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Introduction: the principle of conservation of energy
for classical solutions

Let us first focus our attention on the incompressible Euler system

∂tu + div(u ⊗ u) +∇p = 0,

div u = 0,

If u is a classical solution, then multiplying the balance equation by
u we obtain

1

2
∂t |u|2 +

1

2
u · ∇|u|2 + u · ∇p = 0.

Integrating the last equality over the space domain Ω yields

d

dt

∫
Ω

1

2
|u(x , t)|2 dx = 0.

Consequently, integrating over time in (0, t), gives∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)|2 dx .
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Weak solutions

However, if u is a weak solution, then∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)|2 dx .

might not hold. Technically, the problem is that u might not be
regular enough to justify integration by parts in the above
derivation.
Motivated by the laws of turbulence Onsager postulated that there
is a critical regularity for a weak solution to be a conservative one:

Conjecture, 1949

Let u be a weak solution of incompressible Euler system

If u ∈ Cα with α > 1
3 , then the energy is conserved.

For any α < 1
3 there exists a weak solution u ∈ Cα which

does not conserve the energy.
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Onsager conjecture for incompressible Euler system

Weak solutions of the incompressible Euler equations which do not
conserve energy were constructed:

Scheffer ’93, Shnirelman ’97 constructed examples of weak
solutions in L2(R2 × R) compactly supported in space and
time

De Lellis and Székelyhidi 2010 showed how to construct weak
solutions for given energy profile
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Still incompressible case

Significant progress has recently been made in constructing
energy-dissipating solutions slightly below the Onsager
regularity , see e.g.:

T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi,
Anomalous dissipation for 1/5-Hölder Euler flows. Ann. of
Math. (2), 2015
T. Buckmaster, C. De Lellis, and L. Székelyhidi, Dissipative
Euler flows with Onsager-critical spatial regularity. Comm.
Pure and Appl. Math., 2015.

And the story is closed by the results:

Philip Isett, A Proof of Onsager’s Conjecture,
arXiv:1608.08301
Tristan Buckmaster, Camillo De Lellis, László Székelyhidi
Jr., Vlad Vicol, Onsager’s conjecture for admissible weak
solutions, arXiv:1701.08678

Agnieszka Świerczewska Energy/entropy conservation



Still incompressible case

Onsager conjecture:

If weak solution v has C 0,α (for α > 1
3 ) regularity then it conserves

energy. In the opposite case it may not conserve energy.

The first part of this assertion was proved in

G. L. Eyink. Energy dissipation without viscosity in ideal
hydrodynamics. I. Fourier analysis and local energy transfer.
Phys. D, 1994
P. Constantin, W. E, and E. S. Titi. Onsager’s conjecture on
the energy conservation for solutions of Euler’s equation.
Comm. Math. Phys., 1994
A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy.
Energy conservation and Onsager’s conjecture for the Euler
equations. Nonlinearity, 2008
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Besov spaces

The elements of Besov space Bα,∞p (Ω), where Ω = (0,T )× Td or
Ω = Td are functions w for which the norm

‖w‖Bα,∞p (Ω) := ‖w‖Lp(Ω) + sup
ξ∈Ω

‖w(·+ ξ)− w‖Lp(Ω∩(Ω−ξ))

|ξ|α

is finite (here Ω− ξ = {x − ξ : x ∈ Ω}).
It is then easy to check that the definition of the Besov spaces
implies

‖w ε − w‖Lp(Ω) ≤ Cεα‖w‖Bα,∞p (Ω)

and
‖∇w ε‖Lp(Ω) ≤ Cεα−1‖w‖Bα,∞p (Ω).
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Idea of the proof: P. Constantin, W. E, and E. S.
Titi. Onsager’s conjecture on the energy
conservation for solutions of Euler’s equation.
Comm. Math. Phys., 1994

take as the test function doubly mollified solution (v ε)ε

problem: estimate term
∫
Td Tr(v ⊗ v)ε · ∇v εdx

use the identity:
(v ⊗ v)ε = v ε ⊗ v ε + rε(v , v)− (v − v ε)⊗ (v − v ε) where
‖rε(v , v)‖L3/2 ≤ Cε2α‖v‖2

Bα,∞p
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Onsager’s conjecture for compressible Euler system
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Compressible Euler system

We consider now the isentropic Euler equations,

∂t(ρu) + div(ρu ⊗ u) +∇p(ρ) = 0,

∂tρ+ div(ρu) = 0.
(1)

We will use the notation for the so-called pressure potential
defined as

P(ρ) = ρ

∫ ρ

1

p(r)

r2
dr .
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Theorem (Feireisl, Gwiazda, Ś.-G., Wiedemann, ARMA 2017)

Let %, u be a solution of (1) in the sense of distributions. Assume

u ∈ Bα,∞3 ((0,T )×Td), %, %u ∈ Bβ,∞3 ((0,T )×Td), 0 ≤ % ≤ % ≤ %

for some constants %, %, and 0 ≤ α, β ≤ 1 such that

β > max

{
1− 2α;

1− α
2

}
. (2)

Assume further that p ∈ C 2[%, %], and, in addition

p′(0) = 0 as soon as % = 0.

Then the energy is locally conserved in the sense of distributions
on (0,T )× Ω, i.e.

∂t

(
1

2
%|u|2 + P(%)

)
+ div

[(
1

2
%|u|2 + p(%) + P(%)

)
u

]
= 0.
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Sharpness of assumptions

Shocks provide examples that show that our assumptions are
sharp:

A shock solution dissipates energy, but ρ and u are in

BV ∩ L∞, which embeds into B
1/3,∞
3 .

Hence such a solution satisfies (2) with equality but fails to
satisfy the conclusion.
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Time regularity

The hypothesis on temporal regularity can be relaxed provided

% > 0

Indeed, in this case (%u)ε

%ε can be used as a test function in the
momentum equation, cf.

T. M. Leslie and R. Shvydkoy. The energy balance relation for weak

solutions of the density-dependent Navier- Stokes equations. JDE, 2016.
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General conservation laws

It is easy to notice similarities in the statements regarding
sufficient regularity conditions guaranteeing energy/entropy
conservation for various systems of equations of fluid
dynamics.

Especially the differentiability exponent of 1
3 is a recurring

condition.

One might therefore anticipate that a general statement could
be made, which would cover all the above examples and more.
Indeed, consider a general conservation law of the form

divX (G (U(X ))) = 0.
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We consider the conservation law of the form

divX (G (U(X ))) = 0. (3)

Here U : X → O is an unknown and G : O →Mn×(d+1) is a
given, where X is an open subset of Rd+1 or T3 ×R and the set O
is open in Rn. It is easy to see that any classical solution to (3)
satisfies also

divX (Q(U(X ))) = 0, (4)

where Q : O → Rs×(d+1) is a smooth function such that

DUQj(U) = B(U)DUGj(U), for all U ∈ O, j ∈ 0, · · · , k, (5)

for some smooth function B : O →Ms×n. The function Q is
called a companion of G and equation (4) is called a companion
law of the conservation law (3).

Agnieszka Świerczewska Energy/entropy conservation



Weak solutions

In many applications some relevant companion laws are
conservation of energy or conservation of entropy. We consider the
standard definition of weak solutions to a conservation law.

Definition

We call the function U a weak solution to (3) if G (U) is locally
integrable in X and the equality∫

X
G (U(X )) : DXψ(X )dX = 0

holds for all smooth test functions ψ : X → Rn with a compact
support in X .
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem (Gwiazda, Michálek, Ś-G., to appear in ARMA)

Let U ∈ Bα3,∞(X ;O) be a weak solution of (3) with α > 1
3 .

Assume that G ∈ C 2(O;Mn×(k+1)) is endowed with a companion
law with flux Q ∈ C (O;M1×(k+1)) for which there exists
B ∈ C 1(O;M1×n) related through identity (5) and all the
following conditions hold

O is convex,

B ∈W 1,∞(O;M1×n),

|Q(V )| ≤ C (1 + |V |3) for all V ∈ O,
sup

i ,j∈1,...,d
‖∂Ui

∂Uj
G (U)‖C(O;Mn×(k+1)) < +∞.

Then U is a weak solution of the companion law (4) with the
flux Q.

P. Gwiazda, M. Michálek and A. Świerczewska-Gwiazda,

A note on weak solutions of conservation laws and energy/entropy

conservation. arxiv.1706.10154, 2017.
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The essential part of the proof of this Theorem pertains the
estimation of the nonlinear commutator

[G (U)]ε − G ([U]ε).

It is based on the following observation:

Lemma

Let O be a convex set, U ∈ L2
loc(X ,O), G ∈ C 2(O;Rn) and let

sup
i ,j∈1,...,d

‖∂Ui
∂Uj

G (U)‖L∞(O) < +∞.

Then there exists C > 0 depending only on η1, second derivatives
of G and k (dimension of O) such that

‖[G (U)]ε − G ([U]ε)‖Lq(K)

≤ C
(
‖[U]ε − U‖2

L2q(K) + sup
Y∈supp ηε

‖U(·)− U(· − Y )‖2
L2q(K)

)
for q ∈ [1,∞), where K ⊆ X satisfies K ε ⊆ X .
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Remarks

Due to the assumption on the convexity of O the previous
theorem could be straightforwardly deduced from the result
for compressible Euler system (Feireisl, Gwiazda, Ś.-G.,
Wiedemann ARMA 2017).

It is worth noting that the convexity of O might not be
natural for all applications (this is e.g. the case of the
polyconvex elasticity).
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A few words about polyconvex elasticity

Let us consider the evolution equations of nonlinear elasticity

∂tF = ∇xv

∂tv = divx (DFW (F ))
in X ,

for an unknown matrix field F : X →Mk×k , and an unknown
vector field v : X → Rk . Function W : U → R is given. For many
applications, U = Mk×k

+ where Mk×k
+ denotes the subset of Mk×k

containing only matrices having positive determinant. Let us point
out that Mk×k

+ is a non–convex connected set.
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To this purpose, we study the case of non–convex O

Having O non–convex, we face the problem that [U]ε does
not have to belong to O.

The convexity was crucial to conduct the Taylor expansion
argument in error estimates.

However, a suitable extension of functions G , B and Q does
not alter the previous proof significantly.
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem

Let U ∈ Bα,∞3 (X ;O) be a weak solution of (3) with α > 1
3 .

Assume that G ∈ C2(O;Mn×(d+1)) is endowed with a companion
law with flux Q ∈ C(O;Ms×(d+1)) for which there exists
B ∈ C1(O;Ms×n) related through identity (5) and the essential
image of U is compact in O.
Then U is a weak solution of the companion law (4) with the
flux Q.
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Remarks

the generality of the above theorem is achieved at the expense
of optimality of the assumptions.

However given additional information on the structure of the
problem at hand one might be able to relax some of these
assumptions.

the theorem provides for instance a conservation of energy
result for the system of polyconvex elastodynamics,
compressible hydrodynamics et al.

T. Dȩbiec, P. Gwiazda, and A. Świerczewska-Gwiazda,

A tribute to conservation of energy for weak solutions

arXiv:1707.09794, 2017.
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Result of Constantin, E, Titi

Theorem

Let u ∈ L3([0,T ],Bα,∞3 (T3)) ∩ C([0,T ], L2(T3)) be a weak
solution of the incompressible Euler system. If α > 1

3 , then∫
T3

1

2
|u(x , t)|2 dx =

∫
T3

1

2
|u(x , 0)|2 dx

for each t ∈ [0,T ].
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Additional structure of equations

The first lemma gives a sufficient condition to drop the Besov
regularity with respect to some variables. It is connected with the
columns of G .

Lemma

Let G = (G1, . . . ,Gs ,Gs+1, . . .Gk) where G1, . . . ,Gs are affine
vector–valued functions and X = Y × Z where Y ⊆ Rs and
Z ⊆ Rk+1−s . Then it is enough to assume that
U ∈ L3(Y;Bα3,∞(Z)) in the main theorem.

We can omit the Besov regularity w.r.t. some components of U.

Lemma

Assume that U = (V1,V2) where V1 = (U1, ...,Us) and
V2 = (Us+1, . . . ,Un). If B does not depend on V1 and
G = G (V1,V2) = G1(V1) + G2(V2) and G1 is linear then it is
enough to assume U1, . . . ,Us ∈ L3(X ) in the main theorem.
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Opposite direction of the Onsager’s hypothesis for
hyperbolic systems

It is well known that shock solutions dissipate energy.
the essence can be already seen even on a simple example of
the Burger’s equation

ut + (u2/2)x = 0.

Classical solutions also satisfy (u2/2)t + (u3/3)x = 0, which
can be considered as a companion law.
The shock solutions to the BE satisify Rankine-Hugoniot
condition s(ul − ur) = (u2

l − u2
r )/2, thus the speed of the

shock is s = (ul + ur )/2, where ul = limy→x(t)− u(y , t) and ur
is defined correspondingly.
Considering the second equation one gets
s = 2(u2

l + ulur + u2
r )/3(ul + ur ).

If we multiply BE with the function B then to provide RH
conditions to be satisfied for the companion law, we end up
with a trivial companion law, namely B ≡ const.
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Euler-Korteweg Equations

We now consider the isothermal Euler-Korteweg system in the form

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) = −ρ∇x

(
h′(ρ) +

κ′(ρ)

2
|∇xρ|2 − div(κ(ρ)∇xρ)

)
,

where ρ ≥ 0 is the scalar density of a fluid, u is its velocity,
h = h(ρ) is the energy density and κ(ρ) > 0 is the coefficient of
capillarity.
In conservative form

∂t(ρu) + div(ρu ⊗ u) = div S ,

∂tρ+ div(ρu) = 0,

where S is the Korteweg stress tensor

S = [−p(ρ)−ρκ
′(ρ) + κ(ρ)

2
|∇xρ|2+div(κ(ρ)ρ∇xρ)]I−κ(ρ)∇xρ⊗∇xρ

where the local pressure is defined as p(ρ) = ρh′(ρ)− h(ρ).
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Remarks

J.E.Dunn, J.Serrin.
On the thermomechanics of interstitial working. Arch. Rational Mech.
Analysis 88:95-133, 1985.

S.Benzoni-Gavage, R.Danchin, and S.Descombes.
On the well-posedness for the Euler- Korteweg model in several space
dimensions. Indiana Univ. Math. J., 56:1499â1579, 2007.

D.Donatelli, E.Feireisl, P.Marcati.
Well/ill posedness for the Euler-Korteweg-Poisson system and related
problems. Comm. Partial Diff. Eq. 40:1314–1335, 2015.

J.Giesselmann, A.Tzavaras.
Stability properties of the Euler-Korteweg system with nonmonotone
pressures. Applicable Analysis 96(9):1528–1546, 2017.

J.Gisselmann, C.Lattanzio, A.Tzavaras.

Relative energy for the Korteweg-theory and related Hamiltonian flows in

gas dynamics. Arch. Rational Mech. Analysis 223:1427–1484, 2017.

Agnieszka Świerczewska Energy/entropy conservation



Energy Equality

It can be shown that smooth solutions to the EK system satisfy
the balance of total (kinetic and internal) energy

∂t

(
1

2
ρ|u|2 + h(ρ) +

κ(ρ)

2
|∇xρ|2

)
+ div

(
ρu

(
1

2
|u|2 + h′(ρ) +

κ′(ρ)

2
|∇xρ|2 − div(κ(ρ)∇xρ)

)
−κ(ρ)∂tρ∇ρ) = 0.
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Energy Conservation

Theorem (T.Debiec, P.Gwiazda, A.Ś-G., A.Tzavaras,
arXiv:1801.00177 )

Let (ρ, u) be a solution to the EK system with constant capillarity
in the sense of distributions. Assume

u,∇xu ∈ Bα,∞3 ((0,T )×Td), ρ, ρu,∇xρ,∆ρ ∈ Bβ,∞3 ((0,T )×Td),

where 0 < α, β < 1 such that min(2α + β, α + 2β) > 1.
Then the energy is locally conserved, i.e.

∂t(
1

2
ρ|u|2+h(ρ) +

κ

2
|∇xρ|2)

+ div(
1

2
ρu|u|2 + ρ2u − κρu∆ρ− κ∂tρ∇ρ) = 0

in the sense of distributions on (0,T )× Td .
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Thank you for your attention
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