
On a Model Boltzmann Equationwithout Angular Cuto�1by L. DESVILLETTES(1) & F. GOLSE(2)April 1, 1999(1) CMLA, Ecole Normale Sup�erieure de Cachan,94235 Cachan Cedex, FRANCE, desville@cmla.ens-cachan.fr(2) Universit�e Paris 7 and Ecole Normale Sup�erieure,DMI, 45, rue d'Ulm, 75230 Paris Cedex 05, FRANCE, golse@dmi.ens.frAbstractA model Boltzmann equation (see formulas (1.1.6) { (1.1.9) below)without Grad's angular cuto� assumption is considered. One proves1. the instantaneous smoothing in both position and velocity vari-ables by the evolution semigroup associated to the Cauchy prob-lem for this model;2. the derivation of the analogue of the Landau-Fokker-Planck equa-tion in the limit when grazing collisions prevail.1 Introduction and Main Result.1.1 IntroductionLet us �rst recall the Boltzmann equation of rare�ed gases (see [Ce] forexample), @tf + v � rxf = ~QB(f) : (1:1:1)In this equation, the unknown f � f(t; x; v) is the density of particles whichat time t � 0 and position x 2 R3 have velocity v 2 R3, and ~QB is a1AMS classi�cation: 45K05, 76P05 1



quadratic operator acting only on the v-dependence of f which takes intoaccount only the binary collisions in the gas. It reads~QB(f)(v) == Zv�2R3 Z!2S2 �f(v + (! � (v� � v))!) f(v� � (! � (v� � v))!)� f(v) f(v�)��B(jv� v�j; j v�v�jv�v�j � !j) d!dv�; (1:1:2)where B is a cross section depending on the type of interactions between theparticles of the gas.In the case where interparticle forces are proportional to r�s (where r isthe distance between the two particles under consideration) one hasB(x; y) = jxj s�5s�1 �s(y); (1:1:3)and �s(y) �y!0 jyj� s+1s�1 ; (1:1:4)so that ~QB is de�ned only as a singular integral operator.The singularity of �s, together with the dissipative character of ~QB makeit plausible that this operator behaves as some nonlinear di�usion operator,i.e. a nonlinear analogue (of some fractional power) of the Laplacian � actingon the velocity space.On the contrary, when the singularity in �s is removed, that is, whenGrad's \angular cuto� assumption" is made (cf. [Gr]), (in other words,when B 2 L1loc(R3�S2)), the collision integral behaves roughly as a boundedoperator on functions of the velocity variable.This fundamental di�erence can be seen on the evolution semigroup asso-ciated to the Cauchy problem for the space homogeneous Boltzmann equa-tion, that is @tf = ~QB(f): (1:1:5)When �s is of the form (1.1.4), one expects that the associated semigroupshould be a smoothing operator for any positive value of the time variable.This has been established on various models or particular cases: see [De 1],[De 3], [De 4], [Pr], for the 2D Boltzmann equation, radially symmetric ornot. 2



On the contrary, in the cuto� case, it is known (see [L 1], [We], [B, De])that this semigroup does not regularize the initial data for any positive valueof the time variable.It is therefore expected that (when �s has the form (1.1.4)), the spaceinhomogeneous Boltzmann operator ~QB � v � rx should be the nonlinearanalogue of a hypoelliptic operator, by analogy with the linear Fokker-Planckoperator �v � v � rx (see for example [H]). An indication of this could bethat the evolution semigroup of the Boltzmann equation regularizes the initialdata in both the position and velocity variable. This is a widely open questionat the moment, even for the most elementary traditional simpli�ed models ofthe Boltzmann equation. This is due to the side-e�ects of many additionaldi�culties (among which the absence of maximum principle and the e�ect oflarge velocities seem to be the most important).This paper is aimed at introducing the simplest possible nonlinear modelof (inhomogeneous) Boltzmann type equation (with a singularity as in (1.1.4)),and at trying to prove in this context the expected smoothing properties.This model is somehow a reduction of Kac's collision integral [K] to ve-locities of norm 1; it also is reminiscent of a model proposed in [C, S]. Itreads @tf(t; x; v) + cos(2�v) @xf(t; x; v) = Qb(f)(t; x; v) ; (1:1:6)where the unknown is the number density f � f(t; x; v). Here, t � 0 isthe time variable, the position variable is x 2 T1, and v 2 T1 parametrizesthe velocity cos(2�v) of the particles. The collision operator is given (at theformal level) byQb(�)(v) = Z 1=2�1=2 ZT1 [�(v + �)�(v0 � �)� �(v)�(v0)] b(�) d�dv0 ; (1:1:7)where b is an even function on [�1=2; 1=2] with positive values.As usual, the notation Qb(f(t; x; v)) designates the function of the variablev de�ned by v 7! Qb(f(t; x; �))(v), the variables t and x being parameters inthe collision integral.In order to mimick the behaviour of �s in (1.1.4), we postulate that (forall � 2 [�1=2; 1=2]), C0 j�j�
 � b(�) � C1 j�j�
 ; (1:1:8)where C0; C1 > 0 and 1 < 
 < 3. Hence the collision integral (1.1.7) is anonlinear singular integral. 3



Finally, we introduce the initial dataf(0; x; v) = f0(x; v) ; (x; v) 2 T1 �T1 : (1:1:9)In order to establish the smoothing e�ect of the evolution of (1.1.6) inall variables t, x and v, one must depart from the method used on the spacehomogeneous Boltzmann equation. Indeed, this method is based on applyingthe Fourier transform in the velocity variable: see [De1, 3, 4], [Pr] and [De,G]. While the collision integral is well behaved under this transformation,the advection operator is not.The present paper proposes a di�erent strategy, where steps 2 and 3 arereminiscent of [L 2]:1. use the entropy production to control (fractional) derivatives in thevelocity variable of the number density;2. write (1.1.6) in the form@tf(t; x; v) + cos(2�v) @xf(t; x; v) = h(t; x; v) ; (1:1:10)where h is a singular integral with respect to the velocity variable, andapply the Velocity Averaging Method to obtain some smoothness onquantities of the form ZT1 f(t; x; v0)�(v; v0) dv;where � 2 C1(T1 �T1); �nally, keep track of the dependence on � ofthe norm of this average (in some Besov or Sobolev space):3. replacing � by suitable approximations of the identity in step 2, try toget some regularity on f in all variables t, x and v, by using the resultsin step 1.There are obvious shortcomings in this method: it is not completely clearhow to iterate in order to obtain that f 2 C1(R�+�T1�T1) (whether this istrue is not yet known, albeit very likely). As for the analogy with the Boltz-mann equation, note that two of the di�culties quoted above are not treated:the set of velocities is bounded in our model, and, more important, the nat-ural functional spaces for the true Boltzmann equation are L1 or, at best,4



L log L spaces and not L1 as in our model). In either L1 or L log L spaces,the gain of smoothness by Velocity Averaging is marginal, and the meaningof the collision operator unclear. Thus, applying the method above to modelsmore realistics than (1.1.6-7), and in particular to the Boltzmann equation,would certainly require new ideas and lead to tremendous technicalities.Notice however that step 1 was recently achieved in the case of the Boltz-mann equation (without angular cuto�) by P.-L. Lions: see [L3]. An opti-mal regularity estimate, also based on the entropy production term, but bestsuited to space homogeneous problems has also been obtained recently byVillani [V 2].Even on the simpli�ed model (1.1.6) considered here, the regularity of thesolution obtained by our method is very likely not optimal. It could be thatsome bootstrap procedure leads to better regularity; yet this would certainlylead to rather technical developments.There are equally obvious advantages: the method seems robust in thesense that it rests on physically intrinsic arguments, like the entropy inequal-ity. Even cavitation (i.e. the local vanishing of the density) does not whollyruin the argument in step 1, be it in the case of our model (1.1.6-7) or inthat of the Boltzmann equation without cuto� (see [L3]). Notice howeverthat cavitation can be dealt with very easily in the case of our model (1.1.6-7) | although better regularity can be obtained in the case where cavitationdoes no occur: see Proposition 4 below | while it gives rise to noticeabledi�culties on more physical models, as can be seen on the example of theLandau-Fokker-Planck equation (see [L2]).1.2 Main resultsWe begin with a precise functional de�nition of Qb.Proposition 1 Let b satisfy (1.1.8). Then , the operator Qb de�ned by(1.1.7) is a continuous (nonlinear) operator from C2(T1) to C0(T1) whichextends as a continuous operator from L1(T1) to D0(T1).As a corollary, it is now possible to de�ne a solution f of (1.1.6) { (1.1.9)in the sense of distributions, as soon as 0 � f0 2 L1(T1 �T1) and f � 0 2L1(R+ �T1 �T1) \ C0(R+;D0(T1 �T1)).A slightly stronger notion of solutions will be needed in the sequel, thatof entropic solutions, de�ned below: 5



De�nition 1 Let b satisfy (1.1.8) and f0 � 0 2 L1(T1 �T1). An entropicsolution of (1.1.6) { (1.1.9) is a function f � 0 2 L1(R�+ � T1 � T1) \C(R+;D0(T1�T1)) satisfying (1.1.6) { (1.1.9) in the sense of distributionsas well as the following entropy relation: for all T > 0,12 ZZT1�T1 jf(T; x; v)j2 dxdv+ 12 Z T0 ZT1 �f (t; x)�ZZT1�T1 jf(t; x; v + �)� f(t; x; v)j2 b(�) d�dv� dxdt� 12 ZZT1�T1 jf0(x; v)j2 dxdv : (1:2:1)The main result in this paper is theTheorem A Let b satisfy (1.1.8) and f0 � 0 2 L1(T1 � T1). The Cauchyproblem (1.1.6) { (1.1.9) admits an entropic solution f 2 Hs(
)��loc (R�+�T1�T1) for all � > 0 with s(
) = 
 � 12 (
 + 1) (
 + 3) : (1:2:2)If f0 � R0 a.e. for some R0 > 0, the value in the right hand side of (1.2.2)can be replaced by the better regularity indexs(
) = 
 � 12 (
 + 1)2 : (1:2:3)For example, the typical case 
 = 2 leads to respectively f 2 H1=30 andf 2 H1=18: hence the smoothing e�ect is rather weak.The problem (1.1.6) { (1.1.9) also admits an analogue of the Landau-Fokker-Planck asymptotics (see [Li, Pi] as well as [De 2], [D, Lu], [V 1],[Ar, Bu]) in the limit when grazing collisions prevail | in the present case,when b is concentrated near � = 0.In the case of the true Boltzmann equation, this limit has been proved onlyin particular situations: the case of the linearized inhomogeneous equation isconsidered in [De 2], while the spatially homogeneous equation is consideredin [Ar, Bu] and [V 1]. The good features of our model allow to state avery general convergence theorem. Observe the speci�c scaling (1.2.4) below,aimed at zooming on the grazing collisions in the model collision integral(1.1.7): it is the analogue in the case of our model (1.1.6-7) of the scalingappearing in [De 2] and [V 1]. 6



Theorem B Let 0 � f0 2 L1(T1 � T1), and f " be an entropic solution ofeq. (1.1.6) { (1.1.9) with b replaced by b" de�ned byb"(�) = � "�3 b( �� ) if j�j � "2 ;0 if j�j � "2 ; (1:2:4)and where b satis�es (1.1.8). Then there exists a subsequence (still denotedby f ") converging in L1(R�+ �T1 �T1) weak-* to a solution f of@tf(t; x; v) + cos(2�v)@xf(t; x; v) = C�f (t; x)@2vf(t; x; v) (1:2:5)in the sense of distributions, whereC = Z 1=2�1=2 �2b(�)d� ; �f (t; x) = Zv2T1 f(t; x; v) dv: (1:2:6)The outline of the paper is as follows: section 2 reviews the precise de�ni-tion of Qb as a singular integral, thus leading in particular to proposition 1.Di�erent useful expressions of Qb are also presented. Section 3 deals withthe entropy relation, thereby leading to the existence of entropic solutions,and to step 1 in the method above. Section 4 establishes various resultsfrom the theory of Velocity Averaging which are crucial in proving step 2.The end of the proof of Theorem A (that is, step 3) belongs to section 5,while the Landau-Fokker-Planck approximation (Theorem B) is establishedin section 6.2 The Collision IntegralTo the function b satisfying (1.1.8) is associated a distribution of order 2on T1, denoted by PV (b) (the principal value of b) and de�ned for all g 2C2([�1=2; 1=2]) by< PV (b); g >= Z 1=2�1=2 12 �g(�) + g(��)� 2 g(0)� b(�) d� : (2:1)With this de�nition at hand, proposition 1 can be proved. In fact, we provethe slightly more precise 7



Lemma and De�nition 1 For all � 2 C2(T1) and all v 2 T1, considerthe functions Fv[�] de�ned byFv[�](�; v0) = �(v + �)�(v0 � �)� �(v)�(v0) ; (2:2)and Gv[�] de�ned by Gv[�](�) = �(v + �)� �(v) : (2:3)1. Then, < PV (b)
 1;Fv[�] >= �� < PV (b);Gv[�] > ; (2:4)with �� = ZT1 �(v) dv : (2:5)2. The formula Qb(�)(v) =< PV (b)
 1;Fv[�] > ; 8v 2 T1 (2:6)de�nes a continuous operator Qb : C2(T1)! C0(T1).3. The continuous operator Qb : C2(T1) ! C0(T1) extends as a con-tinuous operator Qb : L1(T1) ! D0(T1) de�ned as follows: for all� 2 L1(T1) and � 2 C2(T1),< Qb(�);� >= �� ZT1 �(v) < PV (b);Gv[�] > dv : (2:7)Proof. Let (Xn)n�0 2 RN+ be an increasing sequence converging to +1, andlet bn(�) = inf(b(�);Xn). Now, for all n 2 N, bn 2 L1([�1=2; 1=2]) is even(because b itself is even) and for all � 2 L1(T1) one has, by symmetrizingthe integrand of (1.1.7) in the variable �:Qbn(�)(v) = 12 ZT1 Z 1=2�1=2 ��(v + �)�(v0 � �) + �(v � �)�(v0 + �)� 2�(v)�(v0)� bn(�) d�dv0 : (2:8)Also, one can apply Fubini's theorem and integrate �rst in the variable v0 in(2.8). This givesQbn(�)(v) = 12�� Z 1=2�1=2 ��(v + �) + �(v � �)� 2�(v)� bn(�) d� : (2:9)8



In other words, for all n 2 N, one hasQbn(�)(v) =< PV (bn)
 1;Fv[�] >= �� < PV (bn);Gv[�] > : (2:10)Now, for all g 2 C2([�1=2; 1=2]),g(�) + g(��)� 2 g(0) = O��0(j�j2) ;so that � 7! �g(�) + g(��)� 2 g(0)� b(�) 2 L1(T1) : (2:11)Taking � 2 C2(T1), one sees, by applying (2.11) tog(�) = �(v + �)�(v0 � �) ; and to g(�) = �(v + �);that each side of (2.4) is well-de�ned. Letting n! +1 in (2.10) establishes,by dominated convergence, equality (2.4) as well as the relationQb(�)(v) = limn!+1Qbn(�)(v) = �� < PV (b);Gv[�] > : (2:12)As for point 2, observe that the continuity is made obvious by formula (2.12).Now for point 3: if � 2 C2(T1), one obviously hasZT1 �(v)Qbn(�)(v) dv =�� ZT1 Z 1=2�1=2 12 �(v) ��(v � �) + �(v + �)� 2�(v)� bn(�) d�dv : (2:13)Letting n! +1 and applying the �rst equality in (2.12) results in (2.7). //An immediate consequence of (2.7) is that the collision integral (1.2)conserves the total number of particles:Corollary 1 For all � 2 L1(T1), one has< Qb(�); 1 >= 0 : (2:14)Proof. Apply (2.7) with � = 1. //No other quantity (such as momentum, energy, etc..) is conserved in thismodel. This will become clear in section 3, where we prove that Qb(�) = 0only when � is a constant. 9



Next we proceed to another way of de�ning Qb, as the second derivative(in the velocity variable) of a nonsingular integral operator. The followingProposition can be viewed as yet another de�nition of the collision integral(1.1.7); we shall not use it speci�cally until section 6.Notice that it is also possibe to write Boltzmann's collision integral as adivergence (with respect to the v variable); this idea can be found in x41 of[Li, Pi] and is a possible starting point of the derivation of Landau's collisionoperator from Boltzmann's collision integral. The computations in [Li, Pi]have recently been put on more mathematical footing by Villani [V 2].Proposition 2 For all r 2 R+ and z 2 T1, consider the expressionA(r; z) = 12 (r � jzj)+ (2:15)(where, for all z 2 T1, jzj 2 [0; 1=2] designates the geodesic distance to 0).Let b satisfy (1.1.8) and consider the function Bb : R! [0;+1]de�ned byBb(z) = Z 1=2�1=2A(j�j; z) b(�) d� ; 8z 2 T1 : (2:16)Then,1. for all z 2 T1, one has0 � Bb(z) � D(1 + jzj
�2) (2:17)for some D > 0 (depending only on 
;C0; C1),2. for all � 2 L1(T1), one has (compare with [Li, Pi])Qb(�) = @2vSb(�) ; where Sb(�) = �� � �Bb : (2:18)Proof. One has A(j�j; z) � 12 j�j1jzj�j�j so thatZ 1=2�1=2 bn(�)A(j�j; z) d� � Z 1=20 � 1jzj�� b(�) d� � D + Djzj
�2 : (2:19)This proves 1. Now, integrating by parts twice shows that, for all � 2[�1=2; 1=2] and all � 2 C2(T1):12 ��(v��)+�(v+�)�2�(v)�= �12 ZT1 �1[v�j�j;v](w)�1[v;v+j�j](w)�@w�(w) dw10



= ZT1 A(j�j; v � w) @2w�(w) dw: (2:20)Notice that, for all v 2 T1 and all � 2 R, expressions like v � � are to beunderstood as the image of v under the translation by �� (which obviouslyinduces a map on T1 viewed as R=Z). On the other hand, intervals like[v � �; v] are to be understood as arcs on the circle of length 1 identi�ed toT1.Applying (2.10) and (2.20) shows that, for all n 2 N and all � 2 L1(T1):< Qbn(�);� >= �� ZZT1�T1 �(v)Bbn(v � w) @2w�(w) dwdv= �� ZT1 @2w�(w) (Bbn � �)(w) dw : (2:21)Here, the symbol � denotes the convolution is the sense of T1.Since 1 < 
 < 3, ZT1 C0dist (v;w)
�2dw < +1 : (2:22)Next take the limit as n ! +1 in (2.21): applying the dominated conver-gence theorem with (2.17) and (2.22) leads to< Qb(�);� >= �� ZT1 @2v�(v) (Bb � �)(v) dv ; (2:23)which proves (2.18). //3 The Entropy RelationThis section is devoted to an analogue of Boltzmann's H-theorem for themodel (1.1.6) { (1.1.9).The following simple lemma re
ects once again the fact that the collisioncross section b is even:Lemma and De�nition 2 For all � and  2 C2(T1),ZT1 < PV (b);Gv[�] >  (v)dv = ZZ[�1=2;1=2]�T1Gv[�](�)Gv[ ](�)b(�) d�dv :(3:0)11



This formula extends naturally the de�nition of the left hand side of (3.0)to the case where � and  2 C1(T1) only. In particular Qb extends as amapping from C1(T1) into distributions of order 1 on T1 and veri�es, for all�,  2 C1(T1):< Qb(�); >= �12 �� ZZ[�1=2;1=2]�T1[�(v+�)��(v)][ (v+�)� (v)] b(�) d�dv :(3:1)Specializing (3.1) to the case where � =  leads to the following extendedde�nition: for all � 2 L2(T1), the notation ��1� < Qb(�);� > designates thefollowing element of [0;+1]:12 ZZT1�T1 j�(v + �)� �(v)j2 b(�) d�dv :Proof. Formula (3.0) is recovered from (3.1) and (2.4-6) if �� > 0 everyhere,which can be ensured by considering � + C in the place of �. It su�ces toprove (3.1) in the case where � =  2 C2(T1), which corresponds to theclassical H Theorem. The general case follows by density and polarization.Since b is even, for all � 2 C1(T1) and all n � 0, formula (2.9) shows thatQbn(�)(v) = �� Z 1=2�1=2[�(v + �)� �(v)] bn(�) d� : (3:2)HenceZT1 �(v) Qbn(�)(v) dv = �� ZT1 Z 1=2�1=2[�(v + �)� �(v)]�(v) bn(�) d�dv= �� ZT1 Z 1=2�1=2[�(v)� �(v � �)]�(v � �) bn(�) d�dv= �� ZT1 Z 1=2�1=2[�(v)� �(v + �)]�(v + �) bn(�) d�dv= �12 �� ZT1 Z 1=2�1=2[�(v+ �) � �(v)]2 bn(�) d�dv : (3:3)Now, since � 2 C2(T1),j�(v + �) � �(v)j2 = O��0(�2)12



so that � 7! j�(v + �)� �(v)j2 b(�) 2 L1(T1)thanks to assumption (1.1.8) on b. By dominated convergence,ZT1 �(v)Qb(�)(v) dv = limn!+1 ZS1 �(v)Qbn(�)(v) dv= 12 �� ZT1 Z 1=2�1=2[�(v + �)� �(v)]2 b(�) d�dv ;which proves (3.1). //A well-known consequence of the H-theorem in the case of the classicalBoltzmann equation is that the only nonnegative integrable number densitiesfor which the collision integral vanishes are local Maxwellian distributions.The analogous result for (1.1.6) { (1.1.9) is the followingCorollary 2 Let � 2 L1(T1) be such that Qb(�) = 0. Then � is equal to aconstant a.e..Proof. If �� = 0, then � = 0 a.e. and the theorem is proved. If �� 6= 0,��1� Qb(�) = 0. Let Z 2 C10 (R) be a nonnegative even function supported in[�1; 1] and denote, for all � 2]0; 1=2[,��(v) = Xk2Z 1�Z  v + k� ! :By (2.7), for all � 2]0; 1=2[,��1� Qb(�) � �� = 0 = ��1� Qb(� � ��) : (3:4)Since � � �� 2 C1(T1), (3.4) shows that for all � 2]0; 1=2[,� � �� = C� ; where C� is a constant.But C� = ZT1 � � ��(v) dv = ZT1 �(v) dv;which shows that C� is in fact independent of �: hence, for all � 2]0; 1=2[,� � �� = C (3:5)13



where C is a constant. As �! 0, the left side of (3.5) converges vaguely to�. Therefore � = C as a measure on T1, that is to say a.e. //Note that as announced in section 2, this proves that the only conservedquantity is the mass.We do not know whether all L1 solutions of (1.1.6) { (1.1.9) in thesense of distributions necessarily satisfy an entropy inequality. However, bytruncating the collision cross section b, we prove that there exist entropicsolutions to (1.1.6) { (1.1.9) for any bounded nonnegative initial data.Proposition 3 Let 0 � f0 2 L1(T1 � T1), and b satisfy (1.1.8). Then,there exists an entropic solution of (1.1.6) { (1.1.9) such that0 � f(t; x; v) � kf0kL1 ; a.e. on R+ �T1 �T1. (3:6)If moreover f0 � R0 a.e. for some R0 > 0, then f(t; x; v) � R0 for a.e.(t; x; v) 2 R+ �T1 �T1.Proof. Consider �rst the model equation (1.1.6) with b replaced by itstruncation bn as in the proof of Lemma and de�nition 1. To begin with,(2.9) holds for all � 2 L1(T1) (by the density of C1(T1) in L1(T1)). Thiscan be recast as:Qbn(�)(v) = �� Z 1=2�1=2 �(v + �) bn(�) d� � kbnkL1�� �(v) (3:7)for all � 2 L1(T1). In addition, we have theLemma 1 Let 0 � f0 2 L1(T1�T1). For all n 2 N, there exists a solutionfn 2 L1(R�+ �T1 �T1) \ C(R+;L1(T1 �T1)) to the problem(@tfn + cos(2�v) @xfn)(t; x; v) + kbnkL1�fn(t; x) fn(t; x; v)= �fn(t; x) Z 1=2�1=2 fn(t; x; v+ �) bn(�) d� ; (3:8)fn(0; x; v) = f0(x; v) ; (x; v) 2 T1 �T1 : (3:9)It satis�es 0 � fn(t; x; v) � kf0kL1 ; a.e. on R�+ �T1 �T1. (3:10)Moreover, if f0 � R0 a.e for some R0 > 0, then fn(t; �) � R0 a.e. for allt > 0. 14



The proof of Lemma 1 is classical and deferred until after that of Propo-sition 3.The standard Velocity Averaging lemmas (Cf. [DP, L] for example) to-gether with estimates (2.17), (2.18) imply that the sequence fn converges(possibly after extraction of a subsequence) to f in L1(R�+ � T1 � T1)weak * while �fn converges to �f a.e..Then, for all � 2 C2(R�+ � T1 � T1), the quantity < PV (bn); Gv(�) >converges a.e. (in t; x; v) to < PV (b); Gv(�) >, so that Qbn(fn) convergesto Qb(f) in the sense of distributions, and f is a solution in the sense ofdistributions of (1.1.6).By the uniform estimates in L1(R�+�T1�T1) on fn, (3.6) and the lasta�rmation of proposition 3 are clear.It remains to prove the entropy condition (1.2.1). Let 0 � � 2 C10 (R)and denote ��(t) = ��1�(t=�). The solution fn is extended to negative valuesof t by the value 0 Multiplying (3.8) by (��
 ��
 ��)�fn (where �� is de�nedin the proof of corollary 2), integrating in all variables and letting � ! 0leads, for all T > 0, to 12 ZZT1�T1 jfn(T; x; v)j2 dxdv+12 Z T0 ZT1 �fn(t; x)�ZZT1�T1 jfn(t; x; v+ �)� fn(t; x; v)j2 bm(�) d�dv� dxdt� 12 ZZT1�T1 jfn(T; x; v)j2 dxdv+12 Z T0 ZT1 �fn(t; x)�ZZT1�T1 jfn(t; x; v+ �)� fn(t; x; v)j2 bn(�) d�dv� dxdt= 12 ZZT1�T1 jf0(x; v)j2 dxdv ; (3:11)for all m � n 2 N according to the proof of Lemma 3.1. Since �fn convergesa.e. towards �f , we get, by convexity and weak convergence, (the integer mbeing �xed while n! +1) that for all T > 0,12 ZZT1�T1 jf(T; x; v)j2 dxdv+12 Z T0 ZT1 �f (t; x)�ZZT1�T1 jf(t; x; v + �)� f(t; x; v)j2 bm(�) d�dv� dxdt15



� 12 ZZT1�T1 jf0(x; v)j2 dxdv : (3:12)Letting then m! +1 gives the entropy inequality (1.2.1). //Proof of Lemma 1. The quickest route to this result is to generate for eachn 2 N a sequence (fnm)m2N by the following iteration procedure:fn0 = 0; ( or fn0 = R0 if f0 � R0 > 0 a:e:) (3:13)and, for all m � 1:@tfnm(t; x; v) + cos(2�v) @xfnm(t; x; v) + �fnm�1(t; x)fnm(t; x; v)= �fnm�1(t; x) Z 1=2�1=2 fnm�1(t; x; v + �) bn(�) d� ; (3:14)fnm(0; x; v) = f0(x; v) ; (x; v) 2 T1 �T1 : (3:15)Now (3.14) can be solved explicitly and it is easy to show that (fnm)m2Nconverges pointwise to a limit denoted by fn. The convergence also holdsin L1 (by dominated convergence). Taking the limit as m ! +1 in (3.14){ (3.15) leads to the announced result. An easy in duction argument showsthat, if f0 � R0 a.e., then fnm � R0 a.e. for all m � 0.//The entropy inequality (1.2.1) provides a regularity estimate in the vvariable for all entropic solutions to (1.1.6) { (1.1.9). The main di�culty isto take into account cavitation, i.e. zones where the density might vanish. Inthe case of our model (1.1.6-7), we know from Proposition 3 that cavitationcannot occur unless it is already present in the initial data. This property isnot shared by the true Boltzmann equation, and [L3] �nds a way around thisby proving Besov regularity in the v variable on pf instead of f itself. Inthe case of our model (1.1.6-7), cavitation is treated by the following simpleargument:Proposition 4 Let 0 � f0 2 L1(T1 � T1), b satisfy (1.1.8) and f be anentropic solution of (1.1.6) { (1.1.9). For all T > 0; � > 0, there exists aconstant C (depending on T; jjf0jjL1 ; 
; C0; C1; �) such thatZ T0 ZT1 ZT1 Z 1=2�1=2 jf(t; x; v + �)� f(t; x; v)j2 j�j�1�
�12 + �2 d�dxdvdt � C :If moreover f0 � R0 a.e for some R0 > 0, thenZ T0 ZT1 ZT1 Z 1=2�1=2 jf(t; x; v+ �)� f(t; x; v)j2 j�j�
 d�dxdvdt � C ;where C depends on the previous parameters and R0.16



Proof. The case when f0 � R0 a.e. for some R0 > 0 is a simple consequenceof the entropy inequality (1.2.1). In the general case, one has to isolate thepoints where cavitation can appear. Estimate (1.2.1) givesZ T0 ZT1 ZT1 Z 1=2�1=2 jf(t; x; v + �)� f(t; x; v)j2 j�j�1�
�12 + �2 d�dxdvdt� ZT1 Z 1=2�1=2�Z Z�(t;x)�j�j
�12 + �2 jf(t; x; v + �)� f(t; x; v)j2 dxdt�j�j�1�
�12 + �2 d�dv+ ZT1 Z 1=2�1=2 �Z Z�(t;x)�j�j
�12 + �2 �2 jf(t; x; v + �)j2 + 2 jf(t; x; v)j2� dxdt�j�j�1�
�12 + �2 d�dv� Z T0 ZT1 ZT1 Z 1=2�1=2 �(t; x) jf(t; x; v+ �)� f(t; x; v)j2 j�j�
 d�dxdvdt+ Z T0 ZT1 Z 1=2�1=2 jjf jjL1 1f�(t;x)�j�j
�12 + �2 g 4 �(t; x) j�j�1�
�12 + �2 d�dxdt� C�10 jjf0jj2L2(T1�T1) + 4 jjf jjL1 T Z 1=2�1=2 j�j�1+� d�;whence the desired result follows. //Proposition 4 provides the regularity estimate in the v-variable which isprecisely step 1 in the method described in subsection 1.1.4 Velocity Averaging.In this section, we return to the classical estimates of the Velocity Averagingmethod �rst introduced in [A], [G, P, S], [G, L, P, S]. The goal is to keep trackof the dependence of the estimates (in Sobolev spaces) for velocity averageslike ZT1 f(t; x; v0)�(v; v0) dv0 (4:0)on the norms of derivatives of the smooth function �. This can be done withthe original methods of proof in the references quoted above.17



In order to deal with equations of the type (1.1.10) (speci�cally, to beable to treat fractional derivatives in v in the right{hand side), we use themethod of [DP, L] and [G, Po], and adapt the computations to our case.In the sequel, we say that f(z) << g(z) (when f; g are two real-valuedfunctions of z) if there exists some constant C > 0 (independant of z) suchthat f(z) � C g(z).Let us �rst establish the following technical result.Lemma 2 For all x and y 2 R,1. Ix;y = ZT1 1jx+y cos(2�v)j�1 dv << (1 + jxj2 + jyj2)�1=4 ; (4:1)2. Jx;y = ZT1 1jx+y cos(2�v)j>1 dvjx+ y cos(2�v)j2 << (1 + jxj2 + jyj2)�1=4 :(4:2)Proof. For 1, set w = jyj cos(2�v).Ix;y = 1� Z 1�x�1�x 1jwj�jyj dwqjyj2 � jwj2 � 1� 1jxj�jyj+1 Z jyjsup(jyj�2;�jyj) dwqjyj2 � jwj2� 1� 1jxj�jyj+1 Z 1sup(1�2=jyj;�1) d�p1� �2 << 1jxj�jyj+1 inf(1; jyj�1=2)<< 1jxj�jyj+1 (1 + jyj2)�1=4 << (1 + jxj2 + jyj2)�1=4 :As for 2, set � = cos(2�v):Jx;y = 1� Z 1�1 1jx+ �yj2 1jx+�yj>1 d�p1� �2 : (4:3)If jxj � 2 jyj, 8� 2 [�1; 1], one has jx+ �yj � 12 jxj and jx+ �yj � 1 impliesjxj � 12. In which case, (4.3) shows thatJx;y � 1� Z 1�1 4jxj2 1jxj>1=2 d�p1� �2 << (1 + x2)�1 << (1 + x2 + y2)�1� (1 + x2 + y2)�1=4 : (4:4)18



It remains to deal with the case when x = �py with jpj < 2: one hasJx;y = 1jyj2 Z 1�1 1j��pj�jyj�1j�� pj2 d�p1� �2and by symmetry, only the case of p � 0 and y > 0 will matter. Moreover,Jx;y � Z 1�1 d�p1� �2 ;so that it su�ces to prove thatJx;y << jyj�1=2 for jyj � 2 :In order to establish this estimate, one distinguishes four di�erent cases:p 2 [0; 1 � y�1], p 2 [1� y�1; 1], p 2 [1; 1 + y�1] and �nally y 2 [1 + y�1; 2].The last three cases are quite easy to treat; to cut short, we only considerthe �rst. Using the inequalities 0 � p � 1� 1y and y � 2, one sees thatJx;y � 1y2 Z 1p+y�1 d�(�� p)2p1� �+p2y2 Z p�y�1�1=2 d�(p � �)2p1 � � + 4y2 Z �1=2�1 d�p1 � �2 : (4:5)The third integral in the right side of (4.5) being trivial, it remains to estimatethe �rst and the second. This is done by changing the variable � into u =p1 � �; thus, the second integral for example becomesZ p�y�1�1=2 d�(p � �)2p1 � � = Z p3=2p1+y�1�p 2du(1� p� u2)2� 12 (1�p) Z p3=2p1+y�1�p du(p1�p�u)2� y2p1 � p  1 +s1 + 1y(1� p)! � 1+p22 ypy :Then the contribution of the second term in the right hand side of (4.5) isO(y�1=2); a similar computation shows that the �rst term is of exactly thesame order. //We proceed next to stating the main result in this section; it is an am-pli�cation of the Velocity Averaging results of [DP, L] and of the Appendixof [G, Po]. We �rst need the following19



Notation 11. For � 2]0; 2[, the following seminorm will be used in the sequel:khk2;� = �ZT1 Z 1=2�1=2 jh(w + �) � h(w)j2 j�j�1�� d�dw �1=2 ; (4:6)khk1;2;� = � supw2T1 Z 1=2�1=2 jh(w + �)� h(w)j2 j�j�1�� d��1=2:2. For all f 2 L1(T1) and all � 2 C1(T1),< f >�= ZT1 f(v)�(v) dv : (4:7)3. The notation f̂(�; �; v) designates the Fourier transform of f in thevariables t and x (v being a parameter).Proposition 5 Let f 2 L2(R�T1�T1) and let g satisfy, for some � 2]0; 2[:ZR�T1(kg(t; x; �)k2;�)2dtdx < +1 : (4:8)Assume that(@t + cos(2�v) @x)f(t; x; v) =< PV (�);Gv[g(t; x; �)] > (4:9)in the sense of distributions, for some � verifyingC0 ��1�� � �(�) � C1 ��1�� ;for some C0; C1 > 0, � 2]0; 2[.Then, for all � > 0, there exists C(�) such that, for all � 2 C1(T1), � 2 Rand � 2 Z: j < f̂ >� (�; �)j2<< C(�) k�k2L1(� 2 + �2)� 12(2+�+�) h(kĝ(�; �; �)k2;�)2 + kf̂(�; �; �)k2L2(T1)i+(k�k1;2;�)2(kĝ(�; �; �)k2;�)2(� 2 + �2)�1+2(�+�)2(2+�+�) : (4:10)20



Proof. Let � 2 C1(R) be even and satisfy0 � � � 1 ; �j[0;12] = 0 ; �j[1;+1[ = 1 ; k�0kL1 � 3 : (4:11)Writing (4.9) in the Fourier variables � 2 Z and � 2 R, we get for all � > 0,i(� + cos(2�v) �)f̂ (�; �; v) =< PV (�);Gv[ĝ(�; �; �)] > ; (4:12)so that, by formula (3.0) and some obvious density argument< f̂ >� (�; �) = ZT1 "1 � � � + cos(2�v) �� !# f̂(�; �; v)�(v)dv+ ZT1 Z 1=2�1=2Gv[ĝ(�; �; �)](�)Gv 24v 7! �(v)� ��+cos(2�v) �� �i(� + cos(2�v) �) 35�(�)d�dv :Thereforej < f̂ >� (�; �)j2 � 2 k�k2L1 ZT1 jf̂(�; �; v)j2dv ZT1 1j�+cos(2�v) �j�� dv+2C1 (kĝ(�; �; �)k2;�)2� ZT1 Z 1=2�1=2 �������(v + �)� ��+cos(2�(v+�)) �� �i(� + cos(2�(v + �)) �) � �(v)� ��+cos(2�v) �� �i(� + cos(2�v) �) ������2 d�dvj�j1+�(4:14)� 2 k�k2L1kf̂(�; �; �)k2L2 I �� ; ��+2C1 (kĝ(�; �; �)k2;�)2 ZT1 Z 1=2�1=2 j�(v + �)� �(v)j2 ������ � ��+cos(2�v) �� �i(� + cos(2�v) �) ������2 d�dvj�j1+�+2C1 (kĝ(�; �; �)k2;�)2k�k2L1� ZT1 Z 1=2�1=2 ������ � ��+cos(2�(v+�)) �� �i(� + cos(2�(v + �)) �) � � ��+cos(2�v) �� �i(� + cos(2�v) �) ������2 d�dvj�j1+� (4:15)� 2 k�k2L1 kf̂ (�; �; �)k2L2 I �� ; �� + 2C1 (kĝ(�; �; �)k2;�)2 (k�k1;2;�)2 2�2 J 2�� ; 2��+2C1 (kĝ(�; �; �)k2;�)2 k�k2L1 1�2 T ; (4:16)21



whereT = ZT1 Z 1=2�1=2 �����S  � + cos(2�(v + �)) �� !� S  � + cos(2�v) �� !�����2 d�dvj�j1+�(4:17)with the notation S(x) = �(x)=x for all x 2 R. ThenT � ZT1 Z 1=2�1=2 �����S  � + cos(2�(v + �)) �� !� S  � + cos(2�v) �� !�����2����� �����2� � �� Z 10 S0 � + cos(2�(v + l�)) �� ! sin(2�(v + l�)) dl������+� d�dvj�j1+� (4:18)<< ������� ������+� Z 1=2�1=2�ZT1������S  � + cos(2�(v + �)) �� !�����2+ �����S  � + cos(2�v) �� !�����2�dv� d�j�j1��+ ������� ������+� Z 1=2�1=2 ZT1 Z 10 �����S 0  � + cos(2�(v + l�)) �� !�����2 dldv d�j�j1�� (4:19)� C(�) ������� ������+� ZT1(jSj2 + jS0j2) � + cos(2�v) �� ! dv: (4:20)Clearly,jS(r)j2 + jS0(r)j2 � �(r)r2 + 2j�0(r)j2r2 + 2�(r)r4 � 1r�1=227r2 : (4:21)Using (4.21) in (4.20) leads toT � C(�) ������� ������+� J 2�� ; 2�� : (4:22)Collecting estimates (4.16) and (4.22) leads toj < f̂ >� (�; �)j2 � 2 k�k2L1kf̂(�; �; �)k2L2 I �� ; ��+4C1 (kĝ(�; �; �)k2;�)2 (k�k1;2;�)2 1�2 J 2�� ; 2��22



+2C(�) (kĝ(�; �; �)k2;�)2 k�k2L1 1�2 ������� ������+� J 2�� ; 2�� : (4:23)Now it su�ces to appeal to Lemma 2,j < f̂ >� (�; �)j2 << �1=2(�2 + � 2)�1=4"k�k2L1kf̂(�; �; �)k2L2+ 1�2 (kĝ(�; �; �)k2;�)2 (k�k1;2;�)2+C(�) 1�2 (�2+�2)�+�2j�j�+� (kĝ(�; �; �)k2;�)2k�k2L1# :(4:24)Choosing � = (�2 + � 2) �+�2(2+�+�) (4:25)leads to j < f̂ >� (�; �)j2 << (�2 + � 2)� 12(2+�+�)k�k2L1"kf̂(�; �; �)k2L2+(kĝ(�; �; �)k2;�)2�+ (�2 + � 2)�1+2(�+�)2(2+�+�) (k�k2;�)2 (kĝ(�; �; �)k1;2;�)2 : (4:26)Remark 1 Clearly, Proposition 5 can be generalized to dimensions higherthan one, to spaces other than L2 (Besov spaces for examples, by repeatingthe same method on a dyadic decomposition) etc.. We have not sought themaximum generality, but just the statement that �ts the problem of interesthere.5 Proof of Theorem A.We begin with a Proposition which achieves what is prescribed in step 3 ofthe method in section 1.Proposition 6 Let f 2 L2(R�T1 �T1) be such that, for some � 2]0; 2[:ZR ZT1(kf(t; x; �)k2;�)2dxdt < +1 (5:1)and there exists C > 0, � 2]0; 2[, �1, �2 2 R�+ and nonnegative functions h1,h2 2 L1(R2) such that, for all � 2 C1(T1),j < f̂ >� (�; �)j223



� C hk�k2L1(� 2 + �2)��1h1(�; �) + (k�k1;2;�)2(� 2 + �2)��2h2(�; �)i : (5:2)Then, one hasZR�T1�T1 1�2+�2�1 (� 2 + �2)inf(�1 ��+2 ;�2 ��+�+2 )jf̂(�; �; v)j2 d�d�dv < +1 : (5:3)Proof. One has:ZT1 jf̂ (�; �; v)j2 dv << ZT1 ����ZT1 f̂ (�; �; w) s(w � v) dw����2 dv+ ZT1 ����ZT1 [f̂(�; �; v)� f̂(�; �; v + w)] s(w) dw����2 dv (5:4)for all s 2 L1(T1) such that s � 0 a.e. and RT1 s(v)dv = 1. By assumption(5.2) ZT1 jf̂(�; �; v)j2 dv << (� 2 + �2)��1h1(�; �) ZT1 ks(� � v)k2L1 dv+(� 2 + �2)��2h2(�; �) ZT1(ks(� � v)k2;�)2 dv+ ZT1 ����ZT1 [f̂(�; �; v)� f̂(�; �; v + w)] s(w) dw����2 dv<< (� 2 + �2)��1h1(�; �) ksk2L1 + (� 2 + �2)��2h2(�; �) (ksk1;2;�)2+ ZT1 ZT1 jf̂(�; �; v)� f̂(�; �; v + w)j2 s(w) dwdv : (5:5)Next we choose a particular type of function s. Speci�cally, we choose afamily (s�)�>0 of functions in L1(T1) such that s� � 0 a.e. and RT1 s�(v) dv =1 for all � > 0, verifying, in addition, the following estimates (as � ! 0):s�(�) << ��1�� �� ; (5:6)ks�k2L1 << ��2; (5:7)and (ks�k1;2;�)2 << C(�) ����2 : (5:8)The construction of such a family (s�)�>0 is postponed until after the proofof Proposition 5.1. Then ZT1 jf̂(�; �; v)j2 dv24



<< ��2(� 2 + �2)��1h1(�; �) + ����2(� 2 + �2)��2h2(�; �)+ �� (kf̂(�; �; �)k2;�)2 : (5:9)When � 2 + �2 � 1, optimizing in � leads toZT1 jf̂(�; �; v)j2dv << (� 2 + �2)� inf(�1 ��+2 ;�2 ��+�+2 )� �h1(�; �) + h2(�; �) + (kf̂(�; �; �)k2;�)2� : (5:10)The proof is complete modulo the construction of the family (s�)�>0. //Construction of the family (s�)�>0.We introduce the functiont�(v) = � sup(jvj; �)��1�� ;for all v 2] � 1=2; 1=2[, and � > 0 (small enough), and we extend it byperiodicity to get an element of L1(T1).First, observe thatjjt�jjL1(T1) = (2 + 2� ) ��� +O(1) ;jjt�jjL1(T1) = ��1�� :Also, since t�(x) = t1(x� ) ��1��one has, for all x 2 R; � > 0,(kt�k1;2;�)2 = supv2T1 Z 1=2�1=2 jt�(v + �)� t�(v)j2 j�j�1�� d�� supv2R Z +1�1 jt�(v + �)� t�(v)j2 j�j�1�� d�� ��2�2 ��� supy2R Z +1�1 jt1(y + � )� t1(y)j2 j� j�1�� d�<< ��2�2 ��� :De�ning s�(v) = t�(v)jjt�jjL1(T1) ;25



we get estimates (5.6) { (5.8). //Proof of Theorem A: We �nally apply the estimates above to entropicsolutions of eqs. (1.1.6) { (1.1.9).Let 0 � f0 2 L1(T1 �T1), and b satisfy (1.1.8). Then, we know thanksto proposition 3 that there exists an entropic solution f to (1.1.6) { (1.1.9).Let g be de�ned byg(t; x; v) = � �f (t; x)f(t; x; v) if t � 0;0 if t � 0:Then, one can extend f on R�T1 �T1 in such a way that (4.9) holds.By the inequality (1.2.1) and the L1 bound on f , (4.8) also holds with� = 
 � 1.Applying Proposition 5, we see that the estimates of Proposition 6 holdwith �1 = 12 (1+
+�) ; �2 = 1+2(
�1��)2 (1+
+�) ;� = 
 � 1, and (by proposition 5), � = 
�12 � �2 (or � = 
 � 1 if f0 � R0 a.e.for some R0 > 0).This gives the following estimate (for all � > 0)ZR�T1�T1 1�2+�2�1 (� 2 + �2) 
�12 (
+1) (
+3)��jf̂(�; �; v)j2 d�d�dv < +1 :In addition, Proposition 4 shows thatf 2 L2(R+ �T1;H 
�12 ��(T1)) ;which establishes the �rst part of Theorem A.The corresponding estimates if f0 � R0 a.e. for some R0 > 0 areZR�T1�T1 1�2+�2�1(� 2 + �2) 
�12 (
+1)2��jf̂ (�; �; v)j2 d�d�dv < +1and f 2 L2(R+ �T1;H
�1(T1)) ;and the second part of theorem A is proven. //26



6 The Landau-Fokker-Planck Approximation.In this last section, we give a short proof of Theorem B.Proof of Theorem B The L1 estimate on f " shows that, up to extractionof a subsequence, f " converges to f in L1(R�+ �T1 �T1) weak-*.Using the following variant of formulation (2.18),@tf "(t; x; v) + cos(2�v)@xf "(t; x; v) = �"f (t; x)� @2v�Z 1=2�1=2 Z 1�1 2 (1 � juj) f "(v + " u �) du j�j2 b(�) d��and observing that���� Z 1=2�1=2 Z 1�1 2 (1 � juj) f "(v + " u �) du j�j2 b(�) d������ jjf "jjL1(R�+�T1�T1) Z 1=2�1=2 �2 b(�) d�� jjf0jjL1(T1�T1) 2C1 (1=2)3�
 ;we appeal to the standard averaging lemmas (see [DP, L]) to show thatthe quantity �f" converges a.e. on R�+ � T1 (again up to extraction of asubsequence) towards �f .In order to pass to the limit in the nonlinear collision term, we only needto show the following: for all smooth function ' of the variable v, the quantity�"f (t; x) ZT1 Z "=2�"=2 f "(t; x; v)�'(v + �) + '(v � �)� 2'(v)� "�3 b( �� ) d�dv= �"f (t; x) ZT1 f "(t; x; v)�Z 1=2�1=2 Z 1�1 2 (1 � juj)'00(v + � u �) du j�j2 b(�) d�� dvconverges (in L1(R�+ �T1) weak-*) towards�f (t; x) ZT1 f(t; x; v)'00(v) dv Z 1=2�1=2 �2 b(�) d� :But this follows at once from the convergence a.e. of �f". //Acknowledgements. We express our thanks to Aline Bonami for her valu-able advice during the preparation of this paper. Both authors were sup-ported by the TMR \Asymptotic Methods in Kinetic Theory", ERB FMRXCT97 0157. 27
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