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Abstract

A model Boltzmann equation (see formulas (1.1.6) — (1.1.9) below)
without Grad’s angular cutoff assumption is considered. One proves

1. the instantaneous smoothing in both position and velocity vari-
ables by the evolution semigroup associated to the Cauchy prob-
lem for this model;

2. the derivation of the analogue of the Landau-Fokker-Planck equa-
tion in the limit when grazing collisions prevail.

1 Introduction and Main Result.

1.1 Introduction

Let us first recall the Boltzmann equation of rarefied gases (see [Ce] for

example),

Of+v-Vof =Qs(f). (1.1.1)

In this equation, the unknown f = f(¢, x,v) is the density of particles which
at time ¢ > 0 and position 2 € R® have velocity v € R?, and Qp is a

TAMS classification: 45K05, 76P05



quadratic operator acting only on the v-dependence of f which takes into
account only the binary collisions in the gas. It reads

Qe(f)(v) =

= [ L e @ e e @ (o= )e) - 1) S}
X B(|v — v, | 7= - w]) dwdv,, (1.1.2)

fo—va]

where B is a cross section depending on the type of interactions between the
particles of the gas.

In the case where interparticle forces are proportional to r=* (where r is
the distance between the two particles under consideration) one has

Bla.y) = |2|1 B,(y). (1.1.3)
and
_s—I—l
65(y) ~y—0 |y| 5=l (1.1.4)

so that Qp is defined only as a singular integral operator.

The singularity of 3, together with the dissipative character of Q5 make
it plausible that this operator behaves as some nonlinear diffusion operator,
i.e. a nonlinear analogue (of some fractional power) of the Laplacian A acting
on the velocity space.

On the contrary, when the singularity in s is removed, that is, when
Grad’s “angular cutoff assumption” is made (cf. [Gr]), (in other words,
when B € L},.(R?x 5%)), the collision integral behaves roughly as a bounded
operator on functions of the velocity variable.

This fundamental difference can be seen on the evolution semigroup asso-
ciated to the Cauchy problem for the space homogeneous Boltzmann equa-
tion, that is

:f = Qg(f)- (1.1.5)

When [, is of the form (1.1.4), one expects that the associated semigroup
should be a smoothing operator for any positive value of the time variable.
This has been established on various models or particular cases: see [De 1],
[De 3], [De 4], [Pr], for the 2D Boltzmann equation, radially symmetric or
not.



On the contrary, in the cutoff case, it is known (see [L 1], [We], [B, De])
that this semigroup does not regularize the initial data for any positive value
of the time variable.

It is therefore expected that (when [, has the form (1.1.4)), the space
inhomogeneous Boltzmann operator Qp — v - V, should be the nonlinear
analogue of a hypoelliptic operator, by analogy with the linear Fokker-Planck
operator A, — v -V, (see for example [H]). An indication of this could be
that the evolution semigroup of the Boltzmann equation regularizes the initial
data in both the position and velocity variable. This is a widely open question
at the moment, even for the most elementary traditional simplified models of
the Boltzmann equation. This is due to the side-effects of many additional
difficulties (among which the absence of maximum principle and the effect of
large velocities seem to be the most important).

This paper is aimed at introducing the simplest possible nonlinear model
of (inhomogeneous) Boltzmann type equation (with a singularity as in (1.1.4)),
and at trying to prove in this context the expected smoothing properties.

This model is somehow a reduction of Kac’s collision integral [K] to ve-
locities of norm 1; it also is reminiscent of a model proposed in [C, S]. It
reads

O f(t,x,v) + cos(2mv) 0. f (¢, x,v) = Qu(f)(t, x,v), (1.1.6)

where the unknown is the number density f = f(t,z,v). Here, t > 0 is
the time variable, the position variable is € T!, and v € T! parametrizes
the velocity cos(2mv) of the particles. The collision operator is given (at the
formal level) by

1/2

Qo)) = [

—-1/2

/T1 [p(v + 0) d(v" — 0) — d(v) S(v))] b(0) dOdv',  (1.1.7)

where b is an even function on [—1/2,1/2] with positive values.

As usual, the notation Qy(f(¢, 2, v)) designates the function of the variable
v defined by v — Qu(f(,x,-))(v), the variables ¢ and = being parameters in
the collision integral.

In order to mimick the behaviour of 3, in (1.1.4), we postulate that (for
all 0 € [—-1/2,1/2]),
Col0]7" <b(8) <Cy 10|77, (1.1.8)

where Cy,C; > 0 and 1 < v < 3. Hence the collision integral (1.1.7) is a
nonlinear singular integral.



Finally, we introduce the initial data
f0,2,v) = fo(z,v), (x,v)€ T xT'. (1.1.9)

In order to establish the smoothing effect of the evolution of (1.1.6) in
all variables t, x and v, one must depart from the method used on the space
homogeneous Boltzmann equation. Indeed, this method is based on applying
the Fourier transform in the velocity variable: see [Del, 3, 4], [Pr] and [De,
GJ. While the collision integral is well behaved under this transformation,
the advection operator is not.

The present paper proposes a different strategy, where steps 2 and 3 are
reminiscent of [L 2]:

1. use the entropy production to control (fractional) derivatives in the
velocity variable of the number density;

2. write (1.1.6) in the form
O f(t,x,v) + cos(2mv) D, f(t, x,v) = h(t, z,v), (1.1.10)

where h is a singular integral with respect to the velocity variable, and
apply the Velocity Averaging Method to obtain some smoothness on
quantities of the form

/1“1 flt,z,v") x(v,0") dv,

where y € C>(T! x T'); finally, keep track of the dependence on y of
the norm of this average (in some Besov or Sobolev space):

3. replacing x by suitable approximations of the identity in step 2, try to
get some regularity on f in all variables ¢, x and v, by using the results
in step 1.

There are obvious shortcomings in this method: it is not completely clear
how to iterate in order to obtain that f € C**(R% x T' x T') (whether this is
true is not yet known, albeit very likely). As for the analogy with the Boltz-
mann equation, note that two of the difficulties quoted above are not treated:
the set of velocities is bounded in our model, and, more important, the nat-
ural functional spaces for the true Boltzmann equation are L' or, at best,
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Llog L spaces and not L* as in our model). In either L' or Llog L spaces,
the gain of smoothness by Velocity Averaging is marginal, and the meaning
of the collision operator unclear. Thus, applying the method above to models
more realistics than (1.1.6-7), and in particular to the Boltzmann equation,
would certainly require new ideas and lead to tremendous technicalities.

Notice however that step 1 was recently achieved in the case of the Boltz-
mann equation (without angular cutoff) by P.-L. Lions: see [L3]. An opti-
mal regularity estimate, also based on the entropy production term, but best
suited to space homogeneous problems has also been obtained recently by
Villani [V 2].

Even on the simplified model (1.1.6) considered here, the regularity of the
solution obtained by our method is very likely not optimal. It could be that
some bootstrap procedure leads to better regularity; yet this would certainly
lead to rather technical developments.

There are equally obvious advantages: the method seems robust in the
sense that it rests on physically intrinsic arguments, like the entropy inequal-
ity. Even cavitation (i.e. the local vanishing of the density) does not wholly
ruin the argument in step 1, be it in the case of our model (1.1.6-7) or in
that of the Boltzmann equation without cutoff (see [L3]). Notice however
that cavitation can be dealt with very easily in the case of our model (1.1.6-
7) — although better regularity can be obtained in the case where cavitation
does no occur: see Proposition 4 below — while it gives rise to noticeable
difficulties on more physical models, as can be seen on the example of the
Landau-Fokker-Planck equation (see [L2]).

1.2 Main results

We begin with a precise functional definition of ).

Proposition 1 Let b satisfy (1.1.8). Then , the operator Q) defined by
(1.1.7) is a continuous (nonlinear) operator from C*(T') to C°(T"') which
extends as a continuous operator from L*'(T') to D'(T!).

As a corollary, it is now possible to define a solution f of (1.1.6) — (1.1.9)
in the sense of distributions, as soon as 0 < fo € L=¥(T' x T') and f >0 €
L¥(Ry x T x THNCYRy; D(TH x TY).

A slightly stronger notion of solutions will be needed in the sequel, that
of entropic solutions, defined below:



Definition 1 Let b satisfy (1.1.8) and fo > 0 € L=(T" x T'). An entropic
solution of (1.1.6) — (1.1.9) is a function f > 0 € L*(R% x T' x T') N
C(RT;D'(T' x TY)) satisfying (1.1.6) — (1.1.9) in the sense of distributions
as well as the following entropy relation: for all T > 0,

%//Tlel |f(T,:1;,v)|2d:1;dv
+%/0T /T ps(t,x) (//TT |f(t, 2,04 0) — f(t,2,0)]>b(0) d@dv) dzdt
< ;//Tlel | folz, v)|? dedo . (1.2.1)

The main result in this paper is the

Theorem A Let b satisfy (1.1.8) and fo > 0 € L=(T' x T'). The Cauchy
problem (1.1.6) — (1.1.9) admits an entropic solution f € Hfo(g)_E(Rj_ x T
T') for all ¢ > 0 with

___ -1l
s(y) = TCESICE ) (1.2.2)

If fo > Ro a.e. for some Ry > 0, the value in the right hand side of (1.2.2)
can be replaced by the better reqularity index

~v—1
BUREICEaT

For example, the typical case v = 2 leads to respectively f € HY?* and
f € H'Y'®: hence the smoothing effect is rather weak.

(1.2.3)

The problem (1.1.6) — (1.1.9) also admits an analogue of the Landau-
Fokker-Planck asymptotics (see [Li, Pi] as well as [De 2], [D, Lu], [V 1],
[Ar, Bu]) in the limit when grazing collisions prevail — in the present case,
when b is concentrated near § = 0.

In the case of the true Boltzmann equation, this limit has been proved only
in particular situations: the case of the linearized inhomogeneous equation is
considered in [De 2], while the spatially homogeneous equation is considered
in [Ar, Bu] and [V 1]. The good features of our model allow to state a
very general convergence theorem. Observe the specific scaling (1.2.4) below,
aimed at zooming on the grazing collisions in the model collision integral
(1.1.7): it is the analogue in the case of our model (1.1.6-7) of the scaling
appearing in [De 2] and [V 1].



Theorem B Let 0 < fo € L=(T' x T'), and f° be an entropic solution of
eq. (1.1.6) — (1.1.9) with b replaced by b. defined by

308 if |9 <,

66(0):{ 0 i o (1.2.4)

and where b satisfies (1.1.8). Then there exists a subsequence (still denoted
by f°) converging in L>°(R% x T x T') weak-* to a solution f of

Oif(t,z,v) + cos(2mv) 0, f(t,x,v) = Cp(t, )02 f(t,x,v) (1.2.5)

in the sense of distributions, where

1/2

C=[" 0w0ydo,  piltx) = /JeTl F(t,z,v) dv. (1.2.6)

—-1/2

The outline of the paper is as follows: section 2 reviews the precise defini-
tion of (), as a singular integral, thus leading in particular to proposition 1.
Different useful expressions of (), are also presented. Section 3 deals with
the entropy relation, thereby leading to the existence of entropic solutions,
and to step 1 in the method above. Section 4 establishes various results
from the theory of Velocity Averaging which are crucial in proving step 2.
The end of the proof of Theorem A (that is, step 3) belongs to section 5,
while the Landau-Fokker-Planck approximation (Theorem B) is established
in section 6.

2 The Collision Integral

To the function b satisfying (1.1.8) is associated a distribution of order 2
on T!, denoted by PV (b) (the principal value of b) and defined for all g €
C*([=1/2,1/2]) by

1/2

< PV(b);g >:/

e [9(9) +g(=0) = 2g(0)| b(O)dO . (2.1)

With this definition at hand, proposition 1 can be proved. In fact, we prove
the slightly more precise



Lemma and Definition 1 For all ¢ € C*(T') and all v € T, consider
the functions F,[¢] defined by

F[8](0,0") = d(v +0) (0" — ) — o(v) p(v) (2.2)
and G,[¢] defined by

Go[](0) = d(v 4 0) — (v). (2.3)
1. Then,
< PV(b) @ 1; F[¢] >= ps < PV (b); Gy[9] >, (2.4)
. po= [ do)do. (2.5)
2. The formula
Qo(d)(v) =< PV(b) @ L; F,[¢] >, YveT! (2.6)

defines a continuous operator @, : C*(T') — C°(T?).

3. The continuous operator QQy : C*(T') — C°T') eatends as a con-
tinuous operator @y : L'(T') — D'(T') defined as follows: for all
¢ € LYTY) and x € C*(T'),

< Q@) >=ps [ 0(0) < PV(RGL > do. (27)

T!

Proof. Let (X, ).>0 € R_Il\_I be an increasing sequence converging to +oo, and
let b,(0) = inf(b(9), X,.). Now, for all n € N, b, € L*([-1/2,1/2]) is even
(because b itself is even) and for all ¢ € L*(T') one has, by symmetrizing
the integrand of (1.1.7) in the variable 6:

1/2
Q=1 [ [} {ow+ 060 =0+ ot~ 06"+ 0)
—26(v) qb(v’)} b () dbdle . (2.8)
Also, one can apply Fubini’s theorem and integrate first in the variable v in

(2.8). This gives

@n()0) =00 [ [olo40) 4600 —0) 20| 00 (29)

—-1/2
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In other words, for all n € N, one has
Qb (9)(v) =< PV (by) @ L P [¢] >= py < PV(by); Gu[d] > . (2.10)
Now, for all g € C*([—1/2,1/2]),
9(0) + g(=0) — 29(0) = Ogno(|0]) ,

so that
0 |g(0) +g(—0) —29(0)| b(#) € L*(T!). (2.11)

Taking ¢ € C*(T'), one sees, by applying (2.11) to
g(0) = (v +0) p(v" —0), and to g(0) = (v +0),

that each side of (2.4) is well-defined. Letting n — 400 in (2.10) establishes,
by dominated convergence, equality (2.4) as well as the relation

Qu(@)(v) = lim @y, (9)(v) = ps < PV(b); Go[d] > . (2.12)

n——+oo

As for point 2, observe that the continuity is made obvious by formula (2.12).
Now for point 3: if x € C*(T!), one obviously has

/I‘l X(0) @, (9)(v) dv =

oo [ S0 [0 =0+ 1+ 0) = 2x] @) e, 23

Letting n — +o0 and applying the first equality in (2.12) results in (2.7). //

An immediate consequence of (2.7) is that the collision integral (1.2)
conserves the total number of particles:

Corollary 1 For all ¢ € L*(T'), one has
< Q(0);1 >=0. (2.14)

Proof. Apply (2.7) with x = 1. //

No other quantity (such as momentum, energy, etc..) is conserved in this
model. This will become clear in section 3, where we prove that Qy(¢) =0
only when ¢ is a constant.



Next we proceed to another way of defining ()5, as the second derivative
(in the velocity variable) of a nonsingular integral operator. The following
Proposition can be viewed as yet another definition of the collision integral
(1.1.7); we shall not use it specifically until section 6.

Notice that it is also possibe to write Boltzmann’s collision integral as a
divergence (with respect to the v variable); this idea can be found in §41 of
[Li, Pi] and is a possible starting point of the derivation of Landau’s collision
operator from Boltzmann’s collision integral. The computations in [Li, Pi]
have recently been put on more mathematical footing by Villani [V 2].

Proposition 2 For all r € Ry and z € T', consider the expression
Afry2) = L (r = J2l)y (2.15)

(where, for all z € T, |z| € [0,1/2] designates the geodesic distance to ().
Let b satisfy (1.1.8) and consider the function By : R — [0, +o00]defined by

By(z) = /_1/2 A(0],2)b(0) 6, W= e T (2.16)

1/2
Then,

1. for all z € T, one has
0 < By(2) < D1+ |2]"7?) (2.17)
for some D > 0 (depending only on v, Co, Cy),
2. for all $ € L*(T'), one has (compare with [Li, Pi])

Qo(0) = B25(0).  where  Sy(@)=psdx By (218)

Proof. One has A(|0],z) < 110]1.1<jg so that

1/2 1/2
[ by aqiol =y < [T o100 a0 < D+
— 0 -

1/2

(2.19)

EE=

This proves 1. Now, integrating by parts twice shows that, for all § €
[—1/2,1/2] and all y € C*(T'):

nO =

=0 (040 =2 ()] = =4 [ (1 (0) =T () ) () e
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—/ (10],v — w) 92 x(w) dw. (2.20)

Notice that, for all v € T! and all # € R, expressions like v — # are to be
understood as the image of v under the translation by —6 (which obviously
induces a map on T' viewed as R/Z). On the other hand, intervals like
[v — 0, v] are to be understood as arcs on the circle of length 1 identified to
T!.

Applying (2.10) and (2.20) shows that, for all n € N and all ¢ € L'(T'):

< Qb (); X >= po //Tlel ) By, (v — w) 32 x(w) dwdv

= 0o [ OEN(w) (B, * &)(w) du. (2:21)

Here, the symbol % denotes the convolution is the sense of T;.
Since 1 < < 3,

Co

—d . 2.22
1! dist (v, w)72 W Ao (2.22)

Next take the limit as n — +oco in (2.21): applying the dominated conver-
gence theorem with (2.17) and (2.22) leads to

< Qu(0)x >= ps [ OI(0) (Byx @)(v) do, (2:23)

which proves (2.18). //

3 The Entropy Relation

This section is devoted to an analogue of Boltzmann’s H-theorem for the

model (1.1.6) — (1.1.9).

The following simple lemma reflects once again the fact that the collision
cross section b is even:

Lemma and Definition 2 For all ¢ and ¢ € C*(T),

/T1 < PV(0); G [¢] > ¢(v)dv = //[_1/271/2]”1 G [61(0)G[0](0)b(0) dbdo .
(3.0)

11



This formula extends naturally the definition of the left hand side of (3.0)
to the case where ¢ and ¢ € C*(T') only. In particular @, extends as a
mapping from C(T") into distributions of order 1 on T' and verifies, for all

¢, e CHT):

< Qo >=—1p, [[ [6(0+0) =90l (0-+0)—(v)] b(0) dbdo
[~1/2,1/2]xT!
(3.1)
Specializing (3.1) to the case where ¢ = ¢ leads to the following extended
definition: for all € L*(T"), the notation ,0;1 < Qp(@); ¢ > designates the
following element of [0, +00]:

%//Tlel (v + 0) — d(v)]>b(0) dddv .

Proof. Formula (3.0) is recovered from (3.1) and (2.4-6) if ps > 0 everyhere,
which can be ensured by considering ¢ + C' in the place of ¢. It suffices to
prove (3.1) in the case where ¢ = ¢» € C?(T'), which corresponds to the
classical H Theorem. The general case follows by density and polarization.
Since b is even, for all ¢ € C*(T') and all n > 0, formula (2.9) shows that
1/2
Qu (D))= o [ [6(0-+0) = ()] bu(0) d0. (3:2)

Hence

/T1 d(v) Qp,(P)(v)dv = py /Tl /1/2 (v +8) — d(v)] d(v) b,(8) dfdv

1/2

= ps /T /1/2 (0 — 0)] &(v — 0) b,.(0) dbdlo

1/2

e [, /1/2 (v + 0)] b(v + 0) b (0) dbdv

1/2
1/2
_ _§p¢/Tl/l/2 S0+ 0) — H(0)]2ba(0) dbdv . (3.3)

Now, since ¢ € C*(T!),

[6(v +0) = &(v)|* = Opno(07)

12



so that
0 |d(v 4 0) — ¢(v)]*b(0) € L}(T?)

thanks to assumption (1.1.8) on b. By dominated convergence,

/Tl &(v) Qy(d)(v)dv = lim ; &(v) Qy, (&) (v) dv

n——+oo

_ 2p¢/Tl/”2 (v +0) — S(0)]? b(0) dbdo,

1/2
which proves (3.1). //

A well-known consequence of the H-theorem in the case of the classical
Boltzmann equation is that the only nonnegative integrable number densities
for which the collision integral vanishes are local Maxwellian distributions.
The analogous result for (1.1.6) — (1.1.9) is the following

Corollary 2 Let ¢ € L'(T") be such that Qy(¢) = 0. Then ¢ is equal to a

constant a.e..

Proof. If p; = 0, then ¢ = 0 a.e. and the theorem is proved. If py # 0,
pngb(qb) =0. Let Z € C§°(R) be a nonnegative even function supported in
[—1,1] and denote, for all € €]0,1/2],

g

kez © ¢

By (2.7), for all € €]0,1/2],
Pst Qu(d) % (o =0=p5" Qud* (). (3.4)
Since ¢ * (, € C*°(T'), (3.4) shows that for all € €]0,1/2],
(. = C,, where C., is a constant.

But
Co= [ oxcloydo= [ o(w)dv,

which shows that C, is in fact independent of ¢: hence, for all ¢ €]0,1/2],

13



where C' is a constant. As € — 0, the left side of (3.5) converges vaguely to
¢. Therefore ¢ = C as a measure on T!, that is to say a.e. //

Note that as announced in section 2, this proves that the only conserved
quantity is the mass.

We do not know whether all L> solutions of (1.1.6) — (1.1.9) in the
sense of distributions necessarily satisfy an entropy inequality. However, by
truncating the collision cross section b, we prove that there exist entropic
solutions to (1.1.6) — (1.1.9) for any bounded nonnegative initial data.

Proposition 3 Let 0 < fy € L=(T!' x T'), and b satisfy (1.1.8). Then,
there exists an entropic solution of (1.1.6) — (1.1.9) such that

0< f(t,z,v) <|follre, @a.e on Ry x Tt x T (3.6)

If moreover fo > Ry a.e. for some Ry > 0, then f(t,z,v) > Ry for a.e.
(t,7,v) € Ry x Tt x T

Proof. Consider first the model equation (1.1.6) with b replaced by its
truncation b, as in the proof of Lemma and definition 1. To begin with,
(2.9) holds for all ¢ € L'Y(T') (by the density of C*(T!) in L'(T')). This
can be recast as:
1/2
Q@) = po [ 04000~ hullmps i) (37)

for all ¢ € L*(T'). In addition, we have the

Lemma 1 Let 0 < fo € L= (T xT'). For alln € N, there exists a solution
frme L*RE x T x TN C(Ry; LY(T! x TY)) to the problem

(0" + cos(2mv) Du f*) (X, 2, 0) + [0l 1 p g (2, 2) (L, 2, 0)

1/2
= prnlty) [\ 70,0+ 0)bu(9) d6 (3.3)
~1/2
P(02,0) = folr,v), (20) €T x T (39)
It satisfies
0< f*(t,z,v) < | follpee, ae. on RL xT'x T (3.10)

Moreover, if fo > Ry a.e for some Ry > 0, then f*(t,-) > Ry a.e. for all
t>0.

14



The proof of Lemma 1 is classical and deferred until after that of Propo-
sition 3.

The standard Velocity Averaging lemmas (Cf. [DP, L] for example) to-
gether with estimates (2.17), (2.18) imply that the sequence f™ converges
(possibly after extraction of a subsequence) to f in L*(R% x T' x T')
weak * while ps converges to p; a.e..

Then, for all x € C*(R% x T' x T'), the quantity < PV(b,),G,(x) >
converges a.e. (in t,x,v) to < PV(b),G,(x) >, so that Q, (f") converges
to Qu(f) in the sense of distributions, and f is a solution in the sense of
distributions of (1.1.6).

By the uniform estimates in L>(R% x T' x T') on f", (3.6) and the last
affirmation of proposition 3 are clear.

It remains to prove the entropy condition (1.2.1). Let 0 < y € C5°(R)
and denote x.(t) = e *x(¢/¢). The solution f™ is extended to negative values
of t by the value 0 Multiplying (3.8) by (x.® (. @ (.) * f* (where (. is defined
in the proof of corollary 2), integrating in all variables and letting ¢ — 0
leads, for all 7" > 0, to

%//rlel |fn(T,:1:,v)|2d:1;dv
+%/OT /T pen(ts ) (//Tlel |f*(tx,0 4+ 0) = [ (2, 0)[* by (0) d@dv) dudl
< %//Tlel |f(T, 2, 0) | dedo
+§/OT/T1 pyelt, ) (//Tlel (04 0) — fo(t 2, 0) 2 ba(0) d@dv) dedt
= %//I‘lel | fo(z,v)|? dzdv , (3.11)

for all m < n & N according to the proof of Lemma 3.1. Since psn converges
a.e. towards ps, we get, by convexity and weak convergence, (the integer m
being fixed while n — +o00) that for all 7' > 0,

%//Tlel |f(T,:1;,v)|2d:1;dv

+§/OT/T1 ps(t, ) (//Tlel |f(t, 2,04 0) = f(t,2,0)]* b (0) d@dv) ddt
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< ;//Tlel | folz, 0) 2 ddo . (3.12)
Letting then m — 400 gives the entropy inequality (1.2.1). //

Proof of Lemma 1. The quickest route to this result is to generate for each
n € N a sequence (f”)nen by the following iteration procedure:

fo =0, (or fi=Ry if fo = Ry>0a.e.) (3.13)
and, for all m > 1:

OS2, 0) + cos(2mv) o [ (L2, 0) + pyn_ (@) (L, 2, v0)

1/2

= pyn_ (t,2) / n (e, v+ 0)b,(0)do; (3.14)
~1/2

Fa0w0) = fo(e0), () € T X T (3.15)

Now (3.14) can be solved explicitly and it is easy to show that (f),en
converges pointwise to a limit denoted by f". The convergence also holds
in L' (by dominated convergence). Taking the limit as m — +oo in (3.14)
— (3.15) leads to the announced result. An easy in duction argument shows
that, if fo > Rg a.e., then [ > Ry a.e. for all m >0.//

The entropy inequality (1.2.1) provides a regularity estimate in the v
variable for all entropic solutions to (1.1.6) — (1.1.9). The main difficulty is
to take into account cavitation, i.e. zones where the density might vanish. In
the case of our model (1.1.6-7), we know from Proposition 3 that cavitation
cannot occur unless it is already present in the initial data. This property is
not shared by the true Boltzmann equation, and [L3] finds a way around this
by proving Besov regularity in the v variable on /[ instead of f itself. In
the case of our model (1.1.6-7), cavitation is treated by the following simple
argument:

Proposition 4 Let 0 < f, € L=(T" x TY), b satisfy (1.1.8) and [ be an
entropic solution of (1.1.6) — (1.1.9). For all T > 0,¢ > 0, there exists a
constant C' (depending on T\ || fo||re, 7, Co, C1,€) such that

g 1/2 -1
L it +0) = (e ) 0175+ dodvdvat <
0 T! JT!

—-1/2

If moreover fo > Ry a.e for some Ry > 0, then

T 1/2
/ / / / |tz 0+ 0) — f(tz,0)? 0] dOdedodt < C,
0 T! JT! J-1/2

where C' depends on the previous parameters and Ry.
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Proof. The case when fy > Ry a.e. for some Ry > 0 is a simple consequence
of the entropy inequality (1.2.1). In the general case, one has to isolate the
points where cavitation can appear. Estimate (1.2.1) gives

1/2 2 g—1-T=L €
/ / / / Fltoe,o+0) — f(La,0)]?10]7 77 +3 dodedodt
T JT1

1/2

1/2
</ / (// at, e u?“’v”"‘@)—f(t,x,v)lzd:z;dt)
T 172 (tz)>l6] 2 T2

—1 ¢
107172 *3 dfdv

1/2
+/ / (// ol N {2|f(tal'7v-|-9)|2—|-2|f(t,:1;,v)|2}d:1;dt)
T /=12 N <l 2 b2

—1 ¢
1071772 *3 dfdv

1/2
</ / / / p(t, ) | f(t, 0+ 0) — f(t,e,0)2 0]~ dbdedvdt
T JT1

1/2

_1 €
+/ / / ||f||Loo1 v . Ap(toa) |07 T2 dodedt
T p(t,z)

<6 2 *21
1/2
< O ollogmoseny + 411117 [ 10174 o,

whence the desired result follows. //

Proposition 4 provides the regularity estimate in the v-variable which is
precisely step 1 in the method described in subsection 1.1.

4 Velocity Averaging.

In this section, we return to the classical estimates of the Velocity Averaging
method first introduced in [A], [G, P, S], [G, L, P, S]. The goal is to keep track
of the dependence of the estimates (in Sobolev spaces) for velocity averages
like

/1“1 ft,z,v") x(v,0") do' (4.0)

on the norms of derivatives of the smooth function y. This can be done with
the original methods of proof in the references quoted above.
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In order to deal with equations of the type (1.1.10) (specifically, to be
able to treat fractional derivatives in v in the right-hand side), we use the
method of [DP, L] and [G, Po], and adapt the computations to our case.

In the sequel, we say that f(z) << ¢(z) (when f,g are two real-valued
functions of z) if there exists some constant C' > 0 (independant of z) such
that f(z) < Cg(z).

Let us first establish the following technical result.

Lemma 2 For all v and y € R,

1.
Loy = [ Doryeoeroper do << (L lalP g7 (4)

dv
|z + y cos(2mv)|

2 2y—1/4
= << (L [+ )7
(4.2)

Joy = 1
z,y - |z+y cos(2mv)|>1

Proof. For 1, set w = |y|cos(2mv).

1—a dw ly] dw
_ 1 1
Liy = ;/ i<ty Sz 1|x|§|y|+1/

. |ly|2 — |w|? sup(ly|=2.~lv)) | /|y|2 — |w]|?

< 7 Lalshi+ /1 B
s sup(1-2/Jyl,~1) /T — A2
<< Ljpurn (L JyP) 7 << (L [ o+ Jyl) 712

As for 2, set A = cos(2mv):

<< jgjepypr inf(1, Jy|77?)

1 1 dA
Jpy = l/ — 1z —. 4.3

If |z| > 2|y|, YA € [-1,1], one has |z 4+ Ay| > $|z| and |z + Ay| > 1 implies
|| > 2. In which case, (4.3) shows that

1y dA . _
Tew < %/lwlh’bl/zﬁ << (L)™' << (L2 + 47!

< (1422 4¢3~ (4.4)
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[t remains to deal with the case when @ = —py with |p| < 2: one has

7 :L/l Lpoplzpl=t _dA
Tyl e =l VT2

and by symmetry, only the case of p > 0 and y > 0 will matter. Moreover,

L dA
Jl’,y S / 77
—14/1— A2
so that it suffices to prove that
oy << |yI7? for |yl > 2.

In order to establish this estimate, one distinguishes four different cases:
pel0,l -y, pell—y 1], pel,1+y '] and finally y € [l +y7',2].
The last three cases are quite easy to treat; to cut short, we only consider
the first. Using the inequalities 0 < p <1 — i and y > 2, one sees that

I < i/l dA
= y2 pty~—t ()\ — p)zvl -2
92 rp—yt
)
y: J- (p

dA N 4 =12 dA
1/2 — W1 =X ¥l V1= A2 '
The third integral in the right side of (4.5) being trivial, it remains to estimate

the first and the second. This is done by changing the variable A into u =
v 1 — X; thus, the second integral for example becomes

(4.5)

/p—y‘l d\ _ /\/3/2 2du
-1/2 (p—=A)2V1 = B Vity=T-p (1 = p —u?)?

< 1 du

\/3/2
= 2(1-p) /\/m (VI=p—u)?

Yy 1 142
< ———[1+,4/1+ )S 2y /Y.
2«/1—p( y(1—p) 2 UV

Then the contribution of the second term in the right hand side of (4.5) is
O(y~"/?); a similar computation shows that the first term is of exactly the

same order. //

We proceed next to stating the main result in this section; it is an am-
plification of the Velocity Averaging results of [DP, L] and of the Appendix
of [G, Po]. We first need the following
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Notation 1

1. For a €]0,2][, the following seminorm will be used in the sequel:

- (/T/ hw + 0) — h(w)[? 9]~ d@dw)l/z, (4.6)

1/2 12
e = ( sup [ Jh(w +0) — hw)? 071~ d@)

weT! —1/2

2. For all f € LY(T') and all ¢ € C(T!),

< o= [ T ow)do. (4.7

3. The notation f(T,f,v) designates the Fourier transform of f in the
variables t and x (v being a parameter).

Proposition 5 Let f € L*(RxT!'xT') and let g satisfy, for some o €]0,2]:

/RXTl(Hg(t,x, Ylaw)dtdz < +oo. (4.8)
Assume that
(8 + cos(2m0) B,) f(1, 2, v) =< PV(B); Gulg(t, z, )] > (4.9)
in the sense of distributions, for some 8 verifying
Co0™I7" < B(0) < CL o777,

for some Co,C7 >0, a €]0,2].
Then, for all € > 0, there exists C(¢€) such that, for all 6 € C*(T'), 7 € R
and € € Z:

| < f > (7—75)|2
<< OO [19]3 (7% + €777 [([la(7, &, Mlz) + 177, &) [Fan)

1—|—2(oz—|—e)
(7,6, ) |2,0)* (77 4 €2) 20Fate) (4.10)

+ ([16]lc.2.0)*(
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Proof. Let y € C*(R) be even and satisfy

0<x <1, Xpu=0, Xpaer=1, [X[= <3, (4.11)

0.3]
Writing (4.9) in the Fourier variables £ € Z and 7 € R, we get for all > 0,
i(7 4 cos(2mv) ) f(7,6,0) =< PV(B); Gulg(7, €,-)] >, (4.12)

so that, by formula (3.0) and some obvious density argument

<frore= [, [1 - (TR i opetors

/Tl /11//22 NO)G.

Therefore

| < f >¢ (T7 §)|2 S 2 quH%‘x’ /I‘l |f(T,§,U)|2dU /I‘l 1|T+Cos(27rv)§|§77 dv

Qb(U) Y (T+Cos7(727rv)£
(T + cos(2mv) £)

v =

)] B(0)dbdv .

+2 Cl ( Q(Tv 57 ')"270)2
2
y / /1/2 d(v+0)x (—T+cos(2;r(u+€))g) _ P(v) x (77%057(72%)5) dfdv
T Jo1/2| (T + cos(2m(v+ 8))€) i(1 4 cos(2mv) £) |61+
A (4.14)
< 2ol F(r B I ¢
2
1/ Y (T+Cos(27rv)£) d0dv
. ‘ 2 _ 2 7
P20 & Mol [, [, 16040 =80 ||
+2C1 (J|g(7, &, ) 2.0) || 9] 7
2
/ /1/2 T+COS(2;F(’U-|—€)) ) Y (T+Cos7(727rv)£) dOdv (4 15)
T Jo1/2 [i(T 4 cos(2m(v + 8))E)  i(T + cos(2mv) €) | |01 '
) ) 2
< 2l 176 Ty + 2 (1906 (6l 5 2
N 1
+2C1 (J|g(7, &, )ll2.0)* |00 ?7‘7 (4.16)
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where

1/2
B /Tl /1/2

CA«%@MU+®M)_S(T+w%%W§)2W%

U U |0]t+e
(4.17)
with the notation S(x) = y(x)/x for all @ € R. Then
< / /1/2 (7’ + cos(2m(v + 0)) f) g (T + cos(2mv) f) e
T J-1/2 n n
y 2#50/1 g T+ cos(2m(v +10)) €N . (o1 10))di “re 10dv (4.18)
sin(2m (v :
N Jo U ]+
. § c“"'5/1/2 [/ ( s (7’ + cos(2m(v + 0))§) ‘2
n —1/2 /T n
2
N ‘S (T + Cos(27rv)§)‘ )dv] df
U ]
oz—I—e 1/2 2
T+ cos(2m(v +10)) ¢ dlde df (4.19)
~1/2 /! n |6|t—<
1T 2 nas [T+ cos(2mu) €
< = dv. 4.2
_Axon AAW|+W|> p v (420)
Clearly,
, o\ (r)]P 2 27
[S(r) "+ 5°(r)|* < Xg) + |Xr(2r)| + i( 1) Loy - (4.21)
Using (4.21) in (4.20) leads to
5 a—te
T <O Jar e (4.22)
n n'n

Collecting estimates (4.16) and (4.22) leads to

< F >0 (1 OF < 20l 77,6, e T

J2

2

s

1
"2

+4Cy ( ,

97,6 ) 120)” (9]0 2.0)°

_7'
n

5|
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. 22 L |€
9(7—757 )HZOZ) quHL‘X’ 772 n

Now it suffices to appeal to Lemma 2,

a—te
+20(e) ( Js

(4.23)

2¢ .

s

3

<
2|

N

|<f>¢m®P<<¢Wﬁ+TWﬂﬂW%dﬁh&N@

ate
+%«gv@fmmfwwm%w%uxo%@%gkl<mnaomwww&4
(4.24)
Choosing
n = (6 + 72)70FeTa (4.25)
leads to

A

| < f 26 (RO << (€ 4+ 77) 23991 |1 (. &) 122

142(ate)
+ (197, & )l2.0)?| + (62 4 72) 2@+t ([|6]]2,0)* (

97,6 Mlooa)” - (4.26)

Remark 1 Clearly, Proposition 5 can be generalized to dimensions higher
than one, to spaces other than L* (Besov spaces for examples, by repeating
the same method on a dyadic decomposition) ete.. We have not sought the
maximum generality, but just the statement that fits the problem of interest
here.

5 Proof of Theorem A.

We begin with a Proposition which achieves what is prescribed in step 3 of
the method in section 1.

Proposition 6 Let f € L*(R x T' x T') be such that, for some § €]0,2]:

/R/Tl(Hf(t,x,-)]\275)2d:1;dt < 400 (5.1)

and there exists C > 0, a €]0,2[, By, B2 € R% and nonnegative functions hy,
hy € LYR?) such that, for all o € C1(TH),

| < f > (7—75)|2
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< C 101377+ E) P ha(7,6) + ([8llo02.0) (77 + E) Zha(7,€)] . (5:2)

Then, one has
/MW Liaggest (72 + €O 7257573 | (7, €, 0) P drdédv < +o0. (5.3)
Proof. One has:

Lo eora << [ | g s o)

- /Tl[f(nf,v) —f<r,f,v+w>]s<w>dw2

dv (5.4)
for all s € L'(T") such that s > 0 a.e. and [1: s(v)dv = 1. By assumption
(5.2)

2

dv

L g o do << (72 4+ €7 ha(r,©) [ llst = o)l do
F(E P ha(r6) [ (s = v)za)? do
s L6 = 6ot ] s(w) |

dv
< (TP )M (r, ) s H%oo (72 4+ )7 ha(7,€) (|I5]]002,0)°

/T/ — f(r, 6,0 + w)[? s(w) dwdv . (5.5)

Next we choose a particular type of function s. Specifically, we choose a
family (s,),>0 of functions in L'(T") such that s, > 0 a.e. and [ 5,(v)dv =
1 for all n > 0, verifying, in addition, the following estimates (as n — 0):

s,(0) << 071700 (5.6)
[spll7ee << 72 (5.7)

and
salloo2,0)® << Cle) =72 (5.8)

The construction of such a family (s,),>0 is postponed until after the proof
of Proposition 5.1. Then

o g o
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<< )T (&) + T T (4 )T hy (7€)
+ 1" (1 (7 6, ) 2.0)* (5.9)
When 7% + €2 > 1, optimizing in 7 leads to

/ |f(7—7§7v)|2d1j << (7—2 + 52)_inf(515+%752#2+2)
T!

% (In(7,€) + ha(7,6) + (1 (7€)l )?) (5.10)
The proof is complete modulo the construction of the family (s,),s0. //

Construction of the family (s,),s0-

We introduce the function

L) = (sup(oln)

for all v €] —1/2,1/2[, and n > 0 (small enough), and we extend it by
periodicity to get an element of L>(T"').
First, observe that

Itallzrery = (24 3)n~" + 0(1),

[0z (T1) = nto

Also, since

(Itnllco2,0)* = sup [Ly(v +0) — Ly (v)[* |01~ db
vET! J—1/2
o 2 —1—a
< sup t,(v+0) —t,(v)]*|0] do
vER J—0c0
+oo
< P a g ity +7) — t(y)|? |77 dr
yeR J/—oco
<< 77—2—2 5—0{ .
Defining
B 271 ) N
$0(V) = olf iy
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we get estimates (5.6) — (5.8). //

Proof of Theorem A: We finally apply the estimates above to entropic
solutions of eqs. (1.1.6) — (1.1.9).

Let 0 < fo € L>=(T' x T'), and b satisfy (1.1.8). Then, we know thanks
to proposition 3 that there exists an entropic solution f to (1.1.6) — (1.1.9).

Let g be defined by

t,x)f(t,x,v) if t>0,
e e A

Then, one can extend f on R x T' x T! in such a way that (4.9) holds.

By the inequality (1.2.1) and the L bound on f, (4.8) also holds with
a=v—1.

Applying Proposition 5, we see that the estimates of Proposition 6 hold
with

. 1 _ 142(v—1—¢)
P = 2 (14v+e) P2 = 2(14v+e)
a =+ — 1, and (by proposition 5), § = % —5(ord=y—-1if fo > Ry a.e.

for some Ry > 0).
This gives the following estimate (for all € > 0)

e ol S
) Lpesy (72 + €)20FD 0 | f(1,€,0)|? drddv < +o0.
RxT!xT! -

In addition, Proposition 4 shows that
Y

f € L*(Ry x T HT ~(T),

which establishes the first part of Theorem A.
The corresponding estimates if fy > Rg a.e. for some Ry > 0 are

=1
) Lo yersa(r + €) 7002 | f(7,€,0)|? drdédv < +oo
RxT!xT! -

and

J e LRy x TS H™H(TY),

and the second part of theorem A is proven. //
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6 The Landau-Fokker-Planck Approximation.

In this last section, we give a short proof of Theorem B.

Proof of Theorem B The L* estimate on f° shows that, up to extraction
of a subsequence, f° converges to f in L>(R% x T' x T') weak-*.
Using the following variant of formulation (2.18),

Oif(t, 2, v) 4 cos(2mv) 0, f* (1, 2, v) = p5(1, )

< ag{/_ll/; /_112(1 Jul) o (v + e ub) du0P b(6) d@}

and observing that

1/2
‘/ 2(1 — |u) (v + = ub) dulf] b d@‘

1/2

1/2
< o oo rg x0T /1 0> b(0) do

< N follzse(rrxy 2Cy (1/2)°77,

we appeal to the standard averaging lemmas (see [DP, L]) to show that
the quantity pse converges a.e. on R} x T! (again up to extraction of a
subsequence) towards p;.

In order to pass to the limit in the nonlinear collision term, we only need
to show the following: for all smooth function ¢ of the variable v, the quantity

i) [ [ Pt (oo +0)+ oo =)~ 201} ) doie

= p3(1, x)/rl t:z;v{/l/z/ (1 —|u])p (U—I—eu@)du|(9|26(0)d0}dv

converges (in L>(R% x T') weak-*) towards

pr(tse) [ Flts,v) ¢(0) do /1/2 02 b(0) db

—-1/2

But this follows at once from the convergence a.e. of pse. //
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