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Uncertainty Quantification for Kinetic Equations



Where do kinetic equations sit in physics



Kinetic equations with applications

• Rarefied gas—astronautics (Boltzmann equation)
• Plasma (Vlasov-Poisson, Landau, Fokker-Planck,…)
• Semiconductor device modeling
• Microfluidics
• Nuclear reactor (nentron transport)
• Astrophysics, medical imaging (radiative transfer)
• Multiphase flows
• Environmental science, energy, social science, 

neuronal networks, biology, …









Uncertainty in kinetic equations

• Kinetic equations are usually derived from N-body Newton’s 
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

• Collision kernels are often empirical 
• Initial and boundary data contain uncertainties due to 

measurement errors or modelling errors; geometry, forcing
• While UQ has been popular in solid mechanics, CFD, elliptic 

equations, etc.  there has been almost no effort for kinetic 
equations



Data for scattering cross-section



Uncertainty Quantification (UQ) for 
kinetic models

For kinetic models, the only thing certain is their 
uncertainty

• Quantify the propagation of the uncertainty
• efficient numerical methods to study the uncertainty
• understand its statistical moments 
• sensitivity  analysis (identify sensitive/insensitive parameters), 

long-time behavior of the uncertainty
• Control of the uncertainty
• dimensional reduction of high dimensional uncertainty
• …



Polynomial Chaos (PC)  approximation

• The PC or generalized PC (gPC)  approach first introduced by 
Wiener,  followed by Cameron-Martin,  and generalized by 
Ghanem and Spanos, Xiu and Karniadakis etc.  has been 
shown to be very efficient in many UQ applications when the 
solution has enough regularity in the random variable

• Let z be a random variable with pdf 
• Let              be the orthonormal polynomials of degree m 

corresponding to the weight 



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)





Accuracy and efficiency

• We will consider the gPC-stochastic Galerkin (gPC-
SG) method

• Under suitable regularity assumptions this method 
has a spectral accuracy 

• Much more efficient than Monte-Carlo samplings 
(halfth-order)

• Our regularity/sensitivity analysis is also important 
for stochastic collocation and other methods 



Nonlinear collisional  kinetic equations 
(Liu Liu-J)

 One can extend hypocoercivity theory developed 
by  Herau, Nier，Desvillettes, Villani, Guo, Mouhut,
Briant, etc. in velocity space for deterministic problems  to 
study the following properties in random space:

regularity,  sensitivity in random parameter, long-time 
behavior (exponential decay to global equilibrium, spectral 
convergence and exponential decay of numerical error for 
gPC-SG 

 for linear kinetic equation with uncertainty: Jin-JG Liu-Ma; 
Q. Li-L. Wang



The Boltzmann equation with initial uncertainty

perturbative setting
(avoid compressible Euler limit, thus shocks):

Global Maxwellian
Euler (acoustic scaling)

(incompressible) Navier-Stokes scaling

Why it works:  hypocoercivity decay of the linear part dominates the 
bounded (weaker) nonlinear part



Hypocoercivity for linearized 
Boltzmann operator



Boundedness of the nonlinear term



Convergence to global equilibrium
(random initial data)



Random collision kernel

• Need to use a weighted Sobolev norm in random 
space as in Jin-Ma-J.G. Liu

• Similar decay rates can be obtained



gPC-SG approximation

• Perturbative setting



• Assumptions:     z  bounded

(following R. Shu-Jin)



Regularity and exponential decay



gPC-SG error



A general framework

• This framework works for general linear and 
nonlinear collisional kinetic equations

• Linear and nonlinear Boltzmann, Landau, 
relaxation-type quantum Boltzmann, etc. 



Vlasov-Poisson-Fokker-Planck system
(J., & Y. Zhu)



Asymptotic regimes

• High field regime: 

• Parabolic regime:



Norms and energies



hypocoercivity

• Linearized Fokker-Planck operator

• Duan-Fornaiser-Toscani ‘10





Previous energy estimates



Our new estimates



Long time behavior (sensitivity/regularity)



UQ for many different kinetic equations

• Stochastic Asymptotic-Preserving:  （Jin-Xiu-Zhu ‘16)
• Boltzmann: a fast algorithm for collision operator     (J. Hu-Jin, JCP ‘16), 

sparse grid for high dimensional random space (J. Hu-Jin-R. Shu  ‘16):
• Landau equation (J. Hu-Jin-R. Shu, ‘16)
• Landau damping (regularity of Landau damping solution,  R. Shu-Jin)
• Best N+approximation & greedy algorithm for high dimensional random 

space (Jin-Zhu-Zuazua, on-going)



conclusion
• Hypocoercivity based regularity and sensitivity analysis can be done for 

general linear and nonlinear collision kinetic equations and VPFP system, 
which imply (uniform) spectral convergence and exponential time decay of 
error of gPC methods

• Kinetic equations have the good regularity  in the random space, even for 
the nonlinear  kinetic equation: good problem for UQ!

• Many kinetic ideas useful for UQ problems: mean-field approximations; 
moment closure; etc.    （stochastic  Asymptotic-Preserving is one 
example）

• Many open questions , very few existing works
• Kinetic equations are good problems for UQ;    **     UQ  +  Multiscale   **
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