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Diffusion models for mixtures: Fick/Maxwell-Stefan

I Mixture of p ≥ 2 species
I ρi : mass density of species i
I Ni = ρiui : momentum of species i

I ρ =

ρ1...
ρp

, N =

N1
...

Np


I Mass conservation: ∂tρ+∇ · N = 0

Fick law:

N = −F (ρ)∇xρ

Maxwell-Stefan equations:

−∇xρ = S(ρ)N

Properties of matrices F and S
I F (ρ) and S(ρ) are not invertible (rank p − 1).
I Cauchy problem for Maxwell-Stefan’s equations [Giovangigli, Bothe, Jüngel &

Stelzer]
I Using Moore-Penrose pseudo-inverse: structural similarity

Bérénice Grec Stiff dissipative hyperbolic formalism for diffusion for mixtures 2/16



Fick vs. Maxwell-Stefan
(macroscopic point of view)

Formal analogy of the two systems,
but Fick and Maxwell-Stefan are not obtained in the same way

Obtention of the Fick law
I Thermodynamics of irreversible processes (entropy decay) [Onsager]
I Thermodynamical considerations on fluxes, written as linear combinations of

potential gradients
I Stems from mass equations

Obtention of the Maxwell-Stefan equations
I Mechanical considerations on forces (equilibrium of pressure and friction

forces)
I Assumption: different species have different macroscopic velocities on

macroscopic time scales
I Stems from momentum equations
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Fick vs. Maxwell-Stefan
(kinetic point of view)

Formal analogy of the two systems,
but Fick and Maxwell-Stefan are not obtained in the same way

Perturbative method (Fick)
I Based on the Chapman-Enskog expansion

[Bardos, Golse, Levermore], [Bisi, Desvillettes]

Moment method (Maxwell-Stefan)
I Based on the ansatz that the distribution functions are at local Maxwellian

states [Levermore], [Müller, Ruggieri]

The Maxwell-Stefan equations can be written

− 1
mi
∇xρi =

∑
j 6=i

ρiρj(uj − ui)
Dij

,

mi : molecular mass of species i , Dij > 0 symmetric.
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Stiff dissipative model for mixtures
For any species i with velocity u i , we write mass and momentum conservation∂tρi +∇x · (ρiu i) = 0,

∂t(ρiu i) +∇x · (ρiu i ⊗ u i + Pi(ρi)) + 1
ε

Ri = 0

I Ideal gas law for the partial pressure Pi(ρi) = ρikBT/mi
I Relaxation term: friction force exerted by the mixture on species i

Ri =
∑
j 6=i

aijρiρj(uj − u i) =
∑
j 6=i

αij(uj − u i) =
p∑

j=1
αijuj .

Using the formalism of [Chen, Levermore, Liu, CPAM, ’94]
Obtain a reduced system involving the aligned velocity u when ε remains small{

∂tρi +∇x · (ρiu) = ε∇x ·
(∑p

j=1 `ij
∇x Pj
ρj

)
,

∂t(ρu) +∇x · (ρu ⊗ u) +∇xP = 0,

where P =
∑

j Pj(ρj) is the total pressure, and (`ij) are real constants.
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Using the formalism of [Chen, Levermore, Liu, CPAM, ’94]
This approach has been used in previous papers for other systems:

I [Kawashima], [Yong], [Kawashima,Yong], ...

I [Giovangigli, Matuszewski], [Giovangigli, Yong], ...

Bérénice Grec Stiff dissipative hyperbolic formalism for diffusion for mixtures 5/16



Vectorial expression of the system

∂tW +∇x · F(W) + 1
ε
R(W) = 0 (∗)

I Unknown W = [W1, . . . ,Wp,W p+1, · · · ,W 2p] ∈ (R∗+)p × Rdp, with
Wi = ρi , W p+i = ρiu i

I the k-th column of F(W) and R(W) are given by

Fk(W) =



W p+1 · ek
...

W 2p · ek(
W p+1 ⊗W p+1

W1
+ P1(W1)Id

)
ek

...(
W 2p ⊗W 2p

Wp
+ Pp(Wp)Id

)
ek


, R(W) =



0p×1

p∑
j=1

α1j
W p+j

Wj

...
p∑

j=1
αpj

W p+j
Wj


.
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Aim of the work

I Adapt the formalism by Chen, Levermore and Liu in the gaseous mixture
framework

I Limiting behavior for small ε
I Derive an approximation of the local equilibrium and its first-order correction

I Build a relevant entropy which ensures...
I ... the hyperbolicity of the local equilibrium approximation...
I ... and the dissipativity of its first-order correction

Analogy with the kinetic theory
I relaxation time ε ←→ mean free path
I unknown W ←→ distribution function f
I friction relaxation term R ←→ collision operator Q

(with dissipativity and collisional invariant properties)
I local equilibria ←→ Maxwellian functions
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Building the entropy

∂tW +∇x · F(W) + 1
ε
R(W) = 0 (∗)

Entropy for Equation (∗)
The function η defined by

η(W) = 1
2

W 2
p+i

Wi
+ Ei(Wi), with Ei(Wi) = kBT

mi

(
Wi ln

(
Wi

W 0
i

)
−Wi

)
is a strictly convex entropy for Equation (∗), i.e.

I ∇2
Wη(W)∇WFk(W) is symmetric for any k

I ∇Wη(W) · R(W) ≥ 0
I ∇2

Wη(W) is a positive definite quadratic form

 Choice of the internal energy E ′′i (Wi) = P ′i (Wi)/Wi

 Nonnegativity of the matrix A = (αij)
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Conserved quantities

The matrix

Q =

 Ip 0p×dp

0d×p
[
Id , · · · , Id

]
 ∈ R(p+d)×(p+dp)

satisfies QR(W) = 0(p+d)×1. It allows to define

w = QW =
[

W1, · · · ,Wp,

p∑
j=1

W ᵀ
p+j

]ᵀ
∈ Rp+d

the p + d independent conserved quantities.

Conversely, to any w =
[
w1, · · · ,wp,wᵀ

p+1
]ᵀ, we associate, via the equilibrium

function E , the equilibrium Weq = E(w) such that R(Weq) = 0, where

E(w) =
[
w1, · · · ,wp,

w1
σ(w)wᵀ

p+1, · · · ,
wp
σ(w)wᵀ

p+1

]ᵀ
, with σ(w) =

p∑
i=1

wi .
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Characterization of the local equilibria

Equilibrium function

E(w) =
[
w1, · · · ,wp,

w1
σ(w)wᵀ

p+1, · · · ,
wp
σ(w)wᵀ

p+1

]ᵀ
, with σ(w) =

p∑
i=1

wi .

 Characterization of the equilibrium
I R(Weq) = 0
I there exists u ∈ Rd such that Weq = [W1, · · · ,Wp,W1uᵀ, · · · ,Wpuᵀ]ᵀ
 this corresponds to saying that all species velocities are aligned

I there exists v ∈ Rp+d such that ∇Wη(Weq) = vᵀQ
 Use of the Legendre-Fenchel transform of η

I there exists v ∈ Rp+d such that Weq = ∇Vη
∗(vᵀQ)

In terms of the physical variables,
E(w) = [ρ1, · · · , ρp, ρ1uᵀ, · · · , ρpuᵀ]ᵀ .

Define P(w) = ∇wE(w)Q, which is a projection matrix.
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Look for an expansion W =M[w] (with w = QW), such that

∂tw +∇x ·QF(M[w]) ' 0.

Then

∂tW +∇x · F(W) + 1
ε
R(W) ' (I−∇wM[w]Q)∇x · F(M[w]) + 1

ε
R(M[w]).

Satisfying equation (∗) leads to cancelling the RHS.
Introduce the formal expansion

W =M[w] = E(w) + εM(1)[w] + · · ·

Linearizing, order 1 in ε becomes

(I−∇wE(w)Q)∇x · F(E(w)) +∇WR(E(w))M(1)[w] = 0

Provided that the inversion of ∇WR(E(w)) is possible in some sense,

M(1)[w] = − (∇WR(E(w)))−1 (I−∇wE(w)Q︸ ︷︷ ︸
=P(w)

)∇x · F(E(w))

and the equation on w becomes, with f(w) = QF(E(w))

∂tw +∇x · f(w) + ε∇x ·
[
Q∇WF(E(w))M(1)[w]

]
= 0.
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Local equilibrium approximation

Formal expansion

Wε = E(w) + εM(1)[w] + · · ·

Chen, Levermore and Liu’s computations
The first-order correction is given by

M(1)[w] = −B [Ip+dp − P(w)]∇x · F(E(w)), with P(w) = ∇wE(w)Q.

The system (∗) becomes

∂tw +∇x · f(w) = ε∇x · g(w),

where
fk(w) = QFk(E(w)),

gk(w) = Q∇WFk(E(w))B [Ip+dp − P(w)]∇x · F(E(w)),

where B is the pseudo-inverse of ∇WR(E(w)) such that imB = kerQ.
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Explicit computations
 Expression of the equilibrium, definition of P(w) = ∇wE(w)Q

(Ip+dp − P(w))∇x · F(E(w)) =



0p×1

∇xP1(ρ1)−
ρ1
ρ
∇xP

...
∇xPp(ρp)− ρp

ρ
∇xP


,

where ρ =
∑

i ρi and P =
∑

i Pi(ρi).
 Computation of X = B(Ip+dp − P(w))∇x · F(E(w)):

I B pseudo-inverse of ∇WR(E(w)) such that imB = kerQ
I kerQ =

{[
0, · · · , 0,Xᵀ

p+1, · · · ,X
ᵀ
2p
]ᵀ
,
∑p

i=1 Xp+i = 0d×1
}

I X ∈ imB = kerQ thus Xi = 0 and
∑p

j=1 Xp+j = 0
I im(∇WR(E(w))) = kerQ =⇒ (Ip+dp − P(w))∇x · F(E(w)) ∈ im(∇WR(E(w)))
I ∇WR(E(w))X = (Ip+dp − P(w))∇x · F(E(w))

p∑
j=1

αij
Xp+j

ρj
= ∇xPi (ρi )−

ρi

ρ
∇xP  Pseudo-invert A = (αij)
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Pseudo-inversion of A

I Let 1 = (1, · · · , 1)ᵀ

I kerA = Span1 and imA = (Span1)⊥

I Let r = [ρ1, · · · , ρp]ᵀ, which is not orthogonal to 1

I Decompositions

Rp = (Span1)⊕ (Span r)⊥ = (Span1)⊥ ⊕ (Span r)

I Existence of a unique pseudo-inverse L = (λij)1≤i,j≤p of A with
imL = (Span r)⊥ and kerL = Span r

I L is symmetric

I Since A = (αij) = (ρiρjaij), we have that L = (λij) =
(

1
ρiρj

`ij

)
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End of the computations

p∑
j=1

αij
Xp+j
ρj

=
(
∇xPi(ρi)−

ρi
ρ
∇xP

)
I r = [ρ1, · · · , ρp]ᵀ spans kerL, i.e.

∑
j λijρj = 0

Xp+i = ρi

p∑
j=1

λij∇xPj(ρj)

 Expression of the equilibrium, and the fact that
∑

i Xp+i = 0 allow to
compute gk(w) = Q∇WFk(E(w))X

gk(w) =



ρ1

p∑
j=1

λ1j∂xk Pj(ρj)

...

ρp

p∑
j=1

λpj∂xk Pj(ρj)

0d×1


=



p∑
j=1

`1j
ρj
∂xk Pj(ρj)

...
p∑

j=1

`pj
ρj
∂xk Pj(ρj)

0d×1
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Conclusion and prospects

Reduced system involving the bulk velocity u for small ε{
∂tρi +∇x · (ρiu) = ε∇x ·

(∑p
j=1 `ij

∇x Pj
ρj

)
,

∂t(ρu) +∇x · (ρu ⊗ u) +∇xP = 0.

I Hyperbolicity & dissipativity
I Diffusion correction term of Fick’s type (on the equation of mass

conservation)
I No viscosity term on the momentum equation (convective � diffusive fluxes)
I Maxwell-Stefan can describe a moderate rarefied regime more than Fick

Prospects
I Obtain an explicit form of Fick’s coefficients from the Maxwell-Stefan’s ones
I Compare the experimental and theoretical relaxation times (experiments

being designed at IUSTI)
I Taking into account the non isothermal effects
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Thank you for your attention!
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Pseudo-inverses

Proposition
Let A ∈ Rp×p.Let S and T be two subspaces of Rp such that Rp = kerA⊕ S and
Rp = imA⊕ T. Then there exists a unique matrix B such that:

1 ABA = A,
2 BAB = B,
3 kerB = T and imB = S.

This matrix B is then called the pseudo-inverse of A with prescribed range S and
null space T .

Corollary
Let Y ∈ imA. Then there exists a unique X ∈ imB such that AX = Y,
it is given by X = BY.

Symmetric case
Consider a symmetric matrix A ∈ Rp×p, and a subspace N such that
Rp = imA⊕ N. Then the only symmetric pseudo-inverse of A is the one with
prescribed range N⊥ and null space N.
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Legendre-Fenchel transform
We introduce the following domain

V =
{
V ∈ Rp+dp | V = ∇Wη(W) for some W ∈ (R∗+)p × Rdp} .

The Legendre-Fenchel transform η∗ of η is the convex function satisfying

η(W) + η∗(V) = V ·W.

We can compute

η∗(V) = V ·W − η(W) =
p∑

i=1

kBT
mi

W 0
i exp

(
mi

kBT

(
Vi + 1

2V 2
p+i

))
.

Let φ∗ : Rp+d → R, v 7→ η∗(vᵀQ). Denote by φ the Legendre-Fenchel transform
of φ∗, we compute

φ(w) =
p∑

i=1

kBT
mi

wi

[
ln
(

wi

W 0
i

)
− 1
]

+ 1
2

w2
p+1

σ(w) .

Then, following [Chen, Levermore, Liu]

E(w) = ∇Vη
∗(∇wφ(w)ᵀQ).
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