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Introduction

We are interested in the study of the following inhomogeneous
Fokker-Planck equation

∂tF + v∂xF − ∂v (∂v + v)F = 0, F |t=0 = F 0,

where

0 ≤ F = F (t , x , v), (t , x , v) ∈ R
+ × T× R

∫∫

Fdxdv = 1.

We focus in this talk on the case d = 1.
The now rather standard hypocoercive methods give that

F (t , x , v) −→
t→+∞

M(x , v),

exponentially fast (for a large family of similar kinetic equations),
where here the Maxwellian is given by

M(x , v) = µ(v) =
1√
2π

e−v2/2.
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A much simpler equation (homogeneous kinetic equation) is

∂t F − ∂v (∂v + v)F = 0, F |t=0 = F 0, (1)

where

0 ≤ F = F (t , v), (t , v) ∈ R
+ × R,

∫

Fdv = 1,

for which this is very easy to get (by "coercive" methods) that

F (t , x , v) −→
t→+∞

µ(v).

(This is just the heat equation for the harmonic oscillator.)
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Functional framework and proof for the homogeneous problem :

set F = µ+ µf ,

the equation is ∂t f + (−∂v + v)∂v f = 0 with f |t=0 = f 0,

consider f ∈ L2(dµ) ⊂ L1(dµ) (strictly smaller),

note that 〈f 〉 def
=
∫

fdµ =
∫

f0dµ = 0,

note that f ∈ L1(dµ) ⇔ F ∈ L1(dv),

compute
d
dt ‖f‖2

L2(dµ) = −2 〈(−∂v + v)∂v f , f 〉L2(dµ) = −2 ‖∂v f‖2
L2(dµ),

use Poincaré inequality ‖f‖2
L2(dµ) ≤ ‖∂v f‖2

L2(dµ), so that

d
dt

‖f‖2
L2(dµ) ≤ −2 ‖f‖2

L2(dµ) ,

use Gronwall inequality ‖f‖L2(dµ) ≤ e−t
∥

∥f 0
∥

∥

L2(dµ)
,

synthesis ‖F −M‖L1(dv) ≤ ‖f‖L2(dµ) ≤ e−t
∥

∥f 0
∥

∥

L2(dµ)
.
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Many ingredients were involved in the short previous proof :

Hilbertian framework, coercivity, Poincaré inequality, Gronwall lemma,
existence of a Maxwellian ...

Aim of this talk :

Explain how to adapt to the inhomogeneous case
✄ well understood and robust theory

Explain how to discretize and numerically implement the
problems
✄ new even in the homogeneous case
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The continuous inhomogeneous case

Perform the same change of variables

F = µ+ µf ,

and work in H1(dµdx) →֒ L2(dµdx). The inhomogeneous equation
reads

∂t f + v∂x f + (−∂v + v)∂v f = 0, f |t=0 = f 0,

〈f 〉 def
=

∫∫

fdµdx =
〈

f 0〉

very partial biblio (Guo, Villani-Desvillettes ... H. 06-07,
Mouhot-Neumann 06, H.-Nier 04, Villani 07,
Dolbeault-Mouhot-Schmeiser 15, etc...)

robust proof (Boltzmann, Landau, fractional etc...) and methods
(hypocoercivity, hypoellipticity)

wide applications (hydro limits, perturbative NL solutions, VPFP,
Landau damping, enlargement theory, statistical mechanics, low
temperature, UQ etc
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The continuous inhomogeneous case

Perform the same change of variables

F = µ+ µf ,

and work in H1(dµdx) →֒ L2(dµdx). The inhomogeneous equation
reads

∂t f + v∂x f + (−∂v + v)∂v f = 0, f |t=0 = f 0,

〈f 〉 def
=

∫∫

fdµdx =
〈

f 0〉

commutator identity [∂v , v∂x ] = ∂x (hypoellipticity results by
Hörmander, Kohn, developped by Helffer, Nourrigat, mention
subunit balls by Fefferman and subelliptic geometry etc... ).

how to discretize such an equality and equation ?

fundamental point : have the simplest proofs and techniques in
order to adapt them to the discretized cases.
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The modified entropy

We define the entropy functional for C > D > E > 1, to be defined
later on

H : f 7→ C ‖f‖2 + D ‖∂v f‖2 + E 〈∂v f , ∂x f 〉 + ‖∂x f‖2 . (2)

Then for C,D,E well chosen, we will prove that t 7→ H(f (t)) is
nonincreasing when f solves the rescaled equation with initial datum
f 0 ∈ H1(dµ).
First note that if E2 < D, H is equivalent to the H1(dµdx)-norm :

1
2
‖f‖2

H1 ≤ H(f ) ≤ 2C ‖f‖2
H1 (3)

We have modified the norm in H1.
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✄ First term

d
dt

‖f‖2 = 2 〈∂t f , f 〉 = −2 〈v∂x f , f 〉 − 2 〈(−∂v + v)∂v f , f 〉 = −2 ‖∂v f‖2

✄ Second term

d
dt

‖∂v f‖2
= 2 〈∂v (∂t f ), ∂v f 〉

= −2 〈∂v (v∂x f + (−∂v + v)∂v f ), ∂v f 〉
= −2 〈v∂x∂v f , ∂v f 〉 − 2 〈[∂v , v∂x ] f , ∂v f 〉 − 2 〈∂v (−∂v + v)∂v f , ∂v f 〉 .
= −2 〈∂x f , ∂v f 〉 − 2 ‖(−∂v + v)∂v f‖2

✄ Last term
d
dt

‖∂x f‖2
= −2 ‖∂v∂x f‖2
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✄ Third important term

d
dt

〈∂x f , ∂v f 〉

= −〈∂x(v∂x f + (−∂v + v)∂v f ), ∂v f 〉 − 〈∂x f , ∂v (v∂x f + (−∂v + v)∂v f )〉
= −〈v∂x(∂x f ), ∂v f 〉 − 〈(−∂v + v)∂v f , ∂x∂v f 〉

− 〈∂x f , [∂v , v∂x ] f 〉 − 〈∂x f , v∂x∂v f 〉
− 〈∂x f , [∂v , (−∂v + v)]∂v f 〉 − 〈(−∂v + v)∂v f , ∂x∂v f 〉 .

we have
〈v∂x∂x f , ∂v f 〉 + 〈∂x f , v∂x∂v f 〉 = 0.

and
[∂v , (−∂v + v)] = 1

so that

d
dt

〈∂x f , ∂v f 〉 = −‖∂x f‖2
+ 2 〈(−∂v + v)∂v f , ∂x∂v f 〉 − 〈∂x f , ∂v f 〉 .
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✄ Entropy dissipation inequality

d
dt

H(f ) = −2C ‖∂v f‖2 − 2D ‖(−∂v + v)∂v f‖2 − E ‖∂x f‖2 − 2 ‖∂x∂v f‖2

− 2(D + E) 〈∂x f , ∂v f 〉 − 2E 〈(−∂v + v)∂v f , ∂x∂v f 〉 .

Therefore, using Cauchy-Schwartz : for 1 < E < D < C well chosen,

d
dt

H(f ) ≤ −C ‖∂v f‖2 − (E − 1/2) ‖∂x f‖2 ≤ −E
2
(‖∂v f‖2 + ‖∂x f‖2).

Using the Poincaré inequality in space and velocity

d
dt

H(f ) ≤ −E
4
(‖∂v f‖2

+ ‖∂x f‖2
)− E

4
cp ‖f‖2 ≤ −E

4
cp

2C
H(f ).

✷
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✄ Synthesis

We pose 2κ =
E
4

cp

2C
and we get by Gronwall lemma

Theorem

For all f 0 ∈ H1, the solution f to the rescaled inhomogeneous
Fokker-Planck equation satisifies for all t ≥ 0,

1
2
‖f‖2

L2 ≤
1
2
‖f‖2

H1 ≤ H(f (t)) ≤ e−2κtH(0) ≤ 2Ce−2κt
∥

∥f 0
∥

∥

2

H1 .
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We want to discretize the equation in space, velocity and time, with
preservation of the long time behavior, (hypo)coercivity, the notion of
Maxwellian.

Keywords and the discrete case

Equation ? derivative ? Hilbert space ? Maxwellian ? Gronwall ?
Poincaré ? commutators ? local ?

Huge literature : (Herda, Bessemoulin, AP, Jin, etc etc...). In the spirit
of hypocoercivity for short time : Poretta-Zuazua
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The semi-discrete homogeneous case

We want to discretize (and implement) the equation

∂tF − ∂v (∂v + v)F = 0.

We look for a discretization only in velocity.

✄ The velocity derivative : for F ∈ ℓ1(Z), define Dv F ∈ ℓ1(Z∗) by

(Dv F )i =
Fi − Fi−1

h
for i > 0, (Dv F )i =

Fi+1 − Fi

h
for i < 0.
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✄ The Maxwellian : solving equation (Dv + v)µh = 0 yields

µh
i =

ch
∏|i|

l=0(1 + hvi)
, i ∈ Z.

Then µh is even, positive, in ℓ1.
Proof by direct computation : (Dv + v)µh = 0 writes











µh
i − µh

i−1

h
+ viµ

h
i = 0 for i > 0

µh
i+1 − µh

i

h
+ viµ

h
i = 0 for i < 0,

which gives the expression of µh ∈ ℓ1.
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✄ The "adjoint" : for G ∈ ℓ1(Z∗), define D♯
v F ∈ ℓ1(Z)

(D♯
v G)i =

Gi+1 − Gi

h
for i > 0, (D♯

v G)i =
Gi − Gi−1

h
for i < 0,

(D♯
v G)0 =

G1 − G−1

h
.

✄ The Hilbert spaces : we pose F = µh + µhf and consider

f ∈ ℓ2(µh) ⇔
∑

i

f 2
i µ

h
i < +∞

then denoting µ♯
i = µh

i−1 for i > 0 and µ♯
i = µh

i+1 for i < 0

−D♯
v ((Dv + v)µhf ) = D♯

v (µ
♯(Dv f )i ) = µh

i (−D♯
v + v)Dv f .
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The discrete equation is then

∂t F − D♯
v (Dv + v)F = 0, F |t=0 = F 0.

With F = µh + µhf , we have

Proposition

The equation satisfied by f is the following

∂t f + (−D♯
v + v)Dv f = 0, f |t=0 = f 0.

The operator (−D♯
v + v)Dv is selfadjoint non-negative in ℓ2(µh) :

〈

(−D♯
v + v)Dv f , g

〉

= 〈Dv f ,Dv g〉♯ =
〈

f , (−D♯
v + v)Dvg

〉

,

where
ϕ ∈ ℓ2(µ♯) ⇔ ‖ϕ‖2

♯ =
∑

i 6=0

ϕ2
i µ

♯
i < ∞.

Constant sequences are the equilibrium states of the equation.
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We can do the same proof as in the continuous case

note that 〈f 〉 def
=
∑

fiµh
i =

∑

f 0
i µ

h
i = 0,

compute d
dt ‖f‖2

= −2
〈

(−D♯
v + v)Dv f , f

〉

= −2 ‖Dv f‖2
♯ ,

use Poincaré inequality ‖f‖2 ≤ ‖Dv f‖2
♯ ,

use Gronwall inequality ‖f‖ ≤ e−t
∥

∥f 0
∥

∥,

synthesis
∥

∥F − µh
∥

∥

ℓ1 ≤ ‖f‖ ≤ e−t
∥

∥f 0
∥

∥.

? ? Poincare inequality ? ?
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We can do the same proof as in the continuous case

note that 〈f 〉 def
=
∑

fiµh
i =

∑

f 0
i µ

h
i = 0,

compute d
dt ‖f‖2

= −2
〈

(−D♯
v + v)Dv f , f

〉

= −2 ‖Dv f‖2
♯ ,

use Poincaré inequality ‖f‖2 ≤ ‖Dv f‖2
♯ ,

use Gronwall inequality ‖f‖ ≤ e−t
∥

∥f 0
∥

∥,

synthesis
∥

∥F − µh
∥

∥

ℓ1 ≤ ‖f‖ ≤ e−t
∥

∥f 0
∥

∥.

? ? Poincare inequality ? ?
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Poincaré inequality

Lemma (adapted proof of that by H. Poincare (1912))

For all f ∈ H1(µ) with 〈f 〉 = 0, we have ‖f‖2
L2(dµ) ≤ ‖∂v f‖2

L2(dµ)

Proof. Denote f (v) = f , f (v ′) = f ′, dµ = µ(v)dv and dµ′ = µ(v ′)dv ′.

∫

R

f 2dµ =
1
2

∫∫

R2
(f ′ − f )2dµdµ′ =

1
2

∫∫

R2

(

∫ v ′

v
∂v f (w)dw

)2

dµdµ′

From Cauchy Schwartz

∫

R

f 2dµ ≤ 1
2

∫∫

R2

(

∫ v ′

v
|∂v f (w)|2 dw

)

(v ′ − v)dµdµ′
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Denote F (v) =
∫ v

a |∂v f (w)|2 dw . Then

∫

R

f 2dµ ≤ 1
2

∫∫

R2
(F ′ − F ) (v ′ − v)dµdµ′

=
1
2

(
∫∫

R2
F ′v ′dµdµ′ +

∫∫

R2
Fvdµdµ′ −

∫∫

R2
Fv ′dµdµ′ −

∫∫

R2
F ′vdµdµ′

)

=

∫

R

Fvdµ,

Note that ∂vµ = −vµ and perform an integration by parts
∫

R

f 2dµ ≤
∫

R

Fvµdv = −
∫

R

F∂vµdv =

∫

R

∂v Fµdv =

∫

R

|∂v f |2dµ.

✷
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Discrete Poincaré inequality

Proposition (Discrete Poincaré inequality)

Let f be a sequence in H1. Then,

‖f − 〈f 〉‖2
ℓ2(µh) ≤ ‖Dv f‖2

ℓ2(µ♯) .

Proof. Assume 〈f 〉 = 0 and write
∑

i

f 2
i µi =

1
2

∑

i,j

(fj − fi)2µiµj =
∑

i<j

(fj − fi)2µiµj

· · · computations using an antiderivative of f defined by

Fj =

j
∑

l=−ja

(fl − fl−1)
2

and using the integration by part in the discrete weighted space
∑

i 6=0

Fi iµi = −
∑

i>0

Fi − Fi+1

h2 µi +
F1

h2 µ0 −
∑

i<0

Fi−1 − Fi

h2 µi −
F−1

h2 µ0
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Poincaré inequality in space

The two preceding objects and proofs can be adapted to the
inhomogeneous cases under the following assumption

Hypothesis

The operator Dx is skew adjoint, commutes with velocity and satisfies
the Poincaré inequality in space

cp ‖φ− 〈φ〉‖2
L2

x
≤ ‖Dxφ‖2

L2
x
.

For example,

centered discrete derivative

(Dxφ)j =
φj+1 − φj−1

h
, j ∈ Z/NZ,

continuous derivative (on the torus).
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All cases

The two preceding objects and proofs can be adapted to the
inhomogeneous cases (we give the f version) on ℓ2(µhdvdx) :

semi-discrete case

∂t f + vDx f + (−D♯
v + v)Dv f = 0, f |t=0 = f 0,

the fully discrete Euler implicit case

f n+1 − f n

δt
+ vDx f n+1 + (−D♯

v + v)Dv f n+1 = 0, f |t=0 = f 0,

the fully discrete Euler explicit with Neumann on v ∈ [−b, b]

f n+1 − f n

δt
+vDx f n +(−D♯

v +v)Dv f n = 0, f |t=0 = f 0, Dv f±b = 0.
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An example of theorem

Theorem

Assume C > D > E > 1 well chosen. There exists k , t0, h0 > 0 such
that for all f 0 ∈ H1 with

〈

f 0
〉

= 0, all δt ∈ (0, t0), and all h ∈ (0, h0) the
sequence defined by the implicit Euler scheme satisfies for all n ∈ N,

1
2
‖f n‖2

H1 ≤ H(f n) ≤ H(f 0)e−knδt ≤ 2C
∥

∥f 0
∥

∥

2

H1 e−knδt .
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Elements of proof

Consider

H(f ) = C ‖f‖2
+ D ‖Dv f‖2

♯ + E 〈Dv f ,SDx f 〉♯ + ‖Dx f‖2
. (4)

with S = [Dv , v ] and therefore SDx = [Dv , vDx ] :

(Sg)i = gi−1 for i ≥ 1 (Sg)i = gi+1 for i ≤ −1.

We have for example

Dv (−D♯
v + v)S − S(−D♯

v + v)Dv = S + δ,

where δ is the singular operator from ℓ2 to ℓ2
♯ defined for f ∈ ℓ2 by

(δf )j = 0 if |j| ≥ 2, (δf )−1 =
f1 − f0

h2 , (δf )1 = − f0 − f−1

h2 .
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Especially for the singular term involving δ, we have for all ε > 0,

∣

∣

∣
〈δDx f ,Dv f 〉♯

∣

∣

∣
≤ 1

ε

∥

∥

∥
(−D♯

v + v)Dv f
∥

∥

∥

2
+ ε ‖Dv Dx f‖2

♯ .
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Numerics
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Thank you !


