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Diffusion models for mixtures: Fick/Maxwell-Stefan

» Mixture of p > 2 species .
Fick law:
> p;: mass density of species i
» N; = p;u;: momentum of species / ‘ N = —F(P)pr‘
N

/).1 _1 Maxwell-Stefan equations:
> p = . H N - :

Pp Np ‘ —Vxp = S(P)’V‘

» Mass conservation: O;p+V - N =0

Properties of matrices F and S

> F(p) and S(p) are not invertible (rank p — 1).

» Cauchy problem for Maxwell-Stefan's equations [Giovangigli, Bothe, Jiingel &
Stelzer]

» Using Moore-Penrose pseudo-inverse: structural similarity
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Fick vs. Maxwell-Stefan
(macroscopic point of view)

Formal analogy of the two systems,
but Fick and Maxwell-Stefan are not obtained in the same way

Obtention of the Fick law
» Thermodynamics of irreversible processes (entropy decay) [Onsager|

» Thermodynamical considerations on fluxes, written as linear combinations of
potential gradients

» Stems from mass equations

Obtention of the Maxwell-Stefan equations
» Mechanical considerations on forces (equilibrium of pressure and friction
forces)

» Assumption: different species have different macroscopic velocities on
macroscopic time scales

» Stems from momentum equations
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Fick vs. Maxwell-Stefan
(kinetic point of view)

Formal analogy of the two systems,
but Fick and Maxwell-Stefan are not obtained in the same way

Perturbative method (Fick)

» Based on the Chapman-Enskog expansion
[Bardos, Golse, Levermore], [Bisi, Desvillettes]

Moment method (Maxwell-Stefan)

» Based on the ansatz that the distribution functions are at local Maxwellian
states [Levermore], [Miiller, Ruggieri]

The Maxwell-Stefan equations can be written
1 pip;(uj — ui)
V=Y %’
i j#i y
mj: molecular mass of species i, Djj > 0 symmetric.
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Stiff dissipative model for mixtures

For any species i with velocity u;, we write mass and momentum conservation
Oepi + Vx - (piu;) =0,
1
Or(piui) + Vx - (piv; ® ui + Pi(pi)) + gRi =0

> Ideal gas law for the partial pressure P;(p;) = piks T /m;
» Relaxation term: friction force exerted by the mixture on species i

p

R,‘ = Z a,-jp,-pj(uj — U,') = ZO&U(UJ — U,') = ZO&,'J'UJ'.
J#i J#i j=1

Using the formalism of [Chen, Levermore, Liu, CPAM, '94]

Obtain a reduced system involving the aligned velocity u when € remains small

Oepi + Vx - (pit) = eV - ( j=1 Li v,jjp") :
Or(pu) + Vx - (pu @ u) + V4P =0,

where P = 3. Pj(p;) is the total pressure, and ({;) are real constants.
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Stiff dissipative model for mixtures

For any species i with velocity u;, we write mass and momentum conservation
O¢pi + Vi - (piu;) = 0,
1
Or(piui) + Vx - (piv; ® ui + Pi(pi)) + gRi =0

> Ideal gas law for the partial pressure P;(p;) = piks T /m;
» Relaxation term: friction force exerted by the mixture on species i

P
R,‘ = Z a,-jp,-pj(uj — U,') = ZOLU(UJ — U,') = ZO&UUJ'.

i #i j=1
Using the formalism of [Chen, Levermore, Liu, CPAM, '94]
This approach has been used in previous papers for other systems:

» [Kawashima], [Yong], [Kawashima,Yong], ...

> [Giovangigli, Matuszewski], [Giovangigli, Yong], ...
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Vectorial expression of the system

OW + V, - F(W) + éR(W) =0 (%)

» Unknown W = [Wi, ..., W,, Wpiq, -+, Wpp] € (R})P x R, with
Wi = pi, Wpii = piu;
> the k-th column of F(W) and R(W) are given by

Wp+1 - €k
5 Opxl

Wy, -e P
2p * €k W,

Zalf W

L RW) = |7

Fr(W) = (Wp+1 ® Wpia

W1 + P1(W1)]Id) €y

: ia . Wp+j
w w pj 7
(Weoo oo . p (w1, e =W ]
P
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Aim of the work

» Adapt the formalism by Chen, Levermore and Liu in the gaseous mixture

framework

» Limiting behavior for small ¢

» Derive an approximation of the local equilibrium and its first-order correction

» Build a relevant entropy which ensures...
» ... the hyperbolicity of the local equilibrium approximation...

» ... and the dissipativity of its first-order correction

Analogy with the kinetic theory

> relaxation time € «— mean free path
» unknown W <— distribution function 1

» friction relaxation term R <— collision operator @
(with dissipativity and collisional invariant properties)

» local equilibria «— Maxwellian functions
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e Entropy and equilibrium
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Building the entropy

W + V- F(W) + éR(W) =0 (%)

Entropy for Equation ()
The function 7 defined by

W) = 2ot wien ) = *2T (won () )
is a strictly convex entropy for Equation (%), i.e.

» Van(W)VwF(W) is symmetric for any k

> Vwn(W)-R(W) >0

» Va,n(W) is a positive definite quadratic form

~~ Choice of the internal energy E/'(W;) = P/(W;)/ W,
~+ Nonnegativity of the matrix A = (o)
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Conserved quantities

The matrix
Hp 0p>< dp
Q= e R(p+d)x(p+dp)

Oaxp [Id>- -+ 1]
satisfies QR(W) = 0(p1.q)x1- It allows to define

= = - p+d
w=QW = [Wl’ prﬂ €R
the p + d independent conserved quantities.
Conversely, to any w = [Wl, S, Wp, W;_H]T, we associate, via the equilibrium

function &, the equilibrium Weq = £(w) such that R(Weq) = 0, where

T

Wi w,
E(w) = W17”"Wp,mwg+17.“’TVF\)/)W;H , with o(w ZW,
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Characterization of the local equilibria

Equilibrium function

T P

- L T, B - — :
E(w) = |w, ’Wp’a(w)w”*l’ ’a(w)w’”'l , with J(W)—;W,.
~» Characterization of the equilibrium
> R(Weq) =0
> there exists u € RY such that Weq = [Wh, -+, Wy, WinT, -+ WpuT|T

~ this corresponds to saying that all species velocities are aligned
> there exists v € RP™ such that Vwn(Weq) = vTQ
~» Use of the Legendre-Fenchel transform of 7
> there exists v € RP™ such that Weq = Vvn* (VT Q)

In terms of the physical variables,

(c,'(W) = [p17 T aPp,,OlllT, te 7ppUT]T .

Define P(w) = V,,&€(w)Q, which is a projection matrix.
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@ Local equilibrium approximation
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Look for an expansion W = M{w] (with w = QW), such that
0w + Vy - QF(M[w]) ~ 0.
Then

W + V, - F(W) + %R(W) ~ (I — Vi MW]Q)Vx - F(Mw]) + éR(M[W]).

Satisfying equation (x) leads to cancelling the RHS.
Introduce the formal expansion

W = M[w] = Ew) + eMD[w] + - -
Linearizing, order 1 in € becomes
(I = VuEW)Q)Vx - FEW)) + VwR(EW)MDw] = 0
Provided that the inversion of VwR(E(w)) is possible in some sense,
MO = — (VwR(EW)) ™ (I~ VuE(W)Q)Vx - F(E(w))
————
=P(w)
and the equation on w becomes, with f(w) = QF(E(w))

F
Bew + V- f(w) + £V - [QVWF(é’(W))M(l)[W] —0.
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Local equilibrium approximation

Formal expansion

We = E(w) + eMB[w] +- -

Chen, Levermore and Liu's computations

The first-order correction is given by
MOw] = Bl 45 — P(w)] Vx - F(E(w)), with P(w) = VuE(w)Q.
The system (x) becomes
Oew + V- f(w) = eV - g(w),

where

fi(w) = QF(E(w)),
gk(w) = QVWFL(E(W))B [Tp+ap — P(W)] Vi - F(E(w)),

where B is the pseudo-inverse of VwR(E(w)) such that imB = ker Q.
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Explicit computations

~+ Expression of the equilibrium, definition of P(w) = V,,&(w)Q

Opxl

_ph
(]Ip+dp _ P(W))vx ] F(E(W)) _ prl(Pl) P VXP

VPo(pp) ~ VP
where p=3".pi and P =", Pi(pi). ) g ]
~» Computation of X = B(I,1qp — P(W))Vy - F(E(w)):
» B pseudo-inverse of VwR(E(w)) such that imB = ker Q
> kerQ={[0,--,0,XT, 1, -+, X3]T, 32 Xpii = 01 }
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Explicit computations

~+ Expression of the equilibrium, definition of P(w) = V,,&(w)Q

Ole

_ph
(]Ip+dp _ P(W))vx ] F(E(W)) _ prl(Pl) P VXP

VPo(pp) ~ VP
where p=3".pi and P =", Pi(pi). ) g ]
~» Computation of X = B(I,1qp — P(W))Vy - F(E(w)):
» B pseudo-inverse of VwR(E(w)) such that imB = ker Q
> kerQ={[0,--,0,XT, 1, -+, X3]T, 32 Xpii = 01 }

» X €imB = kerQ thus X; =0 and Zf:lxpﬂ' =0
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Explicit computations

~+ Expression of the equilibrium, definition of P(w) = V,,&(w)Q

where p=3".pi and P =", Pi(pi).

(Tptap — P(W)) Vi - F(E(w))

Ole

VxPl(pl) — %VXP

vxPp(Pp) - %VXP

~» Computation of X = B(I,1qp — P(W))Vy - F(E(w)):

B pseudo-inverse of VwR(E(w)) such that imB = ker Q
kerQ = {[0,-+,0,X],5,+, X3,] 7,30 Xpyi = 0as1 }
X €imB =kerQ thus X; =0 and 37 | Xp4; =0
im(VWR(EW))) = ker @ = (Ipsap — P(w))Vix - F(E(w)) € im(VwR(EW)))
VWR(EW))X = (Lp1gp — P(w))Vx - F(£(w))

12:29

>

v

v

v

> a

/]

j=1

Xptj

Pi

VxPi(pi) — %VXP ~  Pseudo-invert A = (o)
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Pseudo-inversion of A

Let 1 = (1, ,1)T
ker A = Span1 and im A = (Span 1)~

Let r = [p1, -+, pp]", which is not orthogonal to 1
Decompositions
RP = (Span1) @ (Spanr)* = (Span1)* @ (Spanr)

Existence of a unique pseudo-inverse L = (\j)i<;ij<p of A with
imL = (Spanr)* and kerL = Spanr

L is symmetric

Since A = (aj;) = (pipjaij), we have that L = (\;) = (ﬁéu)
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End of the computations

P
Xpsj ;
> o=t = (vxp,.(p,.) - %VXP)

j=1 Pi
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End of the computations

X"*’ ZA,, (v P(pj)— )
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End of the computations

> r=[p1,"+,pp]" spans kerL, i.e. 3°; Xjp; =0

p
Xpt+i = pi Z i VxPj(p;)
=1

~» Expression of the equilibrium, and the fact that >, X, 4; = 0 allow to
compute gx(w) = QVwF(E(w))X

= p = rp =
by
J
Py M0 Pi(py) > Lo, Pi(py)
j=1 =1 "
P Py
pj
Pp :E:: )\Fdé9xk F?f(l?i) :E:: “f’é)xk F?i(l?i)
j=1 j=1 Pj
Odx1 d L Odx1
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Conclusion and prospects

Reduced system involving the bulk velocity u for small €

Oepi+ Vx - (pitr) = eV - ( yoy v;jp") ;
Ot(pu) + V- (pu®@ u) + VP = 0.

» Hyperbolicity & dissipativity
» Diffusion correction term of Fick's type (on the equation of mass
conservation)

» No viscosity term on the momentum equation (convective > diffusive fluxes)
» Maxwell-Stefan can describe a moderate rarefied regime more than Fick
Prospects

» Obtain an explicit form of Fick’'s coefficients from the Maxwell-Stefan’s ones

» Compare the experimental and theoretical relaxation times (experiments
being designed at IUSTI)

» Taking into account the non isothermal effects
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Thank you for your attention!

ol b
4 ! e 2 | | = b A e e L
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Pseudo-inverses

Proposition
Let A € RP*P Let S and T be two subspaces of RP such that RP = ker A& S and
RP =im A @ T. Then there exists a unique matrix B such that:

Q@ ABA = A,

Q@ BAB =B,

Q kerB=T andimB = S.
This matrix B is then called the pseudo-inverse of A with prescribed range S and
null space T.

Corollary

LetY € im A. Then there exists a unique X € imB such that AX =Y,
it is given by X = BY.

Symmetric case

Consider a symmetric matrix A € RP*P and a subspace N such that
RP = im A @& N. Then the only symmetric pseudo-inverse of A is the one with
prescribed range Nt and null space N.
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Legendre-Fenchel transform

We introduce the following domain
Y ={VeRPP |V = Vyyn(W) for some W € (R} )" x R¥}.
The Legendre-Fenchel transform n* of 7 is the convex function satisfying
n(W) +n°(V) =V-W.
We can compute

P
V)=V Won(W) =3 > vv,-°exp(kBT(v,-+2V§+,-)).
=1

Let ¢* : RP*Y R, v — n*(vTQ). Denote by ¢ the Legendre-Fenchel transform
of ¢*, we compute

P 2
p(w) = Z k,i.TW; {In (MV;’()) - 1} —I—%:pﬂ.

i=1 !

Then, following [Chen, Levermore, Liu]

E(w) = Vvi" (Vwp(w)TQ).
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