Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

(hypo)coercive schemes for the Fokker-Planck equation

F. Hérau (LMJL Nantes)

with G. Dujardin (Inria Lille Europe) and P. Lafitte (Centrale Supélec)

Workshop on kinetic and fluid PDEs Paris Descartes and Paris Diderot

Paris - 6 mars 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

	_				
0000	000000	00000	0000	0000	00
Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics

Table of contents

- 2 Continuous inhomogeneous case
- Semi-discrete homogeneous case
- Poincaré inequalities

5 All cases

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
●000	000000	00000	0000	0000	00

Introduction

We are interested in the study of the following inhomogeneous Fokker-Planck equation

$$\partial_t F + v \partial_x F - \partial_v (\partial_v + v) F = 0, \qquad F|_{t=0} = F^0,$$

where

$$0 \leq F = F(t, x, v), \qquad (t, x, v) \in \mathbb{R}^+ \times \mathbb{T} \times \mathbb{R} \qquad \iint F dx dv = 1.$$

We focus in this talk on the case d = 1.

The now rather standard hypocoercive methods give that

$$F(t, \mathbf{x}, \mathbf{v}) \xrightarrow[t \to +\infty]{} \mathcal{M}(\mathbf{x}, \mathbf{v}),$$

exponentially fast (for a large family of similar kinetic equations), where here the Maxwellian is given by

$$\mathcal{M}(\mathbf{x},\mathbf{v}) = \mu(\mathbf{v}) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\mathbf{v}^2/2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

A much simpler equation (homogeneous kinetic equation) is

$$\partial_t F - \partial_v (\partial_v + v) F = 0, \qquad F|_{t=0} = F^0,$$
 (1)

where

$$0 \leq F = F(t, v), \qquad (t, v) \in \mathbb{R}^+ \times \mathbb{R}, \qquad \int F dv = 1,$$

for which this is very easy to get (by "coercive" methods) that

$$F(t, \mathbf{x}, \mathbf{v}) \underset{t \to +\infty}{\longrightarrow} \mu(\mathbf{v}).$$

(This is just the heat equation for the harmonic oscillator.)

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Functional framework and proof for the homogeneous problem :

• set
$$F = \mu + \mu f$$
,

- the equation is $\partial_t f + (-\partial_v + v)\partial_v f = 0$ with $f|_{t=0} = f^0$,
- consider f ∈ L²(dµ) ⊂ L¹(dµ) (strictly smaller),
- note that $\langle f \rangle \stackrel{\text{def}}{=} \int f d\mu = \int f_0 d\mu = 0$,
- note that $f \in L^1(d\mu) \Leftrightarrow F \in L^1(dv)$,
- compute $\frac{\mathrm{d}}{\mathrm{d}t} \left\| f \right\|_{L^2(\mathrm{d}\mu)}^2 = -2 \left\langle (-\partial_v + v) \partial_v f, f \right\rangle_{L^2(\mathrm{d}\mu)} = -2 \left\| \partial_v f \right\|_{L^2(\mathrm{d}\mu)}^2,$
- use Poincaré inequality $\|f\|_{L^2(d\mu)}^2 \le \|\partial_v f\|_{L^2(d\mu)}^2$, so that

$$\frac{\mathrm{d}}{\mathrm{d}t} \|f\|_{L^2(\mathrm{d}\mu)}^2 \leq -2 \, \|f\|_{L^2(\mathrm{d}\mu)}^2 \, ,$$

- use Gronwall inequality $\|f\|_{L^2(d\mu)} \leq e^{-t} \|f^0\|_{L^2(d\mu)}$,
- synthesis $\|\boldsymbol{F} \mathcal{M}\|_{L^1(\mathrm{d} v)} \le \|f\|_{L^2(\mathrm{d} \mu)} \le e^{-t} \|f^0\|_{L^2(\mathrm{d} \mu)}$.

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
000●	000000	00000	0000	0000	00

Many ingredients were involved in the short previous proof :

Hilbertian framework, coercivity, Poincaré inequality, Gronwall lemma, existence of a Maxwellian ...

Aim of this talk :

- Explain how to adapt to the inhomogeneous case
 well understood and robust theory
- Explain how to discretize and numerically implement the problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 \triangleright new even in the homogeneous case

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

The continuous inhomogeneous case

Perform the same change of variables

$$\mathbf{F} = \boldsymbol{\mu} + \boldsymbol{\mu} \mathbf{f},$$

and work in $H^1(d\mu dx) \hookrightarrow L^2(d\mu dx)$. The inhomogeneous equation reads

$$\partial_t f + v \partial_x f + (-\partial_v + v) \partial_v f = 0, \qquad f|_{t=0} = f^0,$$

 $\langle f \rangle \stackrel{\text{def}}{=} \iint f d\mu dx = \langle f^0 \rangle$

- very partial biblio (Guo, Villani-Desvillettes ... H. 06-07, Mouhot-Neumann 06, H.-Nier 04, Villani 07, Dolbeault-Mouhot-Schmeiser 15, *etc...*)
- robust proof (Boltzmann, Landau, fractional *etc...*) and methods (hypocoercivity, hypoellipticity)
- wide applications (hydro limits, perturbative NL solutions, VPFP, Landau damping, enlargement theory, statistical mechanics, low temperature, UQ etc

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

The continuous inhomogeneous case

Perform the same change of variables

$$F = \mu + \mu f,$$

and work in $H^1(d\mu dx) \hookrightarrow L^2(d\mu dx)$. The inhomogeneous equation reads

$$\partial_t f + v \partial_x f + (-\partial_v + v) \partial_v f = 0, \qquad f|_{t=0} = f^0,$$

 $\langle f \rangle \stackrel{\text{def}}{=} \iint f d\mu dx = \langle f^0 \rangle$

- commutator identity [∂_v, v∂_x] = ∂_x (hypoellipticity results by Hörmander, Kohn, developped by Helffer, Nourrigat, mention subunit balls by Fefferman and subelliptic geometry *etc...*).
- how to discretize such an equality and equation ?
- fundamental point : have the simplest proofs and techniques in order to adapt them to the discretized cases.

Introduction 0000	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics 00
The m	odified entropy	V			

We define the entropy functional for C > D > E > 1, to be defined later on

$$\mathcal{H}: f \mapsto C \|f\|^2 + D \|\partial_v f\|^2 + E \langle \partial_v f, \partial_x f \rangle + \|\partial_x f\|^2.$$
(2)

Then for *C*, *D*, *E* well chosen, we will prove that $t \mapsto \mathcal{H}(f(t))$ is nonincreasing when *f* solves the rescaled equation with initial datum $f^0 \in H^1(d\mu)$. First note that if $E^2 < D$, \mathcal{H} is equivalent to the $H^1(d\mu dx)$ -norm :

$$\frac{1}{2} \|f\|_{H^1}^2 \le \mathcal{H}(f) \le 2C \|f\|_{H^1}^2 \tag{3}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

We have modified the norm in H^1 .

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	00000	00000	0000	0000	00

⊳ First term

$$\frac{d}{dt} \|f\|^2 = 2 \langle \partial_t f, f \rangle = -2 \langle v \partial_x f, f \rangle - 2 \langle (-\partial_v + v) \partial_v f, f \rangle = -2 \|\partial_v f\|^2$$

\triangleright Second term

$$\begin{aligned} \frac{d}{dt} \|\partial_{v}f\|^{2} &= 2 \left\langle \partial_{v}(\partial_{t}f), \partial_{v}f \right\rangle \\ &= -2 \left\langle \partial_{v}(v\partial_{x}f + (-\partial_{v} + v)\partial_{v}f), \partial_{v}f \right\rangle \\ &= -2 \left\langle v\partial_{x}\partial_{v}f, \partial_{v}f \right\rangle - 2 \left\langle [\partial_{v}, v\partial_{x}]f, \partial_{v}f \right\rangle - 2 \left\langle \partial_{v}(-\partial_{v} + v)\partial_{v}f, \partial_{v}f \right\rangle . \\ &= -2 \left\langle \partial_{x}f, \partial_{v}f \right\rangle - 2 \left\| (-\partial_{v} + v)\partial_{v}f \right\|^{2} \end{aligned}$$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

 \triangleright Last term

$$\frac{d}{dt}\left\|\partial_{x}f\right\|^{2}=-2\left\|\partial_{v}\partial_{x}f\right\|^{2}$$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	00000	00000	0000	0000	00

\triangleright Third important term

$$\begin{aligned} \frac{d}{dt} & \langle \partial_{x} f, \partial_{v} f \rangle \\ &= - \left\langle \partial_{x} (v \partial_{x} f + (-\partial_{v} + v) \partial_{v} f), \partial_{v} f \right\rangle - \left\langle \partial_{x} f, \partial_{v} (v \partial_{x} f + (-\partial_{v} + v) \partial_{v} f) \right\rangle \\ &= - \left\langle v \partial_{x} (\partial_{x} f), \partial_{v} f \right\rangle - \left\langle (-\partial_{v} + v) \partial_{v} f, \partial_{x} \partial_{v} f \right\rangle \\ &- \left\langle \partial_{x} f, [\partial_{v}, v \partial_{x}] f \right\rangle - \left\langle \partial_{x} f, v \partial_{x} \partial_{v} f \right\rangle \\ &- \left\langle \partial_{x} f, [\partial_{v}, (-\partial_{v} + v)] \partial_{v} f \right\rangle - \left\langle (-\partial_{v} + v) \partial_{v} f, \partial_{x} \partial_{v} f \right\rangle. \end{aligned}$$

we have

$$\langle v \partial_x \partial_x f, \partial_v f \rangle + \langle \partial_x f, v \partial_x \partial_v f \rangle = 0.$$

and

$$[\partial_{v},(-\partial_{v}+v)]=1$$

so that

$$\frac{d}{dt}\langle \partial_{x}f,\partial_{v}f\rangle = -\left\|\partial_{x}f\right\|^{2} + 2\langle (-\partial_{v}+v)\partial_{v}f,\partial_{x}\partial_{v}f\rangle - \langle \partial_{x}f,\partial_{v}f\rangle.$$

(ロ)、(型)、(E)、(E)、 E、のQの

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Entropy dissipation inequality

$$\frac{d}{dt}\mathcal{H}(f) = -2C \|\partial_{v}f\|^{2} - 2D \|(-\partial_{v} + v)\partial_{v}f\|^{2} - E \|\partial_{x}f\|^{2} - 2 \|\partial_{x}\partial_{v}f\|^{2} - 2(D + E) \langle \partial_{x}f, \partial_{v}f \rangle - 2E \langle (-\partial_{v} + v)\partial_{v}f, \partial_{x}\partial_{v}f \rangle.$$

Therefore, using Cauchy-Schwartz : for 1 < E < D < C well chosen,

$$\frac{d}{dt}\mathcal{H}(f) \leq -C \left\|\partial_{v}f\right\|^{2} - (E - 1/2) \left\|\partial_{x}f\right\|^{2} \leq -\frac{E}{2}(\left\|\partial_{v}f\right\|^{2} + \left\|\partial_{x}f\right\|^{2}).$$

Using the Poincaré inequality in space and velocity

$$\frac{d}{dt}\mathcal{H}(f) \leq -\frac{E}{4}(\left\|\partial_{v}f\right\|^{2} + \left\|\partial_{x}f\right\|^{2}) - \frac{E}{4}c_{p}\left\|f\right\|^{2} \leq -\frac{E}{4}\frac{c_{p}}{2C}\mathcal{H}(f).$$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

$$\triangleright$$
 Synthesis
We pose $2\kappa = \frac{E}{4} \frac{c_p}{2C}$ and we get by Gronwall lemma

Theorem

For all $f^0 \in H^1$, the solution f to the rescaled inhomogeneous Fokker-Planck equation satisifies for all $t \ge 0$,

$$\frac{1}{2} \left\| f \right\|_{L^2}^2 \le \frac{1}{2} \left\| f \right\|_{H^1}^2 \le \mathcal{H}(f(t)) \le e^{-2\kappa t} \mathcal{H}(0) \le 2C e^{-2\kappa t} \left\| f^0 \right\|_{H^1}^2$$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	00000	00000	0000	0000	00

We want to discretize the equation in space, velocity and time, with preservation of the long time behavior, (hypo)coercivity, the notion of Maxwellian.

Keywords and the discrete case

Equation ? derivative ? Hilbert space ? Maxwellian ? Gronwall ? Poincaré ? commutators ? local ?

Huge literature : (Herda, Bessemoulin, AP, Jin, etc etc...). In the spirit of hypocoercivity for short time : Poretta-Zuazua

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

The semi-discrete homogeneous case

We want to discretize (and implement) the equation

$$\partial_t F - \partial_v (\partial_v + v) F = 0.$$

We look for a discretization only in velocity.

 \triangleright The velocity derivative : for $F \in \ell^1(\mathbb{Z})$, define $D_v F \in \ell^1(\mathbb{Z}^*)$ by

$$(D_{v}F)_{i} = \frac{F_{i} - F_{i-1}}{h}$$
 for $i > 0$, $(D_{v}F)_{i} = \frac{F_{i+1} - F_{i}}{h}$ for $i < 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	0000	0000	0000	00

 \triangleright The Maxwellian : solving equation $(D_v + v)\mu^h = 0$ yields

$$\mu_i^h = \frac{c_h}{\prod_{l=0}^{|i|} (1 + hv_i)}, \qquad i \in \mathbb{Z}.$$

Then μ^h is even, positive, in ℓ^1 . Proof by direct computation : $(D_v + v)\mu^h = 0$ writes

$$\begin{cases} \frac{\mu_{i}^{h} - \mu_{i-1}^{h}}{h} + v_{i}\mu_{i}^{h} = 0 \quad \text{for } i > 0\\ \frac{\mu_{i+1}^{h} - \mu_{i}^{h}}{h} + v_{i}\mu_{i}^{h} = 0 \quad \text{for } i < 0, \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

which gives the expression of $\mu^h \in \ell^1$.

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	0000	0000	0000	00

 \triangleright The "adjoint" : for $G \in \ell^1(\mathbb{Z}^*)$, define $D_v^{\sharp} F \in \ell^1(\mathbb{Z})$

$$(D_{\nu}^{\sharp}G)_i = rac{G_{i+1}-G_i}{h} ext{ for } i > 0, \qquad (D_{\nu}^{\sharp}G)_i = rac{G_i-G_{i-1}}{h} ext{ for } i < 0,$$

$$(D_v^{\sharp}G)_0=rac{G_1-G_{-1}}{h}.$$

 \rhd The Hilbert spaces : we pose $\textit{\textbf{F}}=\mu^{h}+\mu^{h}\textit{f}$ and consider

$$f \in \ell^2(\mu^h) \Leftrightarrow \sum_i f_i^2 \mu_i^h < +\infty$$

then denoting $\mu_i^{\sharp} = \mu_{i-1}^h$ for i > 0 and $\mu_i^{\sharp} = \mu_{i+1}^h$ for i < 0

$$-D_{\nu}^{\sharp}((D_{\nu}+\nu)\mu^{h}f)=D_{\nu}^{\sharp}(\mu^{\sharp}(D_{\nu}f)_{i})=\mu_{i}^{h}(-D_{\nu}^{\sharp}+\nu)D_{\nu}f.$$

●●● 画 《画》《画》《画》《目》

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

The discrete equation is then

$$\partial_t F - D_v^{\sharp} (D_v + v) F = 0, \qquad F|_{t=0} = F^0.$$

With $F = \mu^h + \mu^h f$, we have

Proposition

The equation satisfied by f is the following

$$\partial_t f + (-D_v^{\sharp} + v)D_v f = 0, \qquad f|_{t=0} = f^0.$$

The operator $(-D_v^{\sharp} + v)D_v$ is selfadjoint non-negative in $\ell^2(\mu^h)$:

$$\left\langle (-D_v^{\sharp}+v)D_vf,g
ight
angle =\left\langle D_vf,D_vg
ight
angle _{\sharp}=\left\langle f,(-D_v^{\sharp}+v)D_vg
ight
angle ,$$

where

$$\varphi \in \ell^2(\mu^{\sharp}) \Leftrightarrow \|\varphi\|_{\sharp}^2 = \sum_{i \neq 0} \varphi_i^2 \mu_i^{\sharp} < \infty.$$

Constant sequences are the equilibrium states of the equation.

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

We can do the same proof as in the continuous case

• note that
$$\langle f \rangle \stackrel{\text{def}}{=} \sum f_i \mu_i^h = \sum f_i^0 \mu_i^h = 0$$
,
• compute $\frac{d}{dt} \|f\|^2 = -2 \left\langle (-D_v^{\sharp} + v) D_v f, f \right\rangle = -2 \|D_v f\|_{\sharp}^2$,

- use Poincaré inequality $\|f\|^2 \le \|D_v f\|_{\sharp}^2$,
- use Gronwall inequality $||f|| \le e^{-t} ||f^0||$,
- synthesis $\left\| \boldsymbol{F} \boldsymbol{\mu}^{h} \right\|_{\ell^{1}} \leq \left\| \boldsymbol{f} \right\| \leq \mathbf{e}^{-t} \left\| \boldsymbol{f}^{0} \right\|.$

?? Poincare inequality??

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

We can do the same proof as in the continuous case

• note that
$$\langle f \rangle \stackrel{\text{def}}{=} \sum f_i \mu_i^h = \sum f_i^0 \mu_i^h = 0$$
,
• compute $\frac{d}{dt} \|f\|^2 = -2 \left\langle (-D_v^{\sharp} + v) D_v f, f \right\rangle = -2 \|D_v f\|_{\sharp}^2$,

- use Poincaré inequality $\|f\|^2 \le \|D_v f\|^2_{\sharp}$,
- use Gronwall inequality $\|f\| \le e^{-t} \|f^0\|$,
- synthesis $\left\| \boldsymbol{F} \mu^h \right\|_{\ell^1} \le \|f\| \le e^{-t} \left\| f^0 \right\|.$

?? Poincare inequality??

Introduction 0000	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities •000	All cases	Numerics 00
Poinca	aré inequality				

Lemma (adapted proof of that by H. Poincare (1912))

For all $f \in H^1(\mu)$ with $\langle f \rangle = 0$, we have $\|f\|_{L^2(d\mu)}^2 \le \|\partial_v f\|_{L^2(d\mu)}^2$

Proof. Denote f(v) = f, f(v') = f', $d\mu = \mu(v)dv$ and $d\mu' = \mu(v')dv'$.

$$\int_{\mathbb{R}} f^2 \mathrm{d}\mu = \frac{1}{2} \iint_{\mathbb{R}^2} (f' - f)^2 \mathrm{d}\mu \mathrm{d}\mu' = \frac{1}{2} \iint_{\mathbb{R}^2} \left(\int_{v}^{v'} \partial_v f(w) \mathrm{d}w \right)^2 \mathrm{d}\mu \mathrm{d}\mu'$$

From Cauchy Schwartz

$$\int_{\mathbb{R}} f^2 \mathrm{d}\mu \leq \frac{1}{2} \iint_{\mathbb{R}^2} \left(\int_{v}^{v'} |\partial_v f(w)|^2 \, \mathrm{d}w \right) (v'-v) \mathrm{d}\mu \mathrm{d}\mu'$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Denote
$$F(v) = \int_a^v |\partial_v f(w)|^2 dw$$
. Then

$$\begin{split} &\int_{\mathbb{R}} f^{2} d\mu \leq \frac{1}{2} \iint_{\mathbb{R}^{2}} \left(F' - F \right) \left(v' - v \right) d\mu d\mu' \\ &= \frac{1}{2} \left(\iint_{\mathbb{R}^{2}} F' v' d\mu d\mu' + \iint_{\mathbb{R}^{2}} F v d\mu d\mu' - \iint_{\mathbb{R}^{2}} F v' d\mu d\mu' - \iint_{\mathbb{R}^{2}} F' v d\mu d\mu' \right) \\ &= \int_{\mathbb{R}} F v d\mu, \end{split}$$

Note that $\partial_{\nu}\mu = -\nu\mu$ and perform an integration by parts

$$\int_{\mathbb{R}} f^{2} d\mu \leq \int_{\mathbb{R}} F v \mu dv = -\int_{\mathbb{R}} F \partial_{v} \mu dv = \int_{\mathbb{R}} \partial_{v} F \mu dv = \int_{\mathbb{R}} |\partial_{v} f|^{2} d\mu.$$

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Discrete Poincaré inequality

Proposition (Discrete Poincaré inequality)

Let f be a sequence in H¹. Then,

$$\|f-\langle f
angle\|_{\ell^2(\mu^h)}^2\leq \|D_{\scriptscriptstyle V}f\|_{\ell^2(\mu^{\sharp})}^2$$
.

Proof. Assume $\langle f \rangle = 0$ and write

$$\sum_{i} f_{i}^{2} \mu_{i} = \frac{1}{2} \sum_{i,j} (f_{j} - f_{i})^{2} \mu_{i} \mu_{j} = \sum_{i < j} (f_{j} - f_{i})^{2} \mu_{i} \mu_{j}$$

 \cdots computations using an antiderivative of f defined by

$$F_j = \sum_{l=-j_a}^{j} (f_l - f_{l-1})^2$$

and using the integration by part in the discrete weighted space

$$\sum_{i \neq 0} F_i i \mu_i = -\sum_{i > 0} \frac{F_i - F_{i+1}}{h^2} \mu_i + \frac{F_1}{h^2} \mu_0 - \sum_{i < 0} \frac{F_{i-1} - F_i}{h^2} \mu_i - \frac{F_{-1}}{h^2} \mu_0$$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Poincaré inequality in space

The two preceding objects and proofs can be adapted to the inhomogeneous cases under the following assumption

Hypothesis

The operator D_x is skew adjoint, commutes with velocity and satisfies the Poincaré inequality in space

$$c_{p} \|\phi - \langle \phi \rangle \|_{L^{2}_{x}}^{2} \leq \|D_{x}\phi\|_{L^{2}_{x}}^{2}.$$

For example,

centered discrete derivative

$$(\mathcal{D}_{\mathbf{x}}\phi)_j = rac{\phi_{j+1} - \phi_{j-1}}{h}, \qquad j \in \mathbb{Z}/N\mathbb{Z},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

• continuous derivative (on the torus).

Introduction 0000	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases •000	Numerics 00			
All cas	All cases							

The two preceding objects and proofs can be adapted to the inhomogeneous cases (we give the *f* version) on $\ell^2(\mu^h dv dx)$:

semi-discrete case

$$\partial_t f + v D_x f + (-D_v^{\sharp} + v) D_v f = 0, \qquad f|_{t=0} = f^0,$$

the fully discrete Euler implicit case

$$\frac{f^{n+1}-f^n}{\delta t}+vD_xf^{n+1}+(-D_v^{\sharp}+v)D_vf^{n+1}=0, \qquad f|_{t=0}=f^0,$$

• the fully discrete Euler explicit with Neumann on $v \in [-b, b]$

$$\frac{f^{n+1}-f^n}{\delta t} + vD_x f^n + (-D_v^{\sharp} + v)D_v f^n = 0, \quad f|_{t=0} = f^0, \quad D_v f_{\pm b} = 0.$$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

An example of theorem

Theorem

Assume C > D > E > 1 well chosen. There exists $k, t_0, h_0 > 0$ such that for all $f^0 \in H^1$ with $\langle f^0 \rangle = 0$, all $\delta t \in (0, t_0)$, and all $h \in (0, h_0)$ the sequence defined by the implicit Euler scheme satisfies for all $n \in \mathbb{N}$,

$$\frac{1}{2}\left\|f^{n}\right\|_{H^{1}}^{2} \leq \mathcal{H}(f^{n}) \leq \mathcal{H}(f^{0})e^{-kn\delta t} \leq 2C\left\|f^{0}\right\|_{H^{1}}^{2}e^{-kn\delta t}$$

Introduction 0000	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics 00			
Eleme	Elements of proof							

Consider

$$\mathcal{H}(f) = C \left\|f\right\|^{2} + D \left\|D_{v}f\right\|_{\sharp}^{2} + E \left\langle D_{v}f, SD_{x}f\right\rangle_{\sharp} + \left\|D_{x}f\right\|^{2}.$$
 (4)

with $S = [D_v, v]$ and therefore $SD_x = [D_v, vD_x]$:

$$(Sg)_i = g_{i-1} \text{ for } i \ge 1$$
 $(Sg)_i = g_{i+1} \text{ for } i \le -1.$

We have for example

$$D_{\mathbf{v}}(-D_{\mathbf{v}}^{\sharp}+\mathbf{v})\mathbf{S}-\mathbf{S}(-D_{\mathbf{v}}^{\sharp}+\mathbf{v})D_{\mathbf{v}}=\mathbf{S}+\delta,$$

where δ is the singular operator from ℓ^2 to ℓ^2_{\sharp} defined for $f \in \ell^2$ by

$$(\delta f)_j = 0$$
 if $|j| \ge 2$, $(\delta f)_{-1} = \frac{f_1 - f_0}{h^2}$, $(\delta f)_1 = -\frac{f_0 - f_{-1}}{h^2}$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Especially for the singular term involving δ , we have for all $\varepsilon > 0$,

$$\left| \left\langle \delta D_{\mathsf{x}} f, D_{\mathsf{v}} f \right\rangle_{\sharp} \right| \leq \frac{1}{\varepsilon} \left\| (-D_{\mathsf{v}}^{\sharp} + \mathsf{v}) D_{\mathsf{v}} f \right\|^{2} + \varepsilon \left\| D_{\mathsf{v}} D_{\mathsf{x}} f \right\|_{\sharp}^{2}.$$

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	•0

Numerics

Introduction	Continuous inhomogeneous case	Semi-discrete homogeneous case	Poincaré inequalities	All cases	Numerics
0000	000000	00000	0000	0000	00

Thank you!