Diffusion models for mixtures using a stiff dissipative hyperbolic formalism

Bérénice GREC¹

in collaboration with L. BOUDIN, V. PAVAN

¹MAP5 – Université Paris Descartes, France

Workshop on kinetic and fluid Partial Differential Equations March 7th, 2018

MEMBRE DE

U^SPC Université Sorbonne Paris Cité

Outline of the talk

1 Gaseous mixtures: macroscopic models

- 2 Stiff dissipative hyperbolic formalism
- 3 Entropy and equilibrium
- 4 Local equilibrium approximation
- 5 Conclusion and prospects

Diffusion models for mixtures: Fick/Maxwell-Stefan

- Mixture of $p \ge 2$ species
- *ρ_i*: mass density of species *i*
- $N_i = \rho_i u_i$: momentum of species *i*

$$\bullet \ \rho = \begin{bmatrix} \rho_1 \\ \vdots \\ \rho_p \end{bmatrix}, \ N = \begin{bmatrix} N_1 \\ \vdots \\ N_p \end{bmatrix}$$

• Mass conservation: $\partial_t \rho + \nabla \cdot N = 0$

Properties of matrices F and S

- $F(\rho)$ and $S(\rho)$ are not invertible (rank p-1).
- Cauchy problem for Maxwell-Stefan's equations [Giovangigli, Bothe, Jüngel & Stelzer]
- ▶ Using Moore-Penrose pseudo-inverse: structural similarity

Fick law:

$$N = -F(\rho)\nabla_{x}\rho$$

Maxwell-Stefan equations:

$$-
abla_{x}
ho=S(
ho)N$$

Fick vs. Maxwell-Stefan (macroscopic point of view)

Formal analogy of the two systems, but Fick and Maxwell-Stefan are not obtained in the same way

Obtention of the Fick law

- Thermodynamics of irreversible processes (entropy decay) [Onsager]
- Thermodynamical considerations on fluxes, written as linear combinations of potential gradients
- Stems from mass equations

Obtention of the Maxwell-Stefan equations

- Mechanical considerations on forces (equilibrium of pressure and friction forces)
- Assumption: different species have different macroscopic velocities on macroscopic time scales
- Stems from momentum equations

Fick vs. Maxwell-Stefan (kinetic point of view)

Formal analogy of the two systems, but Fick and Maxwell-Stefan are not obtained in the same way

Perturbative method (Fick)

 Based on the Chapman-Enskog expansion [Bardos, Golse, Levermore], [Bisi, Desvillettes]

Moment method (Maxwell-Stefan)

 Based on the ansatz that the distribution functions are at local Maxwellian states [Levermore], [Müller, Ruggieri]

The Maxwell-Stefan equations can be written

$$-rac{1}{m_i}
abla_{\mathbf{x}}
ho_i=\sum_{j
eq i}rac{
ho_i
ho_j(u_j-u_i)}{D_{ij}},$$

 m_i : molecular mass of species *i*, $D_{ij} > 0$ symmetric.

Outline of the talk

2 Stiff dissipative hyperbolic formalism

Entropy and equilibrium

4 Local equilibrium approximation

5 Conclusion and prospects

Stiff dissipative model for mixtures

For any species i with velocity u_i , we write mass and momentum conservation

$$egin{aligned} &\partial_t
ho_i +
abla_{\mathbf{x}} \cdot (
ho_i oldsymbol{u}_i) = 0, \ &\partial_t (
ho_i oldsymbol{u}_i) +
abla_{\mathbf{x}} \cdot (
ho_i oldsymbol{u}_i \otimes oldsymbol{u}_i + P_i(
ho_i)) + rac{1}{arepsilon} R_i = 0 \end{aligned}$$

• Ideal gas law for the partial pressure $P_i(\rho_i) = \rho_i k_B T/m_i$

Relaxation term: friction force exerted by the mixture on species i

$$R_i = \sum_{j \neq i} a_{ij} \rho_i \rho_j (\boldsymbol{u}_j - \boldsymbol{u}_i) = \sum_{j \neq i} \alpha_{ij} (\boldsymbol{u}_j - \boldsymbol{u}_i) = \sum_{j=1}^{p} \alpha_{ij} \boldsymbol{u}_j.$$

Using the formalism of [Chen, Levermore, Liu, CPAM, '94]

Obtain a reduced system involving the aligned velocity \boldsymbol{u} when ε remains small

$$\begin{cases} \partial_t \rho_i + \nabla_{\mathbf{x}} \cdot (\rho_i \mathbf{u}) = \varepsilon \nabla_{\mathbf{x}} \cdot \left(\sum_{j=1}^p \ell_{ij} \frac{\nabla_{\mathbf{x}} P_j}{\rho_j} \right), \\ \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla_{\mathbf{x}} P = \mathbf{0}, \end{cases}$$

where $P = \sum_{j} P_{j}(\rho_{j})$ is the total pressure, and (ℓ_{ij}) are real constants.

Stiff dissipative model for mixtures

For any species i with velocity u_i , we write mass and momentum conservation

$$\begin{cases} \partial_t \rho_i + \nabla_{\mathbf{x}} \cdot (\rho_i \mathbf{u}_i) = 0, \\ \partial_t (\rho_i \mathbf{u}_i) + \nabla_{\mathbf{x}} \cdot (\rho_i \mathbf{u}_i \otimes \mathbf{u}_i + P_i(\rho_i)) + \frac{1}{\varepsilon} R_i = 0 \end{cases}$$

- Ideal gas law for the partial pressure $P_i(\rho_i) = \rho_i k_B T/m_i$
- Relaxation term: friction force exerted by the mixture on species i

$$R_i = \sum_{j \neq i} a_{ij} \rho_i \rho_j (\boldsymbol{u}_j - \boldsymbol{u}_i) = \sum_{j \neq i} \alpha_{ij} (\boldsymbol{u}_j - \boldsymbol{u}_i) = \sum_{j=1}^p \alpha_{ij} \boldsymbol{u}_j.$$

Using the formalism of [Chen, Levermore, Liu, CPAM, '94]

This approach has been used in previous papers for other systems:

- ▶ [Kawashima], [Yong], [Kawashima,Yong], ...
- ▶ [Giovangigli, Matuszewski], [Giovangigli, Yong], ...

Vectorial expression of the system

$$\partial_t \mathbf{W} + \nabla_{\mathbf{x}} \cdot \mathbf{F}(\mathbf{W}) + \frac{1}{\varepsilon} \mathbf{R}(\mathbf{W}) = \mathbf{0}$$
 (*)

- Unknown $W = [W_1, \ldots, W_p, \boldsymbol{W}_{p+1}, \cdots, \boldsymbol{W}_{2p}] \in (\mathbb{R}^*_+)^p \times \mathbb{R}^{dp}$, with $W_i = \rho_i, \ \boldsymbol{W}_{p+i} = \rho_i \boldsymbol{u}_i$
- the k-th column of F(W) and R(W) are given by

$$\mathsf{F}_{k}(\mathsf{W}) = \begin{bmatrix} \mathbf{W}_{p+1} \cdot \mathbf{e}_{k} \\ \vdots \\ \mathbf{W}_{2p} \cdot \mathbf{e}_{k} \\ \left(\frac{\mathbf{W}_{p+1} \otimes \mathbf{W}_{p+1}}{W_{1}} + P_{1}(W_{1})\mathbb{I}_{d} \right) \mathbf{e}_{k} \\ \vdots \\ \left(\frac{\mathbf{W}_{2p} \otimes \mathbf{W}_{2p}}{W_{p}} + P_{p}(W_{p})\mathbb{I}_{d} \right) \mathbf{e}_{k} \end{bmatrix}, \ \mathsf{R}(\mathsf{W}) = \begin{bmatrix} \mathbf{0}_{p \times 1} \\ \sum_{j=1}^{p} \alpha_{1j} \frac{\mathbf{W}_{p+j}}{W_{j}} \\ \vdots \\ \sum_{j=1}^{p} \alpha_{pj} \frac{\mathbf{W}_{p+j}}{W_{j}} \end{bmatrix}$$

Aim of the work

- Adapt the formalism by Chen, Levermore and Liu in the gaseous mixture framework
- Limiting behavior for small ε
- Derive an approximation of the local equilibrium and its first-order correction
 - Build a relevant entropy which ensures...
 - ... the hyperbolicity of the local equilibrium approximation...
 - ... and the dissipativity of its first-order correction

Analogy with the kinetic theory

- \blacktriangleright relaxation time $\varepsilon \longleftrightarrow$ mean free path
- unknown W \longleftrightarrow distribution function f
- ▶ friction relaxation term R ↔ collision operator Q (with dissipativity and collisional invariant properties)
- $\blacktriangleright \ \ \text{local equilibria} \leftarrow \rightarrow \text{Maxwellian functions}$

Outline of the talk

Gaseous mixtures: macroscopic models

2 Stiff dissipative hyperbolic formalism

Entropy and equilibrium

4 Local equilibrium approximation

5 Conclusion and prospects

Building the entropy

$$\partial_t \mathsf{W} +
abla_{oldsymbol{x}} \cdot \mathsf{F}(\mathsf{W}) + rac{1}{arepsilon} \mathsf{R}(\mathsf{W}) = \mathsf{0}$$

Entropy for Equation (*)

The function η defined by

$$\eta(\mathsf{W}) = \frac{1}{2} \frac{\mathbf{W}_{p+i}^2}{W_i} + E_i(W_i), \text{ with } E_i(W_i) = \frac{k_B T}{m_i} \left(W_i \ln \left(\frac{W_i}{W_i^0} \right) - W_i \right)$$

is a strictly convex entropy for Equation (*), i.e.

- $\nabla^2_{\mathsf{W}}\eta(\mathsf{W})\nabla_{\mathsf{W}}\mathsf{F}_k(\mathsf{W})$ is symmetric for any k
- $\nabla_{\mathsf{W}}\eta(\mathsf{W})\cdot\mathsf{R}(\mathsf{W})\geq 0$
- $\nabla^2_W \eta(W)$ is a positive definite quadratic form
- \rightsquigarrow Choice of the internal energy $E_i''(W_i) = P_i'(W_i)/W_i$
- \rightsquigarrow Nonnegativity of the matrix $\mathbb{A} = (\alpha_{ij})$

Conserved quantities

The matrix

$$\mathbb{Q} = \begin{bmatrix} \mathbb{I}_{p} & 0_{p \times dp} \\ \\ 0_{d \times p} & [\mathbb{I}_{d}, \cdots, \mathbb{I}_{d}] \end{bmatrix} \in \mathbb{R}^{(p+d) \times (p+dp)}$$

satisfies $\mathbb{Q}R(W) = 0_{(p+d)\times 1}$. It allows to define

$$\mathsf{w} = \mathbb{Q}\mathsf{W} = \left[W_1, \cdots, W_p, \sum_{j=1}^p W_{p+j}^{\mathsf{T}} \right]^{\mathsf{T}} \in \mathbb{R}^{p+d}$$

the p + d independent conserved quantities.

Conversely, to any $w = [w_1, \cdots, w_p, \boldsymbol{w}_{p+1}^T]^T$, we associate, via the equilibrium function \mathcal{E} , the equilibrium $W_{eq} = \mathcal{E}(w)$ such that $R(W_{eq}) = 0$, where

$$\mathcal{E}(\mathsf{w}) = \left[w_1, \cdots, w_p, \frac{w_1}{\sigma(\mathsf{w})} \boldsymbol{w}_{p+1}^{\mathsf{T}}, \cdots, \frac{w_p}{\sigma(\mathsf{w})} \boldsymbol{w}_{p+1}^{\mathsf{T}}\right]^{\mathsf{T}}, \text{ with } \sigma(\mathsf{w}) = \sum_{i=1}^p w_i.$$

Characterization of the local equilibria

Equilibrium function

$$\mathcal{E}(\mathsf{w}) = \left[w_1, \cdots, w_p, \frac{w_1}{\sigma(\mathsf{w})} \boldsymbol{w}_{p+1}^{\mathsf{T}}, \cdots, \frac{w_p}{\sigma(\mathsf{w})} \boldsymbol{w}_{p+1}^{\mathsf{T}}\right]^{\mathsf{T}}, \text{ with } \sigma(\mathsf{w}) = \sum_{i=1}^p w_i.$$

- \rightsquigarrow Characterization of the equilibrium
 - ► R(W_{eq}) = 0
 - ▶ there exists u ∈ ℝ^d such that W_{eq} = [W₁, · · · , W_p, W₁u^T, · · · , W_pu^T]^T → this corresponds to saying that all species velocities are aligned
 - there exists $v \in \mathbb{R}^{p+d}$ such that $\nabla_W \eta(W_{eq}) = v^\intercal \mathbb{Q}$
- $\rightsquigarrow\,$ Use of the Legendre-Fenchel transform of η
 - ▶ there exists $v \in \mathbb{R}^{p+d}$ such that $W_{eq} = \nabla_V \eta^*(v^T \mathbb{Q})$

In terms of the physical variables,

$$\mathcal{E}(\mathsf{w}) = [\rho_1, \cdots, \rho_{\rho}, \rho_1 \boldsymbol{u}^\mathsf{T}, \cdots, \rho_{\rho} \boldsymbol{u}^\mathsf{T}]^\mathsf{T}$$

Define $\mathbb{P}(w) = \nabla_w \mathcal{E}(w) \mathbb{Q}$, which is a projection matrix.

Outline of the talk

1 Gaseous mixtures: macroscopic models

2 Stiff dissipative hyperbolic formalism

Entropy and equilibrium

4 Local equilibrium approximation

5 Conclusion and prospects

Look for an expansion $W = \mathcal{M}[w]$ (with $w = \mathbb{Q}W$), such that

$$\partial_t w + \nabla_x \cdot \mathbb{Q} F(\mathcal{M}[w]) \simeq 0.$$

Then

$$\partial_t \mathsf{W} + \nabla_{\mathbf{x}} \cdot \mathsf{F}(\mathsf{W}) + \frac{1}{\varepsilon} \mathsf{R}(\mathsf{W}) \simeq (\mathbb{I} - \nabla_{\mathsf{w}} \mathcal{M}[\mathsf{w}] \mathbb{Q}) \nabla_{\mathbf{x}} \cdot \mathsf{F}(\mathcal{M}[\mathsf{w}]) + \frac{1}{\varepsilon} \mathsf{R}(\mathcal{M}[\mathsf{w}]).$$

Satisfying equation (*) leads to cancelling the RHS. Introduce the formal expansion

$$\mathsf{W} = \mathcal{M}[\mathsf{w}] = \mathcal{E}(\mathsf{w}) + \varepsilon \mathcal{M}^{(1)}[\mathsf{w}] + \cdots$$

Linearizing, order 1 in ε becomes

$$(\mathbb{I} - \nabla_{\mathsf{w}} \mathcal{E}(\mathsf{w}) \mathbb{Q}) \nabla_{\boldsymbol{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) + \nabla_{\mathsf{W}} \mathsf{R}(\mathcal{E}(\mathsf{w})) \mathcal{M}^{(1)}[\mathsf{w}] = 0$$

Provided that the inversion of $\nabla_W R(\mathcal{E}(w))$ is possible in some sense,

$$\mathcal{M}^{(1)}[w] = -\left(\nabla_{\mathsf{W}}\mathsf{R}(\mathcal{E}(\mathsf{w}))\right)^{-1}\left(\mathbb{I} - \underbrace{\nabla_{\mathsf{w}}\mathcal{E}(\mathsf{w})\mathbb{Q}}_{=\mathbb{P}(\mathsf{w})}\right)\nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w}))$$

and the equation on w becomes, with $f(w) = \mathbb{Q} F(\mathcal{E}(w))$

$$\partial_t \mathsf{w} + \nabla_{\mathbf{x}} \cdot \mathsf{f}(\mathsf{w}) + \varepsilon \nabla_{\mathbf{x}} \cdot \left[\mathbb{Q} \nabla_{\mathsf{W}} \mathsf{F}(\mathcal{E}(\mathsf{w})) \mathcal{M}^{(1)}[\mathsf{w}] \right] = 0.$$

Local equilibrium approximation

Formal expansion

$$\mathsf{W}^{\varepsilon} = \mathcal{E}(\mathsf{w}) + \varepsilon \mathcal{M}^{(1)}[\mathsf{w}] + \cdots$$

Chen, Levermore and Liu's computations

The first-order correction is given by

$$\mathcal{M}^{(1)}[\mathsf{w}] = -\mathbb{B}\left[\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w})\right] \nabla_{\boldsymbol{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})), \text{ with } \mathbb{P}(\mathsf{w}) = \nabla_{\mathsf{w}} \mathcal{E}(\mathsf{w}) \mathbb{Q}$$

The system (*) becomes

$$\partial_t \mathbf{w} + \nabla_{\mathbf{x}} \cdot \mathbf{f}(\mathbf{w}) = \varepsilon \nabla_{\mathbf{x}} \cdot \mathbf{g}(\mathbf{w}),$$

where

$$\begin{split} f_k(\mathsf{w}) &= \mathbb{Q}\mathsf{F}_k(\mathcal{E}(\mathsf{w})), \\ g_k(\mathsf{w}) &= \mathbb{Q}\nabla_\mathsf{W}\mathsf{F}_k(\mathcal{E}(\mathsf{w}))\mathbb{B}\left[\mathbb{I}_{\rho+d\rho} - \mathbb{P}(\mathsf{w})\right]\nabla_{\mathbf{x}}\cdot\mathsf{F}(\mathcal{E}(\mathsf{w})), \end{split}$$

where \mathbb{B} is the pseudo-inverse of $\nabla_W R(\mathcal{E}(w))$ such that im $\mathbb{B} = \ker \mathbb{Q}$.

Explicit computations

 \rightsquigarrow Expression of the equilibrium, definition of $\mathbb{P}(w) = \nabla_w \mathcal{E}(w) \mathbb{Q}$

$$(\mathbb{I}_{p+dp} - \mathbb{P}(\mathbf{w}))\nabla_{\mathbf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathbf{w})) = \begin{bmatrix} \mathbf{0}_{p \times 1} \\ \nabla_{\mathbf{x}} P_{1}(\rho_{1}) - \frac{\rho_{1}}{\rho} \nabla_{\mathbf{x}} P \\ \vdots \\ \nabla_{\mathbf{x}} P_{\rho}(\rho_{p}) - \frac{\rho_{p}}{\rho} \nabla_{\mathbf{x}} P \end{bmatrix}$$

where $\rho = \sum_{i} \rho_{i}$ and $P = \sum_{i} P_{i}(\rho_{i})$.

 $\rightsquigarrow \text{ Computation of } \mathsf{X} = \mathbb{B}(\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w})) \nabla_{\boldsymbol{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})):$

• \mathbb{B} pseudo-inverse of $\nabla_W R(\mathcal{E}(w))$ such that im $\mathbb{B} = \ker \mathbb{Q}$

$$\blacktriangleright \text{ ker } \mathbb{Q} = \left\{ \left[0, \cdots, 0, \boldsymbol{X}_{\rho+1}^{\mathsf{T}}, \cdots, \boldsymbol{X}_{2\rho}^{\mathsf{T}} \right]^{\mathsf{T}}, \sum_{i=1}^{\rho} \boldsymbol{X}_{\rho+i} = 0_{d \times 1} \right\}$$

• $X \in \operatorname{im} \mathbb{B} = \ker \mathbb{Q}$ thus $X_i = 0$ and $\sum_{j=1}^{p} X_{p+j} = 0$

 $\models \operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w}))) = \ker \mathbb{Q} \Longrightarrow (\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w}))\nabla_{x} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) \in \operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w})))$

$$\nabla_{\mathsf{W}}\mathsf{R}(\mathcal{E}(\mathsf{w}))\mathsf{X} = (\mathbb{I}_{\rho+d\rho} - \mathbb{P}(\mathsf{w}))\nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w}))$$
$$\sum_{j=1}^{\rho} \alpha_{ij} \frac{\mathsf{X}_{\rho+j}}{\rho_j} = \nabla_{\mathsf{x}} P_i(\rho_i) - \frac{\rho_i}{\rho} \nabla_{\mathsf{x}} P \quad \rightsquigarrow \quad \mathsf{Pseudo-invert} \ \mathbb{A} = (\alpha_{ij})$$

,

Explicit computations

 \rightsquigarrow Expression of the equilibrium, definition of $\mathbb{P}(\mathsf{w}) = \nabla_{\mathsf{w}} \mathcal{E}(\mathsf{w}) \mathbb{Q}$

$$(\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w}))\nabla_{\mathbf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) = \begin{bmatrix} 0_{p \times 1} \\ \nabla_{\mathbf{x}} P_{1}(\rho_{1}) - \frac{\rho_{1}}{\rho} \nabla_{\mathbf{x}} P \\ \vdots \\ \nabla_{\mathbf{x}} P_{\rho}(\rho_{p}) - \frac{\rho_{p}}{\rho} \nabla_{\mathbf{x}} P \end{bmatrix}$$

where $\rho = \sum_{i} \rho_{i}$ and $P = \sum_{i} P_{i}(\rho_{i})$.

 $\rightsquigarrow \text{ Computation of } \mathsf{X} = \mathbb{B}(\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w})) \nabla_{\boldsymbol{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})):$

- \mathbb{B} pseudo-inverse of $\nabla_W R(\mathcal{E}(w))$ such that im $\mathbb{B} = \ker \mathbb{Q}$
- $\blacktriangleright \ker \mathbb{Q} = \left\{ \begin{bmatrix} 0, \cdots, 0, \boldsymbol{X}_{p+1}^{\mathsf{T}}, \cdots, \boldsymbol{X}_{2p}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \sum_{i=1}^{p} \boldsymbol{X}_{p+i} = \mathbf{0}_{d \times 1} \right\}$
- $X \in \operatorname{im} \mathbb{B} = \ker \mathbb{Q}$ thus $X_i = 0$ and $\sum_{j=1}^{p} X_{p+j} = 0$
- $\blacktriangleright \operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w}))) = \ker \mathbb{Q} \Longrightarrow (\mathbb{I}_{p+dp} \mathbb{P}(\mathsf{w})) \nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) \in \operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w})))$

$$\nabla_{\mathsf{W}}\mathsf{R}(\mathcal{E}(\mathsf{w}))\mathsf{X} = (\mathbb{I}_{\rho+dp} - \mathbb{P}(\mathsf{w}))\nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w}))$$
$$\sum_{j=1}^{p} \alpha_{ij} \frac{\mathsf{X}_{\rho+j}}{\rho_{j}} = \nabla_{\mathsf{x}} P_{i}(\rho_{i}) - \frac{\rho_{i}}{\rho} \nabla_{\mathsf{x}} P \quad \rightsquigarrow \quad \mathsf{Pseudo-invert} \ \mathbb{A} = (\alpha_{ij})$$

,

Explicit computations

 \rightsquigarrow Expression of the equilibrium, definition of $\mathbb{P}(\mathsf{w}) = \nabla_{\mathsf{w}} \mathcal{E}(\mathsf{w}) \mathbb{Q}$

$$(\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w}))\nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) = \begin{bmatrix} 0_{p \times 1} \\ \nabla_{\mathsf{x}} P_{1}(\rho_{1}) - \frac{\rho_{1}}{\rho} \nabla_{\mathsf{x}} P \\ \vdots \\ \nabla_{\mathsf{x}} P_{\rho}(\rho_{p}) - \frac{\rho_{p}}{\rho} \nabla_{\mathsf{x}} P \end{bmatrix}$$

where $\rho = \sum_{i} \rho_{i}$ and $P = \sum_{i} P_{i}(\rho_{i})$.

 $\rightsquigarrow \text{ Computation of } \mathsf{X} = \mathbb{B}(\mathbb{I}_{p+dp} - \mathbb{P}(\mathsf{w})) \nabla_{\boldsymbol{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})):$

- \mathbb{B} pseudo-inverse of $\nabla_W R(\mathcal{E}(w))$ such that im $\mathbb{B} = \ker \mathbb{Q}$
- $\blacktriangleright \ker \mathbb{Q} = \left\{ \begin{bmatrix} 0, \cdots, 0, \boldsymbol{X}_{\rho+1}^{\mathsf{T}}, \cdots, \boldsymbol{X}_{2\rho}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \sum_{i=1}^{\rho} \boldsymbol{X}_{\rho+i} = \mathbf{0}_{d \times 1} \right\}$
- $X \in \operatorname{im} \mathbb{B} = \ker \mathbb{Q}$ thus $X_i = 0$ and $\sum_{j=1}^{p} X_{p+j} = 0$
- ► $\operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w}))) = \operatorname{ker} \mathbb{Q} \Longrightarrow (\mathbb{I}_{p+dp} \mathbb{P}(\mathsf{w}))\nabla_{x} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w})) \in \operatorname{im}(\nabla_{W}\mathsf{R}(\mathcal{E}(\mathsf{w})))$

$$\nabla_{\mathsf{W}}\mathsf{R}(\mathcal{E}(\mathsf{w}))\mathsf{X} = (\mathbb{I}_{\rho+d\rho} - \mathbb{P}(\mathsf{w}))\nabla_{\mathsf{x}} \cdot \mathsf{F}(\mathcal{E}(\mathsf{w}))$$

$$\sum_{j=1}^{\rho} \alpha_{ij} \frac{\mathsf{X}_{\rho+j}}{\rho_{j}} = \nabla_{\mathsf{x}} P_{i}(\rho_{i}) - \frac{\rho_{i}}{\rho} \nabla_{\mathsf{x}} P \quad \rightsquigarrow \quad \mathsf{Pseudo-invert} \ \mathbb{A} = (\alpha_{ij})$$

$\mathsf{Pseudo-inversion} \ \mathsf{of} \ \mathbb{A}$

- ▶ Let $1 = (1, \cdots, 1)^{\intercal}$
- ker $\mathbb{A} = \operatorname{\mathsf{Span}} \mathbb{1}$ and im $\mathbb{A} = (\operatorname{\mathsf{Span}} \mathbb{1})^{\perp}$
- Let $\mathbf{r} = [\rho_1, \cdots, \rho_p]^\mathsf{T}$, which is not orthogonal to $\mathbbm{1}$
- Decompositions

$$\mathbb{R}^{p} = (\operatorname{\mathsf{Span}} 1) \oplus (\operatorname{\mathsf{Span}} r)^{\perp} = (\operatorname{\mathsf{Span}} 1)^{\perp} \oplus (\operatorname{\mathsf{Span}} r)$$

- Existence of a unique pseudo-inverse L = (λ_{ij})_{1≤i,j≤p} of A with im L = (Span r)[⊥] and ker L = Span r
- ▶ \mathbb{L} is symmetric

• Since
$$\mathbb{A} = (\alpha_{ij}) = (\rho_i \rho_j a_{ij})$$
, we have that $\mathbb{L} = (\lambda_{ij}) = \left(\frac{1}{\rho_i \rho_j} \ell_{ij}\right)$

End of the computations

$$\sum_{j=1}^{p} \alpha_{ij} \frac{\boldsymbol{X}_{p+j}}{\rho_j} = \left(\nabla_{\boldsymbol{x}} P_i(\rho_i) - \frac{\rho_i}{\rho} \nabla_{\boldsymbol{x}} P \right)$$

• $\mathbf{r} = [\rho_1, \cdots, \rho_p]^{\mathsf{T}}$ spans ker \mathbb{L} , *i.e.* $\sum_j \lambda_{ij} \rho_j = 0$

$$\boldsymbol{X}_{p+i} = \rho_i \sum_{j=1}^p \lambda_{ij} \nabla_{\boldsymbol{x}} P_j(\rho_j)$$

→ Expression of the equilibrium, and the fact that $\sum_i X_{p+i} = 0$ allow to compute $g_k(w) = \mathbb{Q}\nabla_W F_k(\mathcal{E}(w))X$

$$g_{k}(w) = \begin{bmatrix} \rho_{1} \sum_{j=1}^{p} \lambda_{1j} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \rho_{p} \sum_{j=1}^{p} \lambda_{pj} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{p} \frac{\ell_{1j}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \sum_{j=1}^{p} \frac{\ell_{pj}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix}$$

End of the computations

$$\frac{\mathbf{X}_{p+i}}{\rho_i} = \sum_{j=1}^{p} \lambda_{ij} \left(\nabla_{\mathbf{x}} P_j(\rho_j) - \frac{\rho_j}{\rho} \nabla_{\mathbf{x}} P \right)$$

• $\mathbf{r} = [\rho_1, \cdots, \rho_p]^{\mathsf{T}}$ spans ker \mathbb{L} , *i.e.* $\sum_j \lambda_{ij} \rho_j = 0$

$$\boldsymbol{X}_{p+i} = \rho_i \sum_{j=1}^p \lambda_{ij} \nabla_{\boldsymbol{x}} P_j(\rho_j)$$

→ Expression of the equilibrium, and the fact that $\sum_i X_{p+i} = 0$ allow to compute $g_k(w) = \mathbb{Q}\nabla_W F_k(\mathcal{E}(w))X$

$$g_{k}(w) = \begin{bmatrix} \rho_{1} \sum_{j=1}^{p} \lambda_{1j} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \rho_{p} \sum_{j=1}^{p} \lambda_{pj} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{p} \frac{\ell_{1j}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \sum_{j=1}^{p} \frac{\ell_{pj}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix}$$

End of the computations

$$\frac{\mathbf{X}_{p+i}}{\rho_i} = \sum_{j=1}^{p} \lambda_{ij} \left(\nabla_{\mathbf{x}} P_j(\rho_j) - \frac{\rho_j}{\rho} \nabla_{\mathbf{x}} P \right)$$

• $\mathbf{r} = [\rho_1, \cdots, \rho_p]^{\mathsf{T}}$ spans ker \mathbb{L} , *i.e.* $\sum_j \lambda_{ij} \rho_j = 0$

$$\boldsymbol{X}_{p+i} = \rho_i \sum_{j=1}^{p} \lambda_{ij} \nabla_{\boldsymbol{x}} P_j(\rho_j)$$

→ Expression of the equilibrium, and the fact that $\sum_{i} \mathbf{X}_{p+i} = 0$ allow to compute $g_k(w) = \mathbb{Q}\nabla_W F_k(\mathcal{E}(w))X$

$$g_{k}(w) = \begin{bmatrix} \rho_{1} \sum_{j=1}^{p} \lambda_{1j} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \rho_{p} \sum_{j=1}^{p} \lambda_{pj} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{p} \frac{\ell_{1j}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ \vdots \\ \sum_{j=1}^{p} \frac{\ell_{pj}}{\rho_{j}} \partial_{x_{k}} P_{j}(\rho_{j}) \\ 0_{d \times 1} \end{bmatrix}$$

Outline of the talk

1 Gaseous mixtures: macroscopic models

2 Stiff dissipative hyperbolic formalism

Bigginary Entropy and equilibrium

4 Local equilibrium approximation

5 Conclusion and prospects

Conclusion and prospects

Reduced system involving the bulk velocity ${\it u}$ for small ε

$$\begin{cases} \partial_t \rho_i + \nabla_{\mathbf{x}} \cdot (\rho_i \mathbf{u}) = \varepsilon \nabla_{\mathbf{x}} \cdot \left(\sum_{j=1}^p \ell_{ij} \frac{\nabla_{\mathbf{x}} P_j}{\rho_j} \right), \\ \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla_{\mathbf{x}} P = \mathbf{0}. \end{cases}$$

- Hyperbolicity & dissipativity
- Diffusion correction term of Fick's type (on the equation of mass conservation)
- No viscosity term on the momentum equation (convective \gg diffusive fluxes)
- Maxwell-Stefan can describe a moderate rarefied regime more than Fick

Prospects

- ► Obtain an explicit form of Fick's coefficients from the Maxwell-Stefan's ones
- Compare the experimental and theoretical relaxation times (experiments being designed at IUSTI)
- Taking into account the non isothermal effects

Thank you for your attention!

Bérénice GREC

BAR

Stiff dissipative hyperbolic formalism for diffusion for mixtures

16/16

Pseudo-inverses

Proposition

Let $\mathbb{A} \in \mathbb{R}^{p \times p}$.Let S and T be two subspaces of \mathbb{R}^p such that $\mathbb{R}^p = \ker \mathbb{A} \oplus S$ and $\mathbb{R}^p = \operatorname{im} \mathbb{A} \oplus T$. Then there exists a unique matrix \mathbb{B} such that:

- 2 $\mathbb{BAB} = \mathbb{B}$,
- **3** ker $\mathbb{B} = T$ and im $\mathbb{B} = S$.

This matrix $\mathbb B$ is then called the pseudo-inverse of $\mathbb A$ with prescribed range S and null space T.

Corollary

Let $Y \in im \mathbb{A}$. Then there exists a unique $X \in im \mathbb{B}$ such that $\mathbb{A}X = Y$, it is given by $X = \mathbb{B}Y$.

Symmetric case

Consider a symmetric matrix $\mathbb{A} \in \mathbb{R}^{p \times p}$, and a subspace N such that $\mathbb{R}^{p} = \operatorname{im} \mathbb{A} \oplus N$. Then the only symmetric pseudo-inverse of \mathbb{A} is the one with prescribed range N^{\perp} and null space N.

Legendre-Fenchel transform

We introduce the following domain

$$\mathcal{V} = \left\{ \mathsf{V} \in \mathbb{R}^{p+dp} \mid \mathsf{V} =
abla_{\mathsf{W}} \eta(\mathsf{W}) \text{ for some } \mathsf{W} \in (\mathbb{R}^*_+)^p imes \mathbb{R}^{dp}
ight\}.$$

The Legendre-Fenchel transform η^* of η is the convex function satisfying

$$\eta(\mathsf{W}) + \eta^*(\mathsf{V}) = \mathsf{V} \cdot \mathsf{W}.$$

We can compute

$$\eta^*(\mathsf{V}) = \mathsf{V} \cdot \mathsf{W} - \eta(\mathsf{W}) = \sum_{i=1}^p \frac{k_B T}{m_i} W_i^0 \exp\left(\frac{m_i}{k_B T} \left(V_i + \frac{1}{2} \mathbf{V}_{p+i}^2\right)\right).$$

Let $\phi^* : \mathbb{R}^{p+d} \to \mathbb{R}$, $\mathbf{v} \mapsto \eta^*(\mathbf{v}^T \mathbb{Q})$. Denote by ϕ the Legendre-Fenchel transform of ϕ^* , we compute

$$\phi(\mathsf{w}) = \sum_{i=1}^{p} \frac{k_B T}{m_i} w_i \left[\ln \left(\frac{w_i}{W_i^0} \right) - 1 \right] + \frac{1}{2} \frac{w_{p+1}^2}{\sigma(\mathsf{w})}.$$

Then, following [Chen, Levermore, Liu]

$$\mathcal{E}(\mathsf{w}) = \nabla_{\mathsf{V}} \eta^* (\nabla_{\mathsf{w}} \phi(\mathsf{w})^{\mathsf{T}} \mathbb{Q}).$$