̃ , L x̃)

TT
, ẽg(t̃, x̃) =

eg(tg t̃ , L x̃)

Ig
, P̃ (t̃, x̃)

p(tg t̃ , L x̃)

Pfor the gas.The equation satis�ed by f̃ then be
omes
∂t̃f̃ + ũp · ∇x̃f̃ + ∇ũp

· (f̃ Γ̃) + ∂ẽp
(f̃ φ̃) =

1

ε
Q(f̃ , f̃),(36)where

Γ̃ =
P

P ′ ∇x̃p̃ + C2 (ũp − ũg) ,

φ̃ = C3(T̃g − T̃p),

C2 =
D

mp
tg,

C3 =
ΦTT tg
mpIp

.We shall now study the limit of eq. (36) when ε → 0. We see that this limit makes sense when thetypi
al parameters of the experiment under study are su
h thatfrom (30) and (31) , 1 ≫ ε,(37a) from (32) ,
P ′

P
∼ 1,(37b) from (33) ,

mp

D tg
∼ 1,(37
) from (34) ,

mpIp

ΦTT tg
∼ 1.(37d) 9



A typi
al situation appearing in the nu
lear industry where those assumptions are ful�lled is de-s
ribed in [Mat06℄. Note that other s
alings, based on a di�erent ordering of the various termsappearing in (36) 
an be performed. In the 
ontext where 
ollisions are repla
ed by a di�usionoperator (in the up variable), we wish to point out two su
h s
alings, performed in [GJV04a℄ and[GJV04b℄. One of the main di�eren
es with our own work is the fa
t that in those papers, the dragfor
e is of order ε−1. In our setting, the drag for
e is of order 1 be
ause in the appli
ation to thenu
lear industry that we have in mind (Cf. [Mat06℄), the spray is produ
ed by the introdu
tion of"not too small" droplets of liquid tin in a gas (air) at a "not too big" relative velo
ity.4. Limit of the pdf in the s
alingIn order to pass to the limit (at the formal level) in eq. (36) when ε → 0, we study the solutionsof the fun
tional equation Q(f, f) = 0, when 
ollisions are truly inelasti
, that is when β :=
β(|up − up∗|) ∈ [0, 1[. The 
omputation of the ex
hange of kineti
 energy leads to(38) ∫∫

up,ep

Q(f, f)
1

2
mpu

2
p dupdep = −

∫∫∫∫

up,ep,up∗ ,ep∗

1 − β2

8
ff∗4πr2 mp|up − up∗|

3 dup∗dep∗dupdep ,so that the e�e
t of inelasti
 
ollisions is to 
on
entrate the velo
ities of the droplets. Note �rstthat when 
onsidering only the evolution of velo
ities, in absen
e of internal energy ex
hange, the
onvergen
e towards a Dira
 mass is rigorously proven in [BCG00℄, [Vil02℄ or [FM05℄ for solutionsof the spatially homogeneous Boltzmann equation ∂tf = Q(f, f) (for β 
onstant).We now wish to show, at the formal level, that when 
onsidering the evolution of both velo
itiesand internal energies in ∂tf = Q(f, f),(39) lim
t→+∞

f(t, up, ep) = Gδup=v(up) ⊗ δep=e(ep),with v ∈ R
3, G ≥ 0, e > 0.Note that this 
annot be done dire
tly by the study of the solutions of Q(f, f) = 0 sin
e alldensities of the form(40) f(up, ep) = δup=v(up) ⊗ µ(ep),where µ is a positive measure, are su
h solutions (equilibria).The explanation of what at �rst glan
e seems an in
onsisten
y between (39) and (40) is thefollowing: when µ is not a Dira
 mass, the equilibria of the form δup=v(up) ⊗ µ(ep) are unstable.More pre
isely, as soon as the density f is not exa
tly a Dira
 mass w.r.t. the variable up, some
ollisions o

ur and 
onsequently some energy will be ex
hanged between the droplets, so that µwill 
onverge towards a Dira
 mass.Note that other instabilities in the 
ontext of granular media have been studied. We refer inparti
ular to [BCG00℄ for the instability of the 
onstant states (as far as mass and velo
ity are
on
erned; the temperature behaving like t−2) w.r.t. large waves perturbations for solutions ofdissipative Euler systems.4.1. The 
ase of 
onstant 
oe�
ients of inelasti
ity and energy ex
hange. We assume inthe following 
omputation that a and β are 
onstant, for the sake of simpli
ity. An extension ofthis 
omputation in a 
ase in whi
h a and β are not 
onstant is given in subse
tion 4.2.In order to do so, we �rst re
all Ha�'s law ([Haf83℄): For f := f(t, up) satisfying the spatiallyhomogeneous equation ∂tf = Q(f, f) (with β ∈ [0, 1[ and no ex
hange of energy involved), the10



following estimate holds:(41) m

1 + t2
≤ T (t) ≤ M

1 + t2
,where T (t) :=

∫

up

f(t, up)
1

3
mp(up − v)2dup

∫

up

f(t, up)mpdup

, and where m and M are 
onstants depending on initialdata. A rigorous proof of this result 
an be found in [MM06℄ and [MMRR06℄ (when β is a 
onstant).A �rst hint of the proof 
an be found in [BCG00℄ when one assumes that |v − v∗| is repla
ed bya term proportional to √
T . Our goal here is to estimate the evolution of the mean internal energyalong the solutions of the equation(42) ∂tf(t, up, ep) = Q(f, f)(t, up, ep).The 
omputations that we provide are only approximations. They give an idea of what should bethe evolution of the quantity
g(t) :=

∫∫

up,ep

f(t, up, ep)mp (ep − e(t))2 dupdep

∫∫

up,ep

f(t, up, ep)mp dupdep

,that is the varian
e of f w.r.t. ep. They will be sustained in next subse
tion by numeri
al simula-tions. Note �rst that thanks to the 
onservation of mass,
g′(t) =

∫∫

Q(f, f)(t, up, ep)mp(ep − e(t))2dupdep

∫∫

f(t, up, ep)mp dupdep

(43)
=

(

−a(1 − a

2
)

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2|up − up∗|dupdup∗depdep∗

+
1

2

∫∫∫∫

4πr2ff∗
[

1

2
∆E2 + ∆E (ep + ep∗ − 2e)

]

|up − up∗|dupdup∗depdep∗

)

/
∫∫

fdupdep .We use the following approximation based on Ha�'s law: in all 
omputations we repla
e |up − up∗|by √
6T (the 6 
omes from the fa
t that we are in 3D): it is more or less the same approa
h as in[BCG00℄. Then,

g′(t) ∼
(

−a(1 − a

2
)
√

6T

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2dupdup∗depdep∗

+

∫∫∫∫

2πr2ff∗
(

1

2

(

1 − β2

4
6T

)2

+
1 − β2

4
6T (ep + ep∗ − 2e)

)

√
6Tdupdup∗depdep∗

)

/

∫∫

up,ep

fdupdep .(44)We use the identities 11



∫∫∫∫

ff∗(ep − ep∗)
2dupdup∗depdep∗ =

∫∫∫∫

ff∗ [(ep − e)2 + (e − ep∗)
2
]

dupdup∗depdep∗

= 2g(t)

(

∫∫

up,ep

fdupdep

)2

,(45)and(46) ∫∫∫∫

ff∗(ep + ep∗ − 2e) dupdup∗depdep∗ = 0.As a 
onsequen
e, we obtain the following (approximate) ODE for the evolution of g:
g′(t) ∼ (1 − α)

(

−a(1 − a

2
)
√

6
3

r
T (t)1/2g(t) +

1

4

(

1 − β2

4

)2
3

r
(6T (t))5/2

)

,(47)where 1 − α =

∫∫

up,ep

f
4

3
πr3dupdep is the volume o

upied by the droplets (in the homogeneoussetting that we 
onsider, this quantity is a 
onstant). Using now (a

ording to Ha�'s law) theapproximation T (t) =
c2
1

(1 + c2t)2
where c1 and c2 > 0, we solve eq. (47) and obtain (ex
ept in theex
eptional 
ase when 3

r
(1 − α)

c1

c2

√
6a(1 − a/2) = 4):(48) g(t) ∼ g(0)

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

+
1

4

(

1 − β2

4

)2 (√
6c1

)5
/c2

3
r (1 − α) c1

c2

√
6a(1 − a/2) − 4

[

(1 + c2t)
−4 − (1 + c2t)

− 3

r
(1−α)

c1
c2

√
6a(1−a/2)

]

.We now dis
uss the behavior of g a

ording to the sign of 3

r
(1 − α)

c1

c2

√
6 a(1 − a/2) − 4.

• When 4 <
3

r
(1 − α)

c1

c2

√
6a(1 − a/2): we get(49) g(t) ∼ Cst

(1 + c2t)4
.This is the situation when thermal ex
hanges are predominant: √g(t) then 
onverges tozero as rapidly as the temperature T (t) (note that √g has the same dimension as an energy).

• When 4 >
3

r
(1 − α)

c1

c2

√
6a(1 − a/2), we get
g(t)∼ Cst

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

,so that √g(t) still 
onverges towards 0, but this 
onvergen
e is slower than that of thetemperature T (t). It 
an even be very slow when a is 
lose to 0 (that is, when the ex
hangesof internal energy are of small amplitude).Note �nally that the ex
eptional 
ase 3

r
(1−α)

c1

c2

√
6 a(1− a/2) = 4 leads to a formula 
lose to (49)[but with a logarithmi
 
orre
tion℄. 12



The previous 
omputations show (though not rigorously) that the only stable equilibrium of
∂tf = Q(f, f) in the 
ase of inelasti
 
ollisions (β ∈ [0, 1[) are fun
tions de�ned by (39).We now present a numeri
al simulation whi
h 
on�rms the approximate 
omputations presentedabove. We present some numeri
al tests for the spatially homogeneous Boltzmann equation ∂tf =
Q(f, f), when Q is the inelasti
 
ollision kernel de�ned by (22), with a and β �xed 
onstants. The
omputations are performed thanks to a parti
le method (Cf. [Bar04, PR05℄), where the density
f := f(t, up, ep) is approximated by a sum of Dira
 masses with the same numeri
al weight (thatis, f(t, up, ep) ∼ w

∑N
i=1 δup=upi;ep=epi

). This set of numeri
al parti
les then evolves a

ording toBird's method (Cf. [Bir94℄). The tests whi
h are presented 
orrespond to the following parameters:
r = 10−4, f(0, up, ep) = Cst 1up∈[−104,104]3;ep∈[5.105,5.106].About 104 numeri
al parti
les are used.First test: Convergen
e towards the Dira
 mass w.r.t. velo
ity; Ha�'s lawWe 
he
k that Ha�'s law holds for a = 1 and β = 0.99, 0.95, 0.8: we plot the results in logarithms
ale: we expe
t to get a (asymptoti
ally) straight line whose slope is −2 (sin
e Ha�'s law meansthat T (t) ∼ t−2).It is indeed what we observe in the �gure below. Note also that, as expe
ted, the 
onvergen
e isslower when β in
reases.
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Fig. 1. Behavior of kineti
 temperature: ln T as a fun
tion of ln t for di�erent βSe
ond test: Convergen
e towards the Dira
 mass w.r.t. the internal energyWe now 
he
k the 
onvergen
e towards the Dira
 mass w.r.t internal energy. We �x β = 0.99 andlet a vary between 0.01 and 1.0. We plot
W = ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

)as a fun
tion of ln(t).As 
an be seen in �gure 2, the more a in
reases, the more the 
oe�
ients of the asymptoti
straight line tend to −2. More pre
isely (in a

ordan
e with the theoreti
al 
omputation), we seethat there exists a 
riti
al a (around 0.06) whi
h separates a zone in whi
h the behavior of W seemsto be in t−2, and a zone in whi
h it is rather in t−θ, with θ ∈]0, 2[ depending on a. Finally, we observethat for small a, the fun
tion W in
reases during a 
ertain amount of time: thermal ex
hanges are13
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Fig. 2. Convergen
e in internal energy: ln
(∫∫

f(t, up, ep)|ep − e(t)|depdup/
∫∫

f(t, up, ep)depdup

)as a fun
tion of ln t for various values of parametersthen not signi�
ant enough to 
ompletely 
ounterbalan
e the positive term in equation (47) (thatis, the transfer of kineti
 energy to internal energy) at all times.4.2. The 
ase when the 
oe�
ients of inelasti
ity and internal energy ex
hange dependon relative velo
ity. We (brie�y) present here a formal 
omputation showing that the resultsof subse
tion 4.1 obtained when a and β are 
onstant still hold when a and β are given by (28)and (29). The 
omputation performed in subse
tion 4.1 for the evolution of temperature (with theapproximation |up − up∗| ∼
√

6T ) leads to the following ODE, when β is given by formula (29):
d

dt
T ∼ −C

r

(

1 − exp

(

−2
∆τcoll

τc

))

(1 − α)T
3

2

∼ −C

r

(

1 − exp

(

− 4r√
6T τc

))

(1 − α)T
3

2 ,(50)for some C > 0. When T is large, d

dt
T ∼ −4C

τc
(1 − α)T so that T de
ays exponentially. When Tbe
omes small enough, T satis�es d

dt
T ∼ −C

r
(1 − α)T

3

2 and we are ba
k to the situation that westudied in subse
tion 4.1 with β 
onstant (and 
lose to 0). Similar 
omputations 
an be done forthe quantity g. We now present a numeri
al simulation whi
h sustains those 
omputations.We use the expression of a and β found in paragraphs 2.3.1 and 2.3.2. The numeri
al 
ode issimilar to the 
ode used previously. As one 
an see in �gure 3, the temperature T (t) does 
onvergeto zero. At the beginning, this 
onvergen
e is exponential, whereas as soon as T be
omes smallenough, the rate of 
onvergen
e 
orresponds to Ha�'s law, i.e. is in 1

t2
. Next we observe the
onvergen
e of the internal energy in �gure 4. We see that the internal energy indeed 
onverges toa Dira
 mass in this simulation. 14
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Fig. 4. Convergen
e towards the Dira
 mass in internal energy:
ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

) as a fun
tion of
ln t 5. Fluid of parti
les:A

ording to the dimensional analysis of se
tion 3, we end up with the following set of s
aledequations for the spray:

∂t(α
ερε

g) + ∇x · (αερε
gu

ε
g) = 0 ,(51)

∂t(α
ερε

gu
ε
g) + ∇x · (αερε

gu
ε
g ⊗ uε

g) + ∇xp
ε = −Aε,(52)

∂t(αρε
gE

ε
g) + ∇x ·

(

αερε
g

(

Eε
g +

pε

ρε
g

)

uε
g

)

+ pε∂tα
ε = −Bε

1 − Bε
2,(53)(54) ∂tf

ε + uε
p · ∇xf ε + ∇up

· (f εΓε) + ∂ep
(f εφε) =

1

ε
Q(f ε, f ε),where(55) mpΓ

ε = −mp

ρp
∇xp

ε − D(up − uε
g); mpφ

ε = Φ (T ε
g − Tp),15



(56) Aε =

∫∫

up,ep

mpΓ
ε f ε dupdep,(57) Bε

1 =

∫∫

up,ep

mp (Γε +
∇xpε

ρp
) · up f ε dupdep,(58) Bε

2 =

∫∫

up,ep

mpφ
ε f ε dupdep.In this se
tion, we present the 
omputations whi
h enable to pass to the limit at the formal levelin eq. (51) � (58), when ε → 0. These formal 
omputations are based on the same prin
iple asthe traditional passage from the Boltzmann eq. towards �uid me
hani
s: we �rst take momentsof eq. (54), and then 
lose the 
orresponding equations thanks to the study (in se
tion 4) of thesolutions of Q(f, f) = 0 (more pre
isely, of the large time behavior of the solutions of the spatiallyhomogeneous equation ∂tf = Q(f, f)).We de�ne the following quantities asso
iated with the moments of order zero (mass), one (mo-mentum), two (energy, pressure (Reynolds') tensor) and three (�ux of energy) of the �uid of parti
les(the notations used here are 
oherent with those of se
tion 1):

(1 − α)ρ =

∫∫

up,ep

fmp dupdep, (1 − α)ρv =

∫∫

up,ep

fmpup dupdep,

(1 − α)ρ ec =

∫∫

up,ep

1

2
fmp|up|2 dupdep, (1 − α)ρ e =

∫∫

up,ep

fmpep dupdep,

(1 − α)ρE =

∫∫

up,ep

f

{

1

2
mp|up|2 + mpep

}

dupdep,

(1 − α)P ′ =

∫∫

up,ep

fmp(v − up) ⊗ (v − up) dupdep,

(1 − α)q =

∫∫

up,ep

fmp(v − up)
2(up − v) dupdep.Note that the pressure tensor P ′ will appear in our set of equations be
ause the �uid of droplets doesnot "see" the same pressure as the gas. This extra term of pressure, sometimes 
alled interfa
ialpressure, appears (usually in a non tensorial form) in many works 
on
erned with the modeling oftwo-phase �ows (see [Sai95℄ and [GHS04℄ for example). This pressure tensor vanishes when all thedroplets have the same velo
ity (in the limit ε → 0).We now integrate the Boltzmann equation against mpdupdep (mass 
onservation), mpupdupdep(momentum 
onservation), and mp[

1
2 |up|2 + ep] dupdep (energy 
onservation). We use properties(25), (26) and (27) of the 
ollision kernel. This leads to

∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0(remember that ρ = ρp is a 
onstant), 16



∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp + ∇x ·
(

(1 − α)P ′) =

−
∫∫

up,ep

D (up − ug)fdupdep,and(59) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) + ∇x · ((1 − α)(P ′v + q))

= −
∫∫

up,ep

D (up − ug) · upfdupdep +

∫∫

up,ep

Φ (Tg − Tp)fdupdep.We now 
lose the equations by formally letting ε go to 0 in (51) � (58). A

ording to the results ofse
tion 4, we know (at the formal level) that f ε → f , with(60) f(t, x, up, ep) = G(t, x) δup=v(t,x)(up) δep=e(t,x)(ep).We end up with a system of 6 equations whi
h write (remember that eg = Eg− 1
2u2

g and e = E− 1
2v2):

∂t(αρg) + ∇x · (αρgug) = 0,(61)
∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(62)

∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,(63)
∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp =(64)

Ã,(65)
∂t(αρgEg) + ∇x ·

(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,(66)
∂t ((1 − α)ρE) + ∇x ·

(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2,(67)where Ã, B̃1 and B̃2 are de�ned in the introdu
tion, the fun
tions D̃ and Φ̃ being the same as D,
Φ, but taken at points v, e instead of up, ep. We re
all the equations of state whi
h 
omplete thissystem:(68) p = P1(ρg, eg), Tg = T1(ρg, eg),(69) ρ = ρp, T = T2(e).At the end, we obtain the announ
ed link between the set of Eulerian-Lagrangian equations andthe set of Eulerian-Eulerian equations.Remark: When 
ollisions are elasti
 (that is, β = 1), the 
omputation runs thus: �rst, f ε → f(formally), with(70) f(t, x, up, ep) =

Z(t, x)

(2πT (t, x))
3

2

exp

(

−(up − v(t, x))2

2T (t, x)

)

δep=e(t,x)(ep),where Z, v, e, T are ma
ros
opi
 moments whi
h satisfy the following 
losed set of seven equationsfor seven unknowns, that is 17



(71) ∂t(αρg) + ∇x · (αρgug) = 0,(72) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(73) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = M(ρ, 1 − α, v, T, ug ,D),(74) ∂t((1−α)ρv)+∇x ·((1−α)ρv⊗v)+(1−α)∇xp+∇x ((1 − α)ρT ) = −M(ρ, 1−α, v, T, ug ,D),(75) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα =

I(ρ, 1 − α, v, T, ug ,D) − Φ (Tg − T )
(1 − α)ρ

mp
,

∂t ((1 − α)ρec) + ∇x · ((1 − α)ρ(ec + T )v) + (1 − α)v · ∇xp = −I(ρ, 1 − α, v, T, ug ,D),(76)(77) ∂t ((1 − α)ρe) + ∇x · ((1 − α)ρev) + p (∂t(1 − α) + ∇x · ((1 − α)v)) =

Φ (Tg − T )
(1 − α)ρ

mp
,where Eg = eg+ 1

2 |ug|2, ec = 3
2 T + 1

2 |v|2, andM,I are "almost" expli
it fun
tions. Their expression
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