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Uncertainty Quantification for Kinetic Equations
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Where do kinetic equations sit in physics

Time |
1s 4 Continuum Theory
(Navier-Stokes)
10-6 ¢ | Kinetic Theory
(Boltzmann)
10-10g | Molecular Dynamics
(Newton's Equation)
10-155 | Quantum Mechanics
(Schrodinger)
i i i i i >
1A° 1nm lpym 1m Space

Figure 1. Different laws of physics are required to describe
properties and processes of fluids at different scales.

* E & Engquist, AMS Notice (2003)



Kinetic equations with applications

Rarefied gas—astronautics (Boltzmann equation)

Plasma (Vlasov-Poisson, Landau, Fokker-Planck,...)
Semiconductor device modeling

Microfluidics

Nuclear reactor (nentron transport)

Astrophysics, medical imaging (radiative transfer)

Multiphase flows

Environmental science, energy, social science,
neuronal networks, biology, ...



Challenges in kinetic computation

* High dimension (phase space, 6d for
Boltzmann)

* Multiple scales

* uncertainty



The Boltzmann equation

df 1
5p TV VU = ZQ(F . F)(v). xcQcCRY veR?

e f(t,x,v) is the phase space distribution function of time t,
position x, and velocity v

@ c is the Knudsen number, ratio of the mean free path and the
characteristic length scale: ¢ ~ O(1) kinetic regime; ¢ < O(1) fluid
regime

e Q(f.f) is the collision operator, a quadratic integral operator
modeling the interaction of particles



Collision operator
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(v.v.) and (v'.v)) are the velocity pairs

before and after collision: N
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Variable hard sphere (VHS) model
B=>byv—v.]" —d<A<1

A = 1: hard sphere molecule
A = 0: Maxwell molecule
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Uncertainty in kinetic equations

Kinetic equations are usually derived from N-body Newton’s
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

Collision kernels are often empirical

Initial and boundary data contain uncertainties due to
measurement errors or modelling errors; geometry, forcing

While UQ has been popular in solid mechanics, CFD, elliptic
equations, etc. there has been almost no effort for kinetic
equations



Data for scattering cross-section
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Figure 2: Example of uncertainty associated with a nuclear cross-section (from (Chad-
wick et al., 2006)). Figure contains values corresponding to several data libraries and

measurements.



Uncertainty Quantification (UQ) for
kinetic models

For kinetic models, the only thing certain is their

uncertainty
e Quantify the propagation of the uncertainty
e efficient numerical methods to study the uncertainty
e understand its statistical moments

e sensitivity analysis (identify sensitive/insensitive parameters),
long-time behavior of the uncertainty

e Control of the uncertainty
 dimensional reduction of high dimensional uncertainty



Polynomial Chaos (PC) approximation

e The PCor generalized PC (gPC) approach first introduced by
Wiener, followed by Cameron-Martin, and generalized by
Ghanem and Spanos, Xiu and Karniadakis etc. has been
shown to be very efficient in many UQ applications when the
solution has enough regularity in the random variable

e Letzbearandom variable with pdf .D( ] > ()

* Let ®,,(2) bethe orthonormal polynomials of degree m
corresponding to the weight p(z) > 0

f‘l"i{:)‘l’j[:j'ﬂ{:) dz = d;5



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)

Random variables ¢ | Wiener-Askey chaos {®(()} Support
Continuous Gaussian Hermite-Chaos (—oc, o0)
Gamma Laguerre-Chaos 10, )
Beta Jacobi-Chaos a, b]
Uniform Legendre-Chaos a, b]
Discrete Poisson Charlier-Chaos {0.1,2,...}
Binomial Krawtchouk-Chaos {0,1,..., N}
Negative Binomial Meixner-Chaos {0,1,2,...}
Hypergeometric Hahn-Chaos {0,1,..., N}
TABLE 4.1

The correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N = 0 is a finite integer).



Generalized polynomial chaos

stochastic Galerkin (gPC-sG) methods

Take an orthonormal polynomial basis {®;(z)} in the
random space

Expand functions into Fourier series and truncate:

1) =S fi05(2) 2 3 Fi05(2) = £5(2).

§=0 §=0

Substitute into system, Galerkin projection. Then
one gets a deterministic system of the gPC



Accuracy and efficiency

We will consider the gPC-stochastic Galerkin (gPC-
SG) method

Under suitable regularity assumptions this method
has a spectral accuracy

Much more efficient than Monte-Carlo samplings
(halfth-order)

Our regularity/sensitivity analysis is also important
for stochastic collocation and other methods



Nonlinear collisional kinetic equations
(Liu Liu-J)

® One can extend hypocoercivity theory developed

by Herau, Nier, Desvillettes, Villani, Guo, Mouhut,

Briant, etc. in velocity space for deterministic problems to
study the following properties in random space:

regularity, sensitivity in random parameter, long-time
behavior (exponential decay to global equilibrium, spectral
convergence and exponential decay of numerical error for
gPC-SG

® for linear kinetic equation with uncertainty: Jin-JG Liu-Ma;
Q. Li-L. Wang



"he Boltzmann equation with initial uncertainty
(1 _ 1

Of + v -Vaof = 572200,
| f(0, 0, 2) = fin(a, 0, 2). reQcT veRY,zel. Cc R
perturbative setting f=M-+eNMh

(avoid compressible Euler limit, thus shocks):

_lv?
Global Maxwellian M = e 2 M =+vVvM
Euler (acoustic scaling) ’

. 1

Oth +v-Vzh=—-L(h)+ F(h,h)
€

(incompressible) Navier-Stokes scaling

1 1 1
Oih +=v-Veh = ZL(h) + ~F(h, h)
€ € €

Why it works: hypocoercivity decay of the linear part dominates the
bounded (weaker) nonlinear part



Hypocoercivity for linearized
Boltzmann operator

(h. £(R))1z < ~X|[h*]|a;

ht =h—TI.(h)

% &

[Ts(h) is the orthogonal projection in L? on N(L)
17lla, = [[P(1+ [v])772]| g2

- {la == 11T Ha, [lz2.



Boundedness of the nonlinear term

("N F(h,h), fr2 | <

Gowa (W) [|fllas 15 #0,
GE™(h, ) || f]la,  if =0

there exists a z-independent C'x > 0 such that
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Convergence to global equilibrium
(random initial data)

Assume Hh@-ﬂ_HHi:;L? <

(i) Under the incompressible Navier-Stokes scaling,

1illbzppe < Crem™ . |lhllmg oy < Cre™™".
(ii) Under the acoustic scaling,
||'I?-||H;2';_’;L_e;0 < Cre et \h||ms 1 < Cp o €Tt

where Cr, Ts are positive constants independent of €.

s s = [ Wbl =(:)



Random collision kernel

B(|v — vi|,cos6, 2) = ¢(|v — vy|) b(cos b, z), o(&) = Cy &7, with v € [0, 1],

Vn e [—1,1], b(n, 2)| < Cy, |9pb(n, 2)| < Cp, and |05b(n, 2)| < C5, VO < k < r.

* Need to use a weighted Sobolev norm in random
space as in Jin-Ma-J.G. Liu

r
||9HL§'{L" = Z C!m::-“—l—l “ﬂ)ﬂlyl‘Lgt
m=0

* Similar decay rates can be obtained



gPC -SG approximation

f(t,x, v, Z fr(tiz,v)ib(z) = rK (f.ﬂ{.‘.‘t’.,-’.;).

W(t, v, thfll?k)—hﬁil)

k|=1
e Perturbative setting fo = M+ € Mhy
[, 1 1 Ky 1 K K
Othx + —v - Vyhe = S Ly (h™) + —F(h™, 07 ),
€ € €
h (0,2, v) = hp(z,v). v e QcTe veRY,

\



e Assumptions: z bounded
10.b] < O(e)

(following R. Shu-Jin) || L < CKP,

Let ¢ > p+ 2., define the enerqgy EX by

EX(t) = Z HA%kHH

YV k.



Regularity and exponential decay

(i) Under the incompressible Navier-Stokes scaling,

EE(t)<pe ™ ”h-'KHH;UL? <pe T

(it) Under the acoustic scaling,

EE () <npe €, HhKHH;,va <pe €Tt



gPC-SG error

(i) Under the incompressible Navier-Stokes scaling,

L — At
€
Il 22 < Co s
(i11) Under the acoustic scaling,
E—E)\t
|"I?'E‘|H§’I,Lg < Ce I

with the constants Ce. A > 0 independent of X and €.




A general framework

e This framework works for general linear and
nonlinear collisional kinetic equations

 Linear and nonlinear Boltzmann, Landau,
relaxation-type quantum Boltzmann, etc.



r
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Vlasov-Poisson-Fokker-Planck system
(J., &Y. Zhu)

atf"‘%V'fo_%Vx@'va:éFff
—Nxod=p—1, t>0, xe€QcRY, veR!

Fr=v-(mv (< VI = : e~
"7 ( <ﬁ)) T oy

f0,x,v.z) = fP(x.v.z). xeQ veR", zel,.




Asymptotic regimes

* High field regime: 0 =1

dep+ V- (pVxo) = 0.
—Axdo=p—1,

e Parabolic regime: 0 =€

(

Oep —V - (Vxp — pVxo) =0,
— DNy 0= p—1.

\



Norms and energies

dp =dp(x,v,z) = n(z)dxdvdz.

(f.g):// /fgd.y.(\x.v.z). or, (p.j)://pjdp.(x.z). with norm Hngz(f.f){
QJrN J1, QJI,

f—»M / /
h = . O = hv/ M dv, u = h vv M dv.
v M R JR

[Iih=o0ovM, Iloh=uvvM. IIh=1IIih+ Il5h.
y m - 2
”inI“ = -0 |f)§:fH



hypocoercivity

e Linearized Fokker-Planck operator

Eh_ﬁ]-' (M+ \/ﬁh)_ \/ﬂdl’ (Muv( W))
e Duan-Fornaiser-Toscani ‘10

(a) —(Lh,h) = —(L(1 =T0)h, (1 = TDR) + ||u?;

(b) —(L(1 =D, (1 = k) = [|9,(1 = IA|* + & [[o(1 = A = /(1 = A|*;

(¢c) —(L(1—T)h, (1 —T0)A) > ||(1 —ID)A|]*;

(d) There exists a constant \g > 0, such that the following hypocoercivity holds,
—(Ch, k) 2o ||(1 = TDA|3 + [[u]l*,

and the largest \g = % m one dimension.



e Energy terms:
: 2 ; 2 - a2 A2 |12

_ E‘}T — Hh'HHm + Hf):ch-HHm—l ’ Eé? — Hdi-‘@HHm + ||as,2"@||Hm—1;

e Dissipation terms:

— D" = ||(1 = Al fm + (1 = D)D) Fpmer, D =EI,

2 D 2 a2
= D' = |lullygm + 1020l fm— . DG = llo|lggm 4+ 1020 | gm— -



Previous energy estimates

Without the multiple scales and randomness, (Hwang, Jang, 2013) gives the energy estimates,
%@Em (Dm Dg}) + D-m Dm < \ /Em Dm DE’& + D-gz. + D:?) (3.9

where £ ~ [[1] g + [Vl e D = [|(1 = DRI, D = flal|? for a = 0, u, 6.
However, when small parameters are involved,

‘ 1 ~
6(D7TI+DEI) JFngl _Dm S E??l(DT?1+Dn?) JF EmDm E;TQLDZ;I

So the requirement for initial data to obtain the uniform regularity of £™ is

L am
5()ng§

- High-Field regime,
m( ) ~ Em( )) + —ET(0) < Ofe)

€2
- Parabolic regime,
~ I .
E(0) ~ EJ'(0) + 5E(0) < O(1)



Our new estimates

- High-Field regime

1
_af 7 +=(Dj +Dm)+ Lpm —Dm

N\/_ E;?(D Dm \/_ / DTTL f Dm D?’??)_}_% E;ZRDgz

1
ET(D + D) + =\ EBDI + —=\ EB D,
\f ult €€

= E3(0) ~ E] ()+ 2Eff?()<0()

- Parabolic regime,

1. - | 1 .1
—d E?_n, (D?71+D{IL) _Dgl+_D£§2

Em D Dm \/_ Em Dm 1 E@( D-m Dm + . Em Dm
€ \/ : \/

1 1 A

Em(D 4+ D)+ —/ EMD, + —1/ EmD™

E\/_ ( )+\/— € Cf—i\/g € @

= EM0) ~ EI0) + —EZ;‘(O) <O(-)
€ +

€



Long time behavior (sensitivity/regularity)

Theorem 4.1. Consider the VPFP system with multiple scales and uncertainty, for the high field regime

(0=1)if
Ej'(0) + = E””( ) <0 (4.1)
then,
B (t) + —Em( ) < Cge™ &7 (Em( )) + éE;{‘(O)) : (4.2)
For the parabolic regime (0 = ¢), if
E7(0) + 2EJ0) < % “43)
then,
Ey(t) + Em( ) < C’Jre*?f (Em( )) + %Eg%D)) : (4.4)

Here Cy, Cy, C3, Cy are both constants independent of €, and, E}”‘ = ”f”?L_E,I(H;“)+ ||03¢f||%%x(H§n,1),for f=h

or O, o0.



UQ for many different kinetic equations

Stochastic Asymptotic-Preserving: (Jin-Xiu-Zhu ‘16)

Boltzmann: a fast algorithm for collision operator (J. Hu-Jin, JCP ‘16),
sparse grid for high dimensional random space (J. Hu-Jin-R. Shu ‘16):
Landau equation (J. Hu-Jin-R. Shu, ‘16)

Landau damping (regularity of Landau damping solution, R. Shu-Jin)

Best N+approximation & greedy algorithm for high dimensional random
space (Jin-Zhu-Zuazua, on-going)



conclusion

Hypocoercivity based regularity and sensitivity analysis can be done for
general linear and nonlinear collision kinetic equations and VPFP system,
which imply (uniform) spectral convergence and exponential time decay of
error of gPC methods

Kinetic equations have the good regularity in the random space, even for
the nonlinear kinetic equation: good problem for UQ!

Many kinetic ideas useful for UQ problems: mean-field approximations;
moment closure; etc.  (stochastic Asymptotic-Preserving is one
example)

Many open questions , very few existing works
Kinetic equations are good problems for UQ; ** UQ + Multiscale **
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