
SOME ASPECTS OF THE ASYMPTOTICS LEADING FROM GAS-PARTICLESEQUATIONS TOWARDS MULTIPHASE FLOWS EQUATIONSLAURENT DESVILLETTES AND JULIEN MATHIAUDRésumé. This paper is devoted to the establishment at the formal level of a saling leading from gas-partiles (also alled Eulerian-Lagrangian) models for monodisperse thik sprays towards multiphase�ows models (also alled Eulerian-Eulerian) inluding the volume fration as an unknown. Thispassage to the limit involves the study of an inelasti ollision operator ating on internal energiesas well as veloities. 1. IntrodutionSprays are �ows involving a ontinuous gaseous phase and a disperse phase (typially onstitutedof liquid droplets) whose volume fration is not too big. We onsider in this paper only monodispersesprays (that is, all the droplets in the disperse phase have the same radius r). Moreover, we shallalso suppose that all droplets are inompressible and that no evaporation ours, so that r will bein the sequel an absolute onstant.We denote by α := α(t, x) ∈ [0, 1] the volume fration of gas at time t ∈ R+ and point x ∈ Ω(Ω being a subset of R
3). Considering this quantity makes sense when the volume 4

3 π r3 of atypial droplet is muh smaller than a small (but marosopi) elementary volume of �uid. Wesay that the spray is thik (it was �rst introdued in [Duk80℄ and then used in the KIVA ode[O'R81, AOB89, AO89, OZS09℄) when 1 − α(t, x) is not negligible in at least part of R+ × Ω(typially 1 − α(t, x) >> 10−3) but not too big either (typially, 1 − α(t, x) ≤ 0.2 at worst). Werefer to [Duk80, O'R81℄ for the onept of thik spays.Thik sprays are modeled by a oupling of a kineti equation and a �uid equation. This ouplingis done through the volume fration α and the drag between the two phases. We write below theset of equations desribed in [Duk80℄, with a few di�erenes that we explain in the sequel.We denote by ρg := ρg(t, x) ∈ R+, p := p(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, eg := eg(t, x) ∈ R+,

Eg := Eg(t, x) = eg(t, x) + 1
2 |ug(t, x)|2 ∈ R+ and Tg := Tg(t, x) ∈ R+ the respetive density (ofmass), pressure, veloity, internal energy (per unit of mass), total (internal + kineti) energy (perunit of mass), and temperature of the gas. Those quantities satisfy the following balane laws:

∂t(αρg) + ∇x · (αρgug) = 0 ,(1)
∂t(αρgug) + ∇x · (αρgug ⊗ ug) + ∇xp = −A,(2)
∂t(αρgEg) + ∇x ·

(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B1 − B2,(3)where A is the momentum transferred to the (elementary volume at time t and point x of) gasby the dispersed phase and B1, B2 onstitute the orresponding (resp. mehanial and thermal)transfer.The density in the phase spae f := f(t, x, up, ep) ≥ 0 of droplets whih at time t and point x haveveloity up ∈ R
3 and internal energy ep ∈ R+ satis�es the following Vlasov-Boltzmann equation:(4) ∂tf + up · ∇xf + ∇up

· (fΓ) + ∂ep
(fφ) = Q(f, f),1



where Γ and φ represent the transfer of momentum and energy of the gaseous phase on a givendroplet (whih at time t and point x has veloity up ∈ R
3 and internal energy ep ∈ R+). Aordingly,(5) mpΓ = −mp

ρp
∇xp − D (up − ug); mpφ = Φ (Tg − Tp),(6) A =

∫∫

up,ep

mpΓ f dupdep,(7) B1 =

∫∫

up,ep

mp

(

Γ +
∇xp

ρp

)

· up f dupdep,(8) B2 =

∫∫

up,ep

mpφ f dupdep,where mp is the mass of one droplet, ρp is the density of the liquid onstituting the droplets(mp = 4
3 π r3 ρp, and mp, ρp, r are absolute onstants), and Tp is the temperature of the droplet.In (5), the term D (up − ug) models the drag. The drag oe�ient D is in general a funtion of ρg,

|ug − up| (and also r, ρp and the moleular visosity of the gas [this last quantity being negletedin the equation of momentum of the gas℄).Also in (5), the term Φ (Tg − Tp) models the thermal exhanges between the droplets and thegas. The oe�ient Φ in general depends upon the thermal visosity of the partile and the Nusseltnumber (and therefore upon r, |ug − up|, et.).The system is losed thanks to the onstitutive equations of the gas and the liquid:(9) p(t, x) = P1(ρg(t, x), eg(t, x)), Tg(t, x) = T1(ρg(t, x), eg(t, x)),(10) Tp = T2(ep),and the identity for the volume fration of droplets:(11) 1 − α(t, x) =
4

3
πr3

∫∫

up,ep

f(t, x, up, ep) dupdep.The set of equations (1) � (11) is sometimes alled �Gas-partiles� or �Eulerian-Lagrangian�. Themain di�erenes with the model proposed by Dukowiz ([Duk80℄) is that we take into aountollisions (they were negleted in the original model) and equations for the energy ([BDM03℄).Note that the presene of a non-in�nitesimal volume fration 1−α of droplets is not ompatiblewith the presene of a non-in�nite Boltzmann kernel (this is a onsequene of the Boltzmann-Gradasymptotis: f. [CIP94℄). The situation in the lassial work of Dukowiz [Duk80℄ is even worsesine no ollision kernel is onsidered there. The saling that we propose in next setion partiallyremoves this inompatibility, sine the ollision kernel tends to in�nity. The formulas for Q that wepropose are original and thoroughly desribed in subsetion 2.1.We provide in this work a link between eq. (1) � (11) and a di�erent lass of systems, sometimesalled "Eulerian-Eulerian", whih models two-phase �ows (inluding thik sprays). Those systemsare thoroughly desribed in [IH06℄. They are obtained at a heuristi level by taking averages ofEuler-type equations for both phases, and by imposing reasonable losures.In the "Eulerian-Eulerian" approah, the phase spae f of droplets is replaed by marosopiquantities, namely: the density (of mass) ρ := ρ(t, x) ∈ R+ of liquid, its veloity v := v(t, x) ∈ R
3,its internal energy (per unit of mass) e := e(t, x) ∈ R+, its total (internal + kineti) energy (per2



unit of mass) E := E(t, x) = e(t, x) + 1
2 |v(t, x)|2 ∈ R+ and its temperature T := T (t, x) ∈ R+. Theequations write(12) ∂t(αρg) + ∇x · (αρgug) = 0,(13) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,(14) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,(15) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(16) ∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp = Ã,(17) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2.Those balane laws are ompleted by the onstitutive equations of the gas (similar to (9))(18) p(t, x) = P1(ρg(t, x), eg(t, x)); Tg(t, x) = T1(ρg(t, x), eg(t, x)),together with the onstitutive equations of the liquid (inompressible) phase(19) T (t, x) = T2(e(t, x)), ρ(t, x) = ρp.Finally, the transfer terms Ã, B̃1, B̃2 of momentum and energy write(20) Ã = −(1 − α)
ρ

mp
D̃ (v − ug), B̃1 = −(1 − α)

ρ

mp
D̃ (v − ug) · v,(21) B̃2 = −(1 − α)

ρ

mp
Φ̃ (T − Tg).The terms Ã, B̃1, B̃2 respetively represent the drag fore term, its deposit in terms of energy, andthe thermal exhanges. The onstants D̃, Φ̃ respetively represent the drag fore oe�ient and thethermal ondution oe�ient. They an be �tted using experimental data and in general dependupon α, |v − ug|, et . Note that systems like (12) � (19) appear not only in the theory of sprays,but also in many other kinds of multiphase �ows (strati�ed, hurning �ows, et.), the transfer terms(like Ã, et.) depend in general of the type of �ows whih are onsidered and are generally obtainedby using statistial averages ([IH06, AOB89, O'R81, OZS09℄).Our goal in this paper is to provide a lear saling whih enables to derive �rigorously at theformal level� marosopi equations suh as (12) � (21) from �gas-partiles� equations suh as (1)� (11). It is lear that eq. (15) � (17) will be obtained by taking moments (with respet to v, e)of eq. (4). This stategy has already been used in many works onerning the modeling of sprays([Mas96, Lau02, Duf05℄), in the more ompliated ase when the spray is polydisperse: it useshowever heuristi losures in order to derive the "Eulerian-Eulerian" equations.Our approah, though it is restrited to the simpler ase of monodisperse sprays, is quite di�erentsine:i) It is based on a saling of the sprays equation obtained after a non-dimensionalization of thoseequations;ii) It provides non heuristial losures (that is, a mathematial link between A,B1, B2 and Ã, B̃1,

B̃2);iii) It involves the desription of a new variant of the Boltzmann kernel where all the parametersare assessed. 3



In the saling that we propose, the ollision term Q appearing in (4) must be dominant. Thisexatly orresponds in the ontext of standard kineti theory to the limit of small Knudsen number,in whih 1
ε is put in front of the ollision kernel, and whih leads from the Boltzmann equationof rare�ed gases towards the ompressible Euler equations of �uid dynamis (Cf. [KMN79℄ for arigorous proof in the ontext of very smooth solutions on a small time interval, and [Gol05℄ for ageneral survey on the question).Our paper is strutured as follows: in setion 2, the gas-partiles equations are spei�ed in detail,inluding the ollision kernel Q. Then, a non-dimensional version of those equations is providedin setion 3. The distributions whih anel Q are desribed in setion 4. Then, equations for themarosopi quantities (for both phases) are written down and the system is losed (in setion 5).Some onlusions and perspetives are presented at the end of the paper (setion 6).2. Presentation of the inelasti ollision kernel2.1. General form of the ollision kernel. We reall here the main assumptions that we pre-sented in the introdution of this work about the �ow we onsider.We assume that the �ow is onstituted of a surrounding gas and of a dispersed liquid phase. Thisphase is itself assumed to be of relatively small volume fration (typially between 10−3 and 0.2),and to be onstituted of very tiny spherial inompressible droplets having all the same radius r(that is, the spray is monodisperse). The �ow inside the droplets is not modeled.As stated in the introdution, a system whih models the spray under this assumption an bewritten down by onsidering the unknown f := f(t, x, up, ep) ≥ 0 for the droplets and ρg :=

ρg(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, p := p(t, x) ∈ R+, Eg := Eg(t, x) ∈ R+ for the gas. The set ofequations is then (1) � (11), and it remains to preisely de�ne the ollision operator Q.The assumptions that underly the establishment of this operator are the following: First, sine thespray is monodisperse, no omplex phenomena of oalesene or breakup of droplets are onsidered.For the same reason, all ollisions are supposed to be binary (that is, two droplets are present atthe beginning of the ollision and produe two droplets at the end of the ollision).Then, sine droplets are marosopi objets, the ross setion will be that of hard spheres.For the same reason, kineti energy onservation during the proess of ollision is not expeted ingeneral. As a onsequene, one needs to write down a model in whih part of the kineti energy islost: models of granular media (Cf. [BCG00, Vil02, CCC09℄) provide a good solution for that.Moreover, sine the internal energy of the droplets is one of the variables in f , one needs arule to exhange internal energy during the proess of ollision: models for polyatomi gases (Cf.[BL75, Des97℄) provide a simple solution for this physial phenomenon.Finally, the kineti energy whih is lost has to be onverted in internal energy, and to be dis-tributed between the two outgoing droplets. Sine those droplets have the same volume, we hooseto divide it equally. Colleting all those ideas, we end up with a ollision kernel whih writes(22) Q(f, f)(t, x, up, ep) =

∫∫∫∫

σ∈S
2,up

∗
∈R

3

ep
∗
∈R+

(

1

1 − a

1

β2
f(t, x,′ up∗,

′ ep∗) f(t, x,′ up,
′ ep)

. − f(t, x, up∗, ep∗) f(t, x, up, ep)

)

× 1{′ep,′e∗p≥0} r2 |up − up∗| dσdup∗ dep∗,4



where the pre-ollisional veloities ′up∗ and ′up are de�ned as
′up =

up + up∗
2

− 1 − β

4β

(

up − up∗
)

+
1 + β

4β
|up − up∗|σ,

′up∗ =
up + up∗

2
+

1 − β

4β

(

up − up∗
)

− 1 + β

4β
|up − up∗|σ.Here, σ belongs to the unit sphere S

2, and ∫σ∈S2 dσ = 4π. The pre-ollisional internal energies ′ep∗and ′ep are de�ned as
′ep =

2 − a

2 − 2a
ep −

a

2 − 2a
ep∗ −

1

2
∆E,

′ep∗ = − a

2 − 2a
ep +

2 − a

2 − 2a
ep∗ −

1

2
∆E,where(23) ∆E =

1

2
(′up

2
+ ′up∗

2 − up∗
2 − up

2) =

(

1 − β2

8β2

)

|up − up∗|2 −
1 − β2

8β2
|up − up∗|

(

up − up∗
)

· σis the loss of kineti energy (or gain of internal energy) [divided by mass℄.In those formulas, β := β(|up − up∗|) is a measure of the inelastiity of the ollision (the ollisionis elasti when β = 1), and a := a(|up − up∗|) is the parameter whih measures what part of theinternal energy is exhanged during a ollision (no internal energy is exhanged when a = 0).Note that the prefator 1

1 − a

1

β2
is related to the Jaobian of the pre-ollisional transform

(up, ep, up∗, ep∗) 7→ (′up,
′ ep,

′up∗,
′ ep∗), and to the ross setion of hard spheres ([Vil06℄). The modelpresented here is strongly reminisent of models appearing in granular gases. The only di�erene isthe treatment of the internal energy of the droplets.2.2. Weak form of the ollision kernel and onservations. The following weak form of theollision kernel an be obtained (at the formal level) (see [BCG00, Vil02, CCC09℄): For all testfuntion Ψ := Ψ(up, ep),

∫∫

up,ep

Q(f, f)Ψ(up, ep) dupdep

=

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′ − Ψ
]

r2 |up − u∗
p| dupdepdup∗dep∗

=
1

2

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′
∗ + Ψ′ − Ψ∗ − Ψ

]

r2 |up − u∗
p| dupdepdup∗dep∗,(24)with the following formulas for the post-ollisional veloities and internal energies:

u′
p =

up + up∗
2

+
1 − β

4

(

up − up∗
)

− 1 + β

4
|up − up∗|σ,

up
′
∗ =

up + up∗
2

− 1 − β

4

(

up − up∗
)

+
1 + β

4
|up − up∗|σ,

e′p =
2 − a

2
ep +

a

2
ep∗ +

1

2
∆E, ep

′
∗ =

a

2
ep +

2 − a

2
ep∗ +

1

2
∆E

∆E =
1

2
(u′

p
2
+ u′

p∗
2 − up∗

2 − up
2) =

1 − β2

8
|up − up∗|2 −

1 − β2

8
|up − up∗|

(

up − up∗
)

· σ5



(remember that Ψ′
∗ := Ψ(t, x, up

′
∗, ep

′
∗), et.). Speializing the weak formulation to the funtions

Ψ(up, ep) = mp, Ψ(up, ep) = mpup and Ψ(up, ep) =
1

2
mpu

2
p + mpep, we get the onservations ofmass, momentum and total energy :(25) ∫∫

up,ep

Q(f, f)(up, ep)mp dupdep = 0,(26) ∫∫

up,ep

Q(f, f)(up, ep)mp up dupdep = 0,(27) ∫∫

up,ep

Q(f, f)(up, ep)

[

1

2
mpu

2
p + mpep

]

dupdep = 0.2.3. Formulas for the inelastiity and energy exhange parameters. It remains to give aformula for the parameters a and β whih appear in our model of ollisions. This is done in thissubsetion, under the assumption that visosity is the main reason why kineti energy is lost duringollisions. A more omplete desription of the proedure together with numerial values in a typialexperiment (in the ontext of the nulear industry) an be found in [Mat06℄.2.3.1. Probability laws of exhange of internal energy. We �rst explain the proess of transfer ofinternal energy during the ollisions. We obtain a hint of the expression of a.A ollision of droplets an be onsidered as a oalesene of two partiles whih split after sometime. The droplets remain stuk together for a while, and they exhange internal energy throughthermal ondution.The time ∆τcoll of ollision between two droplets p (with veloity up, internal energy ep andtemperature Tp) and p∗ (with veloity up∗, internal energy ep∗ and temperature Tp∗) is generallyassessed as ∆τcoll =
2r

|up − up∗ |
(see [Cer88, Hyl99℄).Beause of heat transfers, an amount 4πrλp(Tp − Tp∗) of internal energy is exhanged by unit oftime (with λp the thermal ondutivity of the droplets, supposed to be onstant) from p towards

p∗. The 4π fator might not be the good geometri fator beause one partile does not surroundthe other during the ollision as the gas surrounds a partile, but this quantity gives at least theright order of magnitude. Hene, we get
d

dt
(ep∗ − ep) =

4πrλp

mp
(Tp − Tp∗).Supposing that the spei� heat Cp of the liquid is a onstant, we end up with the following evolutionfor the di�erene of internal energy between the two droplets during the ollision:

(ep∗ − ep) (t) = exp

(

−4πrλp

Cpmp
t

)

× (ep∗ − ep) (0).Using the last equality for t = ∆τcoll, one gets
a = 1 − exp

(

−4πrλp

Cpmp

2r

|up − up∗|

)

.(28) 6



2.3.2. Estimate of the inelastiity parameter. We assess the e�et of inelastiity through someomputations using the T.A.B. (Taylor Analogy Break-up) model used in the Kiva ode (see [Bar04℄and [AO89℄), under the assumption that visosity is the main fator of loss of kineti energy duringollisions between liquid droplets ([JUL92℄ and [WO03℄).More preisely, the distortion of spheriity y satis�es the following ordinary di�erential equation(see [Bar04℄),
ÿ =

2

3

ρg

ρp

|up − ug|2
r2

− 8σT

ρpr3
y − 10µp

ρpr2
ẏ,where σT is the surfae tension of the liquid onstituting the droplets, and µp is the dynamivisosity of this same liquid. Assuming that the surfae tension plays a negligible role (w.r.t. thevisosity) in the loss of kineti energy during a ollision, we �nd a harateristi time τc (visoustime):

τc = 1

/

10µp

ρpr2
.Sine the osillatory energy is proportional to ẏ2, we see that the kineti energy (in the enter ofmass) of the two droplets E(t) (at a time t after the beginning of a ollision) is ontrolled throughthe following exponential evolution:

E(t) = E(0) exp

(

−2t

τc

)

=
1

4
|up − up∗|2 exp

(

−2t

τc

)

,so that the loss of kineti energy ∆E during a ollision is
∆E =

1

4
|up − up∗|

2

(

1 − exp

(

−2∆τcoll

τc

))

.Sine we also have de�ned ∆E through
∆E =

1

2
(u′

p
2
+ u′

p∗
2 − up∗

2 − up
2) =

1 − β2

8
|up − up∗|

2 − 1 − β2

8
|up − up∗|

(

up − up∗
)

· σ,the loss is (at worst)
∆E =

1 − β2

4
|up − up∗|

2.We end up with
β = exp

(

−∆τcoll

τc

)

= exp

(

− 20µp

ρpr|up − up∗ |

)

.(29)This proedure of ourse only provides a rough order of magnitude for β. This is neverthelessenough to determine if the regime of ollision is elasti or not.The equations for thik sprays being now omplete, we introdue in next setion a saling basedon the dimensional analysis of those equations. 7



3. Non dimensional form of the Vlasov-Boltzmann equationWe write down in this short setion the dimensional analysis whih enables to obtain a formallimit for the Vlasov-Boltzmann equation (4). In order to do so, we �rst introdue the followingtime/spae typial quantities:
• tg: typial time of the experiment,
• L: typial length of the experiment.Next, we introdue quantities related to the gas and the droplets (remember that r, mp, ρp are theradius, mass and density of droplets, and that D, Φ are the oe�ients for drag fore and thermalexhanges)
• N : typial number of droplets of the experiment,
• V : typial mean veloity of the droplets. We shall assume that it is also the typial thermalveloity of the droplets [that is, the square root of the variane of the veloity distribution℄,and the typial veloity of the gas. One has V tg = L.
• Ip: typial internal energy of the droplets per mass unit,
• Ig: typial internal energy of the gas per mass unit,
• TT : typial temperature of the droplets. We shall assume that it is also the typial temper-ature of the gas.
• P : Typial pressure of the gas
• P ′ = ρp V 2: this quantity has the dimension of a pressureIt is ustomary to introdue at this level the mean free path σ = L3

r2 N
. Finally, we denote by ε theKnudsen number ε =

σ

L
. This quantity is at the basis of the passage from Boltzmann eq. towardsEuler eq. (see [Cer88℄ and [CC70℄). The orders of magnitude of the terms appearing in (4) are thengiven by the following formulas:

• Time derivative term:
∂tf ∼ N

Ip V 3 L3

1

tg
.(30)

• Transport term:
∇x · (fup) ∼ N

Ip V 3 L3

V

L

∼ ∂tf.(31)
• Pressure term:

∇up
·
(∇xp

ρp
f

)

∼ N

Ip V 3 L3

V

L

P

P ′

∼ P

P ′ ∂tf.(32)
• Drag fore term:

∇up
·
(

D

mp
(up − ug)f

)

∼ N

Ip V 3 L3

D

r3 ρp

∼
(

D tg
r3 ρp

)

∂tf .(33) 8



• Energy exhange term:
∂ep

(

Φ

mp
(Tg − Tp) f

)

∼ N

Ip V 3 L3

Φ TT

r3 ρpIp

∼ Φ TT tg
r3 ρpIp

∂tf.(34)
• Collisional term:

Q(f, f) ∼ r2V Ip V 3

(

N

Ip V 3 L3

)2(we reall that we use the hard sphere ross setion)
∼ 1

ε
∂tf.(35)We now introdue non-dimensional quantities (denoted with a tilde) for the unknowns and param-eters entering eq. (4). That is, we onsider

t̃ =
t

tg
, x̃ =

x

L
, ũp =

up

V
, ẽp =

ep

Ip
, T̃p =

Tp

TT
,

f̃(t̃, x̃, ũp, ẽp) =
IpL

3V 3

N
f(tg t̃ , L x̃ , V ũp , Ip ẽp),for the partiles and

ũg(t̃, x̃) =
ug(tg t̃ , L x̃)

V
, T̃g(t̃, x̃) =

Tg(tg t̃ , L x̃)

TT
, ẽg(t̃, x̃) =

eg(tg t̃ , L x̃)

Ig
, P̃ (t̃, x̃)

p(tg t̃ , L x̃)

Pfor the gas.The equation satis�ed by f̃ then beomes
∂t̃f̃ + ũp · ∇x̃f̃ + ∇ũp

· (f̃ Γ̃) + ∂ẽp
(f̃ φ̃) =

1

ε
Q(f̃ , f̃),(36)where

Γ̃ =
P

P ′ ∇x̃p̃ + C2 (ũp − ũg) ,

φ̃ = C3(T̃g − T̃p),

C2 =
D

mp
tg,

C3 =
ΦTT tg
mpIp

.We shall now study the limit of eq. (36) when ε → 0. We see that this limit makes sense when thetypial parameters of the experiment under study are suh thatfrom (30) and (31) , 1 ≫ ε,(37a) from (32) ,
P ′

P
∼ 1,(37b) from (33) ,

mp

D tg
∼ 1,(37) from (34) ,

mpIp

ΦTT tg
∼ 1.(37d) 9



A typial situation appearing in the nulear industry where those assumptions are ful�lled is de-sribed in [Mat06℄. Note that other salings, based on a di�erent ordering of the various termsappearing in (36) an be performed. In the ontext where ollisions are replaed by a di�usionoperator (in the up variable), we wish to point out two suh salings, performed in [GJV04a℄ and[GJV04b℄. One of the main di�erenes with our own work is the fat that in those papers, the dragfore is of order ε−1. In our setting, the drag fore is of order 1 beause in the appliation to thenulear industry that we have in mind (Cf. [Mat06℄), the spray is produed by the introdution of"not too small" droplets of liquid tin in a gas (air) at a "not too big" relative veloity.4. Limit of the pdf in the salingIn order to pass to the limit (at the formal level) in eq. (36) when ε → 0, we study the solutionsof the funtional equation Q(f, f) = 0, when ollisions are truly inelasti, that is when β :=
β(|up − up∗|) ∈ [0, 1[. The omputation of the exhange of kineti energy leads to(38) ∫∫

up,ep

Q(f, f)
1

2
mpu

2
p dupdep = −

∫∫∫∫

up,ep,up∗ ,ep∗

1 − β2

8
ff∗4πr2 mp|up − up∗|

3 dup∗dep∗dupdep ,so that the e�et of inelasti ollisions is to onentrate the veloities of the droplets. Note �rstthat when onsidering only the evolution of veloities, in absene of internal energy exhange, theonvergene towards a Dira mass is rigorously proven in [BCG00℄, [Vil02℄ or [FM05℄ for solutionsof the spatially homogeneous Boltzmann equation ∂tf = Q(f, f) (for β onstant).We now wish to show, at the formal level, that when onsidering the evolution of both veloitiesand internal energies in ∂tf = Q(f, f),(39) lim
t→+∞

f(t, up, ep) = Gδup=v(up) ⊗ δep=e(ep),with v ∈ R
3, G ≥ 0, e > 0.Note that this annot be done diretly by the study of the solutions of Q(f, f) = 0 sine alldensities of the form(40) f(up, ep) = δup=v(up) ⊗ µ(ep),where µ is a positive measure, are suh solutions (equilibria).The explanation of what at �rst glane seems an inonsisteny between (39) and (40) is thefollowing: when µ is not a Dira mass, the equilibria of the form δup=v(up) ⊗ µ(ep) are unstable.More preisely, as soon as the density f is not exatly a Dira mass w.r.t. the variable up, someollisions our and onsequently some energy will be exhanged between the droplets, so that µwill onverge towards a Dira mass.Note that other instabilities in the ontext of granular media have been studied. We refer inpartiular to [BCG00℄ for the instability of the onstant states (as far as mass and veloity areonerned; the temperature behaving like t−2) w.r.t. large waves perturbations for solutions ofdissipative Euler systems.4.1. The ase of onstant oe�ients of inelastiity and energy exhange. We assume inthe following omputation that a and β are onstant, for the sake of simpliity. An extension ofthis omputation in a ase in whih a and β are not onstant is given in subsetion 4.2.In order to do so, we �rst reall Ha�'s law ([Haf83℄): For f := f(t, up) satisfying the spatiallyhomogeneous equation ∂tf = Q(f, f) (with β ∈ [0, 1[ and no exhange of energy involved), the10



following estimate holds:(41) m

1 + t2
≤ T (t) ≤ M

1 + t2
,where T (t) :=

∫

up

f(t, up)
1

3
mp(up − v)2dup

∫

up

f(t, up)mpdup

, and where m and M are onstants depending on initialdata. A rigorous proof of this result an be found in [MM06℄ and [MMRR06℄ (when β is a onstant).A �rst hint of the proof an be found in [BCG00℄ when one assumes that |v − v∗| is replaed bya term proportional to √
T . Our goal here is to estimate the evolution of the mean internal energyalong the solutions of the equation(42) ∂tf(t, up, ep) = Q(f, f)(t, up, ep).The omputations that we provide are only approximations. They give an idea of what should bethe evolution of the quantity
g(t) :=

∫∫

up,ep

f(t, up, ep)mp (ep − e(t))2 dupdep

∫∫

up,ep

f(t, up, ep)mp dupdep

,that is the variane of f w.r.t. ep. They will be sustained in next subsetion by numerial simula-tions. Note �rst that thanks to the onservation of mass,
g′(t) =

∫∫

Q(f, f)(t, up, ep)mp(ep − e(t))2dupdep

∫∫

f(t, up, ep)mp dupdep

(43)
=

(

−a(1 − a

2
)

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2|up − up∗|dupdup∗depdep∗

+
1

2

∫∫∫∫

4πr2ff∗
[

1

2
∆E2 + ∆E (ep + ep∗ − 2e)

]

|up − up∗|dupdup∗depdep∗

)

/
∫∫

fdupdep .We use the following approximation based on Ha�'s law: in all omputations we replae |up − up∗|by √
6T (the 6 omes from the fat that we are in 3D): it is more or less the same approah as in[BCG00℄. Then,

g′(t) ∼
(

−a(1 − a

2
)
√

6T

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2dupdup∗depdep∗

+

∫∫∫∫

2πr2ff∗
(

1

2

(

1 − β2

4
6T

)2

+
1 − β2

4
6T (ep + ep∗ − 2e)

)

√
6Tdupdup∗depdep∗

)

/

∫∫

up,ep

fdupdep .(44)We use the identities 11



∫∫∫∫

ff∗(ep − ep∗)
2dupdup∗depdep∗ =

∫∫∫∫

ff∗ [(ep − e)2 + (e − ep∗)
2
]

dupdup∗depdep∗

= 2g(t)

(

∫∫

up,ep

fdupdep

)2

,(45)and(46) ∫∫∫∫

ff∗(ep + ep∗ − 2e) dupdup∗depdep∗ = 0.As a onsequene, we obtain the following (approximate) ODE for the evolution of g:
g′(t) ∼ (1 − α)

(

−a(1 − a

2
)
√

6
3

r
T (t)1/2g(t) +

1

4

(

1 − β2

4

)2
3

r
(6T (t))5/2

)

,(47)where 1 − α =

∫∫

up,ep

f
4

3
πr3dupdep is the volume oupied by the droplets (in the homogeneoussetting that we onsider, this quantity is a onstant). Using now (aording to Ha�'s law) theapproximation T (t) =
c2
1

(1 + c2t)2
where c1 and c2 > 0, we solve eq. (47) and obtain (exept in theexeptional ase when 3

r
(1 − α)

c1

c2

√
6a(1 − a/2) = 4):(48) g(t) ∼ g(0)

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

+
1

4

(

1 − β2

4

)2 (√
6c1

)5
/c2

3
r (1 − α) c1

c2

√
6a(1 − a/2) − 4

[

(1 + c2t)
−4 − (1 + c2t)

− 3

r
(1−α)

c1
c2

√
6a(1−a/2)

]

.We now disuss the behavior of g aording to the sign of 3

r
(1 − α)

c1

c2

√
6 a(1 − a/2) − 4.

• When 4 <
3

r
(1 − α)

c1

c2

√
6a(1 − a/2): we get(49) g(t) ∼ Cst

(1 + c2t)4
.This is the situation when thermal exhanges are predominant: √g(t) then onverges tozero as rapidly as the temperature T (t) (note that √g has the same dimension as an energy).

• When 4 >
3

r
(1 − α)

c1

c2

√
6a(1 − a/2), we get
g(t)∼ Cst

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

,so that √g(t) still onverges towards 0, but this onvergene is slower than that of thetemperature T (t). It an even be very slow when a is lose to 0 (that is, when the exhangesof internal energy are of small amplitude).Note �nally that the exeptional ase 3

r
(1−α)

c1

c2

√
6 a(1− a/2) = 4 leads to a formula lose to (49)[but with a logarithmi orretion℄. 12



The previous omputations show (though not rigorously) that the only stable equilibrium of
∂tf = Q(f, f) in the ase of inelasti ollisions (β ∈ [0, 1[) are funtions de�ned by (39).We now present a numerial simulation whih on�rms the approximate omputations presentedabove. We present some numerial tests for the spatially homogeneous Boltzmann equation ∂tf =
Q(f, f), when Q is the inelasti ollision kernel de�ned by (22), with a and β �xed onstants. Theomputations are performed thanks to a partile method (Cf. [Bar04, PR05℄), where the density
f := f(t, up, ep) is approximated by a sum of Dira masses with the same numerial weight (thatis, f(t, up, ep) ∼ w

∑N
i=1 δup=upi;ep=epi

). This set of numerial partiles then evolves aording toBird's method (Cf. [Bir94℄). The tests whih are presented orrespond to the following parameters:
r = 10−4, f(0, up, ep) = Cst 1up∈[−104,104]3;ep∈[5.105,5.106].About 104 numerial partiles are used.First test: Convergene towards the Dira mass w.r.t. veloity; Ha�'s lawWe hek that Ha�'s law holds for a = 1 and β = 0.99, 0.95, 0.8: we plot the results in logarithmsale: we expet to get a (asymptotially) straight line whose slope is −2 (sine Ha�'s law meansthat T (t) ∼ t−2).It is indeed what we observe in the �gure below. Note also that, as expeted, the onvergene isslower when β inreases.
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Fig. 1. Behavior of kineti temperature: ln T as a funtion of ln t for di�erent βSeond test: Convergene towards the Dira mass w.r.t. the internal energyWe now hek the onvergene towards the Dira mass w.r.t internal energy. We �x β = 0.99 andlet a vary between 0.01 and 1.0. We plot
W = ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

)as a funtion of ln(t).As an be seen in �gure 2, the more a inreases, the more the oe�ients of the asymptotistraight line tend to −2. More preisely (in aordane with the theoretial omputation), we seethat there exists a ritial a (around 0.06) whih separates a zone in whih the behavior of W seemsto be in t−2, and a zone in whih it is rather in t−θ, with θ ∈]0, 2[ depending on a. Finally, we observethat for small a, the funtion W inreases during a ertain amount of time: thermal exhanges are13
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Fig. 2. Convergene in internal energy: ln
(∫∫

f(t, up, ep)|ep − e(t)|depdup/
∫∫

f(t, up, ep)depdup

)as a funtion of ln t for various values of parametersthen not signi�ant enough to ompletely ounterbalane the positive term in equation (47) (thatis, the transfer of kineti energy to internal energy) at all times.4.2. The ase when the oe�ients of inelastiity and internal energy exhange dependon relative veloity. We (brie�y) present here a formal omputation showing that the resultsof subsetion 4.1 obtained when a and β are onstant still hold when a and β are given by (28)and (29). The omputation performed in subsetion 4.1 for the evolution of temperature (with theapproximation |up − up∗| ∼
√

6T ) leads to the following ODE, when β is given by formula (29):
d

dt
T ∼ −C

r

(

1 − exp

(

−2
∆τcoll

τc

))

(1 − α)T
3

2

∼ −C

r

(

1 − exp

(

− 4r√
6T τc

))

(1 − α)T
3

2 ,(50)for some C > 0. When T is large, d

dt
T ∼ −4C

τc
(1 − α)T so that T deays exponentially. When Tbeomes small enough, T satis�es d

dt
T ∼ −C

r
(1 − α)T

3

2 and we are bak to the situation that westudied in subsetion 4.1 with β onstant (and lose to 0). Similar omputations an be done forthe quantity g. We now present a numerial simulation whih sustains those omputations.We use the expression of a and β found in paragraphs 2.3.1 and 2.3.2. The numerial ode issimilar to the ode used previously. As one an see in �gure 3, the temperature T (t) does onvergeto zero. At the beginning, this onvergene is exponential, whereas as soon as T beomes smallenough, the rate of onvergene orresponds to Ha�'s law, i.e. is in 1

t2
. Next we observe theonvergene of the internal energy in �gure 4. We see that the internal energy indeed onverges toa Dira mass in this simulation. 14
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Fig. 4. Convergene towards the Dira mass in internal energy:
ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

) as a funtion of
ln t 5. Fluid of partiles:Aording to the dimensional analysis of setion 3, we end up with the following set of saledequations for the spray:

∂t(α
ερε

g) + ∇x · (αερε
gu

ε
g) = 0 ,(51)

∂t(α
ερε

gu
ε
g) + ∇x · (αερε

gu
ε
g ⊗ uε

g) + ∇xp
ε = −Aε,(52)

∂t(αρε
gE

ε
g) + ∇x ·

(

αερε
g

(

Eε
g +

pε

ρε
g

)

uε
g

)

+ pε∂tα
ε = −Bε

1 − Bε
2,(53)(54) ∂tf

ε + uε
p · ∇xf ε + ∇up

· (f εΓε) + ∂ep
(f εφε) =

1

ε
Q(f ε, f ε),where(55) mpΓ

ε = −mp

ρp
∇xp

ε − D(up − uε
g); mpφ

ε = Φ (T ε
g − Tp),15



(56) Aε =

∫∫

up,ep

mpΓ
ε f ε dupdep,(57) Bε

1 =

∫∫

up,ep

mp (Γε +
∇xpε

ρp
) · up f ε dupdep,(58) Bε

2 =

∫∫

up,ep

mpφ
ε f ε dupdep.In this setion, we present the omputations whih enable to pass to the limit at the formal levelin eq. (51) � (58), when ε → 0. These formal omputations are based on the same priniple asthe traditional passage from the Boltzmann eq. towards �uid mehanis: we �rst take momentsof eq. (54), and then lose the orresponding equations thanks to the study (in setion 4) of thesolutions of Q(f, f) = 0 (more preisely, of the large time behavior of the solutions of the spatiallyhomogeneous equation ∂tf = Q(f, f)).We de�ne the following quantities assoiated with the moments of order zero (mass), one (mo-mentum), two (energy, pressure (Reynolds') tensor) and three (�ux of energy) of the �uid of partiles(the notations used here are oherent with those of setion 1):

(1 − α)ρ =

∫∫

up,ep

fmp dupdep, (1 − α)ρv =

∫∫

up,ep

fmpup dupdep,

(1 − α)ρ ec =

∫∫

up,ep

1

2
fmp|up|2 dupdep, (1 − α)ρ e =

∫∫

up,ep

fmpep dupdep,

(1 − α)ρE =

∫∫

up,ep

f

{

1

2
mp|up|2 + mpep

}

dupdep,

(1 − α)P ′ =

∫∫

up,ep

fmp(v − up) ⊗ (v − up) dupdep,

(1 − α)q =

∫∫

up,ep

fmp(v − up)
2(up − v) dupdep.Note that the pressure tensor P ′ will appear in our set of equations beause the �uid of droplets doesnot "see" the same pressure as the gas. This extra term of pressure, sometimes alled interfaialpressure, appears (usually in a non tensorial form) in many works onerned with the modeling oftwo-phase �ows (see [Sai95℄ and [GHS04℄ for example). This pressure tensor vanishes when all thedroplets have the same veloity (in the limit ε → 0).We now integrate the Boltzmann equation against mpdupdep (mass onservation), mpupdupdep(momentum onservation), and mp[

1
2 |up|2 + ep] dupdep (energy onservation). We use properties(25), (26) and (27) of the ollision kernel. This leads to

∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0(remember that ρ = ρp is a onstant), 16



∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp + ∇x ·
(

(1 − α)P ′) =

−
∫∫

up,ep

D (up − ug)fdupdep,and(59) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) + ∇x · ((1 − α)(P ′v + q))

= −
∫∫

up,ep

D (up − ug) · upfdupdep +

∫∫

up,ep

Φ (Tg − Tp)fdupdep.We now lose the equations by formally letting ε go to 0 in (51) � (58). Aording to the results ofsetion 4, we know (at the formal level) that f ε → f , with(60) f(t, x, up, ep) = G(t, x) δup=v(t,x)(up) δep=e(t,x)(ep).We end up with a system of 6 equations whih write (remember that eg = Eg− 1
2u2

g and e = E− 1
2v2):

∂t(αρg) + ∇x · (αρgug) = 0,(61)
∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(62)

∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,(63)
∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp =(64)

Ã,(65)
∂t(αρgEg) + ∇x ·

(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,(66)
∂t ((1 − α)ρE) + ∇x ·

(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2,(67)where Ã, B̃1 and B̃2 are de�ned in the introdution, the funtions D̃ and Φ̃ being the same as D,
Φ, but taken at points v, e instead of up, ep. We reall the equations of state whih omplete thissystem:(68) p = P1(ρg, eg), Tg = T1(ρg, eg),(69) ρ = ρp, T = T2(e).At the end, we obtain the announed link between the set of Eulerian-Lagrangian equations andthe set of Eulerian-Eulerian equations.Remark: When ollisions are elasti (that is, β = 1), the omputation runs thus: �rst, f ε → f(formally), with(70) f(t, x, up, ep) =

Z(t, x)

(2πT (t, x))
3

2

exp

(

−(up − v(t, x))2

2T (t, x)

)

δep=e(t,x)(ep),where Z, v, e, T are marosopi moments whih satisfy the following losed set of seven equationsfor seven unknowns, that is 17



(71) ∂t(αρg) + ∇x · (αρgug) = 0,(72) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(73) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = M(ρ, 1 − α, v, T, ug ,D),(74) ∂t((1−α)ρv)+∇x ·((1−α)ρv⊗v)+(1−α)∇xp+∇x ((1 − α)ρT ) = −M(ρ, 1−α, v, T, ug ,D),(75) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα =

I(ρ, 1 − α, v, T, ug ,D) − Φ (Tg − T )
(1 − α)ρ

mp
,

∂t ((1 − α)ρec) + ∇x · ((1 − α)ρ(ec + T )v) + (1 − α)v · ∇xp = −I(ρ, 1 − α, v, T, ug ,D),(76)(77) ∂t ((1 − α)ρe) + ∇x · ((1 − α)ρev) + p (∂t(1 − α) + ∇x · ((1 − α)v)) =

Φ (Tg − T )
(1 − α)ρ

mp
,where Eg = eg+ 1

2 |ug|2, ec = 3
2 T + 1

2 |v|2, andM,I are "almost" expliit funtions. Their expressionan be found in [Mat06℄. Remember also that the following equations of state are added to (71) �(77):(78) p = P1(ρg, eg), Tg = T1(ρg, eg), Tp = T2(e), ρ = ρp.Note that this system is not found in textbooks about two-phase �ows sine usually the ollisionsbetween droplets are onsidered to be inelasti.6. Conlusion and perspetivesWe now wish to brie�y omment some of the issues related to this paper.Firstly, we wish to explain what an be the extensions of the asymptotis presented in this work:the presene of (moleular or turbulent) di�usion in the gas equations does not hange the ompu-tations. It is also possible in priniple to take into aount hemistry terms (e.g. ombustion terms)in the equations: this leads however to serious ompliations. Finally, it is known that polydisper-sion plays a deisive role in the onstrution of marosopi models starting from spray equations(Cf. [DMV03℄). In general, it is not possible to guess the evolution of droplets w.r.t. radius, andone has to ut into "setions" the various possible radiuses r. It however sometimes happens thatproesses of oagulation/breakup lead to suh spei� pro�les (Cf. for example [AB79℄). In suh(unfortunately unrealisti, at least when sprays are onerned) situations, two-phase marosopiequations an be obtained (at the formal level) by an asymptotis.Seondly, we would like to emphasize the extreme di�ulty of making rigorous the passage to thelimit that we propose (even in a "small time" setting). This is related to the very bad mathematialbehavior of the limiting eq. (12) � (19). Those equations are not written in onservative form andhave a domain of non hyperboliity (Cf. [Ram00℄). Moreover, the set of eq. (1) � (11) has not yetbeen studied from the mathematial point of view. It might indeed present a behavior as bad as thelimiting system [though this guess is not yet sustained by onvining arguments℄. One possibility18
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