
ON A VARIANT OF KORN'S INEQUALITY ARISING INSTATISTICAL MECHANICSL. DESVILLETTES AND C. VILLANIAbstract. We state and prove a Korn-like inequality for a vector �eld in a boundedopen set of RN, satisfying a tangency boundary condition. This inequality, which iscrucial in our study of the trend towards equilibrium for dilute gases, holds true ifand only if the domain is not axisymmetric. We give quantitative, explicit estimateson how the departure from axisymmetry a�ects the constants; a Monge-Kantorovichminimization problem naturally arises in this process. Variants in the axisymmetric caseare brie
y discussed. 1. IntroductionKorn's inequality asserts the control of the L2 norm of the gradient of a vector �eld bythe L2 norm of just the symmetric part of this gradient, under certain conditions. Hereis a rather general version: let 
 be a smooth bounded open set in RN (N � 2 to avoidtrivial situations), then there exists a constant K(
) > 0, such that for all vector �eldsu : 
! RN, krsymuk2L2(
) � K(
) infR2R(
)kr(u�R)k2L2(
)(1)(see Friedrichs [6, ineq. (13), Second case], or Duvaut-Lions [5, ineq. (3.49)]). Here ruand rsymu are matrix-valued applications de�ned by(ru)ij = @ui@xj ; (rsymu)ij = 12 �@ui@xj + @uj@xi� ;and R(
) stands for the �nite-dimensional set of rigid motions on 
, i.e. a�ne mapsR : 
! RN whose linear part is antisymmetric. Moreover, when u = (uj) andM = (mij)are respectively a vector �eld and a matrix �eld on 
, we use the natural notationskukLp(
) = �Z
 jujp�1=p ; kMkLp(
) = �Z
 jM jp�1=p ;where juj =vuut NXj=1 u2j ; jM j =sXij m2ij:Note that R is optimal in the right-hand side of (1) if and only if its linear part rR isjust the average of the antisymmetric part of ru over 
.Two commonly used variants of this inequality are the following:kuk2L2(
) + krsymuk2L2(
) � K 0(
)�kuk2L2(
) + kruk2L2(
)�;(2) 1



2 L. DESVILLETTES AND C. VILLANIand uj� = 0 =) krsymuk2L2(
) � K0(
)kruk2L2(
);(3)where � is a subset of @
 with positive measure. Again, K 0(
) and K0(
) are positiveconstants only depending on 
. When � = 
, inequality (3) is very simple, as alreadynoticed by Korn himself (see the remark in the appendix). In all the other cases, inequal-ities (1){(3) are much more delicate. We note that they still hold true if the L2 norms arereplaced by Lp norms (1 < p <1). Also a more \global" variant of (1) was establishedin a famous study by Kohn [12]:infR2R(
)ku�RkLq(
) � Cp(
)krsymukLp(
);for any p 2 [1;+1), p 6= N , with q = Np=(N � p) (q =1 if p > N). Korn's inequalityplays a fundamental role in elasticity theory (thinking of u as a displacement vector �eld)and also in hydrodynamics (thinking of u as a velocity vector �eld).There is by now a huge literature on the subject: a research on the electronic databaseMathSciNet lists about 300 references directly concerned with Korn's inequality. Amongthe topics discussed there, let us only mention estimates of the best constants in certainsituations (see for instance [2]), links with complex variable theory when N = 2 (seefor instance [11]), or generalizations to surfaces (see for instance [1, Vol. III]). Ciarlet [1,Vol. I, p. 291] enumerates about half a dozen proofs of Korn's inequality, one of which isdetailed, and provides background on its applications. Horgan [10] summarizes the majorknown results for bounded domains in two and three dimensions, with emphasis on theestimates of the constants.Korn's original proofs [13] were considered somewhat obscure, and many authors haveendeavored to give simpli�ed and improved arguments. Gobert [8] has proven (2) withthe help of the theory of singular integral operators. The name of J.-L. Lions is attachedto a particularly elegant and robust proof [5, section 3.3], which we will recall below. Anelementary constructive proof of (2), based on extension operators, has been given byNitsche [14]. We also mention Oleinik's beautiful argument [15] towards (2), based on aclever use of elementary estimates for harmonic functions and Hardy inequalities.Let us here brie
y recall Lions' argument [5] towards (1) (actually, a very slight variationof it). It is based on the following two lemmas. The �rst one has been known sinceimmemorial times, while the second is part of the theory of distributions.Lemma 1. Let u 2 H1(
;RN). Then, for all i; j; k 2 f1; : : : ; Ng,@2uk@xi @xj = @@xi (rsymu)jk + @@xj (rsymu)ik � @@xk (rsymu)ij:(4)In this lemma, the notation H1(
) stood for the usual Sobolev space de�ned by thenorm kfk2H1 = kfk2L2 + krfk2L2, and derivatives were taken in distributional sense. Fromlemma 1 we only retain theCorollary 1. Each partial derivative of each component of ru can be written as a linearcombination of partial derivatives of components of rsymu.



ON A VARIANT OF KORN'S INEQUALITY 3In short, rru is a \matrix combination" of rrsymu. For the next lemma, we shallintroduce the notation hfi = 1j
j Z
 f;where j
j stands for theN -dimensional volume of 
. Of course hfi is just the L2 projectionof f onto the space of constant functions. We also de�ne the H�1 norm of a given function(or distribution) f in 
 bykfkH�1(
) = sup�Z
 f'; ' 2 D(
); kr'kL2(
) � 1� ;where D(
) stands for the space of C1 functions with compact support in 
. When v isan L2 vector �eld on 
, we naturally de�nekvk2H�1(
) = NXi=1 kvik2H�1(
):Then one has theLemma 2. There exists a constant C(
), only depending on 
, such that for all f 2L2(
), krfk2H�1(
) � Nkf � hfik2L2(
) � C(
)krfk2H�1(
):(5)Corollary 2. Let f and gij (1 � i, 1 � j) be L2 real-valued functions on 
, such that forall i, @f@xi =Xj �ij @gij@xj :Then kf � hfik2L2 � N2C(
)�supij j�ijj2�Xij kgijkL2(
):(6)Note that the constant C(
) in the above formula is invariant by dilation of 
, buthas to depend on the shape of the domain, as can be seen by looking at the case when
 is very elongated in one direction. For instance, in dimension N = 2, choose 
 =f(x1; x2) 2 R2; ("x1)2+(x2=")2 � 1g. By considering f(x) = x1, g12(x) = x2, gij = 0 else,one immediately sees that C(
)! +1 as "! 0.The �rst inequality in (5) is readily obtained by integration by parts, and only thesecond one is tricky. It can be shown by closed graph theorem, or by the construction ofan appropriate extension operator. The variant which is explicitly proven in [5] iskfkL2 � C�kfkH�1 + krfkH�1�:(7)We also give the sketch of a simple, constructive proof communicated to us by Y. Meyer.Denoting by ��1 the bijective operator from H�1(
) to H10 (
) corresponding to thesolution of the Laplace problem on 
 with Dirichlet boundary condition, one has�f = �" NXj=1 @j��1(@jf)# :



4 L. DESVILLETTES AND C. VILLANIHere we use the shorthand @j = @=@xj. In particular,kfkL2(
) � 

 NXj=1 @j��1@jf

L2(
) + kwfkL2(
);where wf is harmonic on 
. But there exists a constant C, only depending on 
, suchthat 

 NXj=1 @j��1@jf

L2(
) � C NXj=1 k@jfkH�1(
);so it is su�cient to prove lemma 2 for harmonic functions on 
. Remembering that 
 issmooth and connected, we conclude by using the relationship between harmonic functionson 
 belonging to Sobolev spaces and their traces on @
. (since @
 has no boundary, theproof can be carried out on this set by use of local charts, reduction to RN�1 and Fouriertransform).It remains to understand why Corollaries 1 and 2 together imply (1). For this, let raustand for the antisymmetric part of ru,(rau)ij = 12 �@ui@xj � @uj@xi� :From Corollaries 1 and 2 it follows that krau � hrauikL2(
) is bounded by a constantmultiple of krsymukL2(
). Then (1) is a consequence ofkru� hrauik2 = krsymuk2L2(
) + krau� hrauik2L2(
):2. Motivation and main resultWe shall now explain our interest in Korn's inequality. The present work was notmotivated by elasticity or hydrodynamics, but by a di�erent area of applications, namelystatistical physics, and more precisely the kinetic theory of rare�ed gases. Let us sketchthe problem.Since the works of Maxwell and Boltzmann more than a hundred years ago, it has beenadmitted by physicists that a gas enclosed in a bounded box, undergoing appropriateboundary interaction, should approach a certain steady state as time becomes large. Herethe gas is modelled by the Boltzmann equation, which is supposed to accurately describecollisions inside a dilute gas. This steady state would achieve a maximum of the entropyunder the constraints imposed by the physical conservation laws. And at least for genericshape of the box, it would be a rest state, in the sense that the density and temperaturewould be constant all over the box, and that there would be no macroscopic velocity �eld.Such a statement cannot be true for all boxes: in fact, when the box has cylindrical shape,and specular boundary condition is enforced (meaning that particles just bounce on theboundary of the box according to the Snell-Descartes laws), then there are steady stateswhich are not at rest, and possess a \rotating" velocity �eld. This does not contradict theprinciple of maximum entropy, because the presence of an axis of symmetry induces anadditional conservation law (the conservation of a coordinate of the angular momentum).



ON A VARIANT OF KORN'S INEQUALITY 5In all other realistic situations (at least when the boundary conditions do not depend ontime), it is expected that the distribution of particles does converge towards a rest state.The mathematical justi�cation of this guess is rather easy as soon as suitable a prioribounds on solutions of the Boltzmann equation have been obtained. Such bounds are nottrivial at all, and at present seem to have been established only in a close-to-equilibriumsetting for a convex box (this was achieved in the seventies, see for instance Shizuta andAsano [18]). But once they are settled, then the result of trend to equilibrium is an imme-diate consequence of the classi�cation of steady states (see for instance Desvillettes [3])and an elementary compactness argument.Now, what turns out to be much more complicated is to get a quantitative result ofconvergence to equilibrium, with explicit rates of convergence. By this we mean thefollowing: let be a solution of the Boltzmann equation, not necessarily close to equilibrium,satisy�ng \natural" a priori estimates, uniform in time, then can one �nd explicit estimateson how fast it converges towards equilibrium? Among the main causes for this tremendousincrease of di�culty are the intricate nature of the Boltzmann collision operator, the factthat it admits three conservation laws (mass, momentum and energy) and the degeneratenature of the Boltzmann equation with respect to the position variable.In a work in progress [4], we overcome these three di�culties, and obtain explicit ratesof convergence to equilibrium for solutions of the Boltzmann equation satisfying certainstrong a priori estimates (smoothness, decay at in�nity, strict positivity). One of the manysteps in that work consists in expressing how much the domain deviates from axisymmetry,in a way which can be used to estimate rates of convergence. By convention, we say thata domain in R2 is axisymmetric if it has a circular symmetry around some point; and thata domain in R3 is axisymmetric if it admits an axis of symmetry (which means that itis preserved by a rotation of arbitrary angle around this axis). For any N � 4, we shallsay that a domain is axisymmetric if its boundary is constituted of a union of spheres(of dimension N � 1) which are centered on a given axis and included in a hyperplaneorthogonal to this axis (see Lemma 5 for an alternative, general de�nition). It turned out,to our surprise, that the degree of non-axisymmetry of the domain 
 could be expressedby means of the following Korn-like inequality.Theorem 3. Let 
 be a C1 bounded open subset of RN (N � 2), with no axis of sym-metry. Let u be a vector �eld on 
 with ru 2 L2(
). Assume that u is tangent to@
: 8x 2 @
; u(x) � n(x) = 0;where n(x) stands for the outer unit normal vector to 
 at point x. Then there exists aconstant K(
) > 0, only depending on 
, such thatkrsymuk2L2(
) � K(
)kruk2L2(
):(8)There are two points to be made about Theorem 3. First, as we already mentioned,it is only via the boundary conditions that it di�ers from more standard versions ofKorn's inequality, like (3) for instance. Indeed, usually one would impose that u vanisheson @
, or at least part of it. In the context of hydrodynamics, this corresponds to thewell-known \no-slip" boundary condition; in elasticity, this re
ects the usual assumptionthat part of the elastic body is attached to some region of the physical space. Apart from



6 L. DESVILLETTES AND C. VILLANIthe present work, Ryzhak's paper is the only one known to us which has been interested intangency boundary conditions. From the point of view of 
uid dynamics, our context ofapplication may seem rather strange, because krsymuk2L2 looks like an energy dissipationterm, of the kind encountered in the theory of the Navier-Stokes equations; but thetangency boundary condition on u is typical of inviscid models, like the Euler equation.There is no contradiction at the level of the modelling, because in our method the termkrsymuk2L2 is not obtained as a dissipation term, but as the leading order, in some sense,of the second derivative of a certain functional.The second point on which we attract the attention of the reader is the importancewhich we give to the value of the positive constant K(
) in (8). In our study of trend toequilibrium, the value of the constant K(
) is used to quantify the deviation of 
 fromaxisymmetry. It is therefore of great interest to have as much insight as possible in theexplicit value of K(
), in terms of the geometry of 
. In fact, the main interest of thepresent work is to provide the following estimates on K(
).Theorem 3 (continued). The largest admissible constant K(
) in (8) satis�esK(
)�1 � 4N�1 + CH(
)��1 +K(
)�1��1 +G(
)�1�;(9)where the various constants above are de�ned as follows:� CH = CH(
) is a constant related to the homology of 
 and the Hodge decomposition,de�ned by the inequalitykrsymvk2L2(
)=V0(
) � CH �kr � vk2L2(
) + kravk2L2(
)� ;(10) or (almost) equivalently by (13) below. Here r � v stands for the divergence of thevector �eld v, r � v = Pi @vi=@xi, and V0(
) is the space of all vector �elds v0 2H1(
;RN) such that r � v0 = 0; rav0 = 0:We recall that V0 is a �nite-dimensional vector space whose dimension depends onlyon the topology of 
.� K(
) is the constant in (1);� and �nally, G = G(
) is what we shall call Grad's number:G(
) = 12j
j inf�2UAN infv2V� krsymvk2L2(
):(11) Here UAN is the space of antisymmetric N �N real matrices with unit norm:� 2 UAN () �� + T� = 0 and j�j = 1�;and for any N � N matrix �, we de�ne V� as the set of all vector �elds in H1(
)satisfying 8><>:r � v � 0; rav � � in 
;v � n = 0 on @
:(12)



ON A VARIANT OF KORN'S INEQUALITY 7Moreover, G(
) > 0 and, at least when N = 2 or 3, an explicit lower bound on G(
)can be given in terms of \basic" geometrical information about how far 
 is from beingaxisymmetric.Remarks:1. In dimension N = 3, one can identify the space A3 of 3 � 3 antisymmetric matricesto R3 in the usual way, via �x = � ^ x. Then, to any � 2 UA3 is associated � 2 S2 suchthat �x = � ^ xp2 :One then recovers (up to a factor j
j) the formula which appears in Grad [9, p. 274]:G(
) = 1j
j inf�2S2 infv2V� krsymvk2L2(
);where V� is de�ned by the equationsr � v = 0; r^ v = �; v � n = 0 on @
:Of course r ^ v is the curl of v. Also when N = 2, one can identify UA2 with S0 =f�1;+1g.2. Grad may not have been the �rst one to consider the quantity G(
), but mostprobably he was the �rst one to understand that this number may be useful in the contextof the Boltzmann equation. Even more, to our knowledge his paper is the only one tomention this fact. This justi�es our terminology of \Grad's number". The present workdrew a lot of inspiration from Grad's paper [9], which is at the same time quite obscure,de�nitely false and really illuminating in certain respects | as we will discuss in [4].3. If 
 is simply connected, which is presumably the most natural case for applications,then V0 = 0 and V� contains a unique element (we shall show in a moment that V� isnever empty).4. Our primary goal was to obtain fully explicit lower bounds for K(
) in terms ofsimple geometrical information about 
; to achieve this completely with our method, wewould have to give quantitative estimates on CH. Unfortunately, we have been unable to�nd explicit estimates about CH in the literature, although it seems unlikely that nobodyhas been interested in this problem. Of course, when N = 3 and 
 is simply connected,estimate (10) is equivalent tokruk2L2(
) � CH(
)�kr � uk2L2(
) + kr ^ uk2L2(
)�;(13)up to possible replacement of CH by CH + 1. This is an estimate which is well-known tomany people, but for which it seems very di�cult to �nd an accurate reference. Inequal-ity (10) can be seen as a consequence of the closed graph theorem; for instance, in thecase of a simply connected domain, one just needs to note that (i) krauk2L2 + kr �uk2L2 isbounded by kruk2L2, (ii) the identities r � u = 0, rau = 0, u � n = 0 (on the boundary),together imply u = 0; so in fact the norms appearing on the left and on the right-hand sideof (10) have to be equivalent. The proof of point (ii) is as follows: from Poincar�e's lemmain a simply connected domain, there exists a real-valued function  such that r = u;



8 L. DESVILLETTES AND C. VILLANIthen  is a harmonic function with homogeneous Neumann boundary condition, so it hasto be a constant, and u = 0.Of course this argument gives no insight on how to estimate the constants. As pointedout to us independently by O. Druet and by D. Serre, one can choose CH(
) = 1 if 
 isconvex, but the general case seems to be much harder. Anyway this is a separate issuewhich has nothing to do with axisymmetry; all the relevant information about axisym-metry lies in our estimates on G(
)�1.The organization of the paper is as follows: after a short proof of Theorem 3 in section 3,we shall give some quantitative estimates on the positivity of G(
) in section 4, and �nallygive a brief discussion of the axisymmetric case in section 5. In an appendix, we reproducea proof of the abovementioned estimate of CH when 
 is convex, which was communicatedto us by O. Druet. 3. Proof of Theorem 3To begin with, let us check that De�nition (11) makes sense.Lemma 4. For any � 2 UAN , the set V� is not empty.Proof. Let � 2 UAN , and let ' be a solution of the Laplace problem8><>:�' = 0 in 
r' � n = �� � n on @
.(14)The existence of ' is ensured by the identity R� n(x) d�(x) = 0 for each connected part �of @
. Then de�ne v(x) = r'(x) + �x; one easily checks that v 2 V�.Remark: When 
 is simply connected, this is the only solution.We now proceed to prove Theorem 3.Proof of Theorem 3. Let us start from inequality (1), in the formkrau� hrauik2L2(
) + krsymuk2L2(
) � K(
)�1krsymuk2L2(
):(15)If hraui = 0, then we are done. If not, introduce� = hrauijhrauij 2 UAN ; � = jhrauij > 0:Let v 2 V�, then 8><>:r � (�v) = 0; ra(�v) = hraui in 
;v � n = 0 on @
;(16)so that (15) implies Z
 jra(u� �v)j2 � K(
)�1krsymuk2L2(
)



ON A VARIANT OF KORN'S INEQUALITY 9and Z
 jra(u� �v)j2 + Z
 jr � (u� �v)j2 � N K(
)�1krsymuk2L2(
):(17)In particular, Z
 jrauj2 � 2Z
 jra(u� �v)j2 + 2�2 Z
 jravj2(18) � 2K(
)�1krsymuk2L2(
) + 2�2j
j(19)(recall that jravj � 1).To conclude the proof of Theorem 3, it only remains to bound j
j�2 in terms ofkrsymuk2L2. This is the point where Grad's number will show up ! From (10) and (17) weknow that there exists w0 2 V0 such thatZ
 jrsym(u� �v � w0)j2 � CH(
)�Z
 jra(u� �v)j2 + Z
 jr � (u� �v)j2�� N CH(
)K(
)�1krsymuk2L2(
):Without loss of generality, we may assume w0 = 0: if this is not the case, replace v byv + w0=�, which is still an element of V�. So we know that there exists v 2 V� such thatZ
 jrsym(u� �v)j2 � N CH(
)K(
)�1krsymuk2L2(
):(20)Then �2 Z
 jrsymvj2 � 2�N CH(
)K(
)�1 + 1�krsymuk2L2(
):Recalling de�nition (11), we conclude thatj
j�2 � �N CH(
)K(
)�1 + 1�G(
)�1krsymuk2L2(
):This combined with (18) concludes the proof.4. Estimates of Grad's numberWe now proceed to give some estimates from below for G(
) under the assumption that
 is not axisymmetric. First of all, we recall a useful geometrical lemma, whose proofis omitted. It is based on the fact that an antisymmetric linear map in RN admits aninvariant 2-dimensional plane.Lemma 5. Let 
 be a smooth bounded open subset of RN, N � 2. Then, it is axisym-metric if and only if there exists a nontrivial rigid motion R which is tangent to @
; orequivalently, which satis�es 8t 2 R; etR
 = 
;or, equivalently, which satis�es9t0 > 0; 8t 2 [0; t0]; etR
 = 
:



10 L. DESVILLETTES AND C. VILLANIHere etR is the isometry de�ned viaddtetR(x) = RetR(x);and we use the shorthand etRx = etR(x).Next, let us recall some useful concepts from the theory of mass transportation, orMonge-Kantorovich minimization problems. Whenever � is a probability measure on RNand T : RN ! RN is a measurable map, one de�nes the image measure T#� of � by Tvia the identity T#�[A] = �[T�1(A)]:Whenever � and � are two probability measures on RN, and p � 1 is given, one can de�nethe Wasserstein distance of order p between � and � by the formulaWp(�; �) = inf�2�(�;�)�ZRN�RN jx� yjp d�(x; y)�1=p ;(21)where �(�; �) stands for the set of all probability measures on RN � RN with marginals� and �. In other words, � belongs to �(�; �) if and only if for all bounded continuousfunctions ',  on RN,ZRN�RN['(x) +  (y)] d�(x; y) = ZRN 'd� + ZRN  d�:From de�nition (21) one easily checks the convexity of W pp with respect to � and �. Animportant thing to know is that when � and � are absolutely continuous with respect toLebesgue measure, then we have the equivalent de�nitionWp(�; �) = infT#�=��ZRN jx� T (x)jp d�(x)�1=p ;(22)where the in�mum is taken over all maps T : RN ! RN such that the image measure of� by T coincides with �. This and much more background on Wasserstein distances canbe found in [17] for instance.In the sequel, we shall use Wasserstein distances with particular probability measures,which will be of the form L
 = 1
j
j L;where L stands for the Lebesgue measure on RN.We can now state our main estimates. We shall use the standard notationdist (x;A) = infy2A jx� yj:Proposition 6. Let 
 be a smooth bounded open subset of RN. Then, G(
) > 0 if andonly if 
 is not axisymmetric. Moreover, for any T > 0 one has the estimatesG(
) � 12j
jP (
) e�2TT 3 infR2R1 Z T0 W2 (L
;LetR
)2 dt(23)



ON A VARIANT OF KORN'S INEQUALITY 11and G(
) � 12j
jP (
) e�2TT 3 infR2R1 Z T0 Z
 dist (etRx;
)2 dx dt:(24)where R1 is the set of all rigid motions on RN of the form R(x) = �x+ b, with j�j = 1,and P (
) is the Poincar�e-Wirtinger constant, de�ned as the smallest admissible constantin the functional inequality kf � hfik2L2(
) � P (
) krfk2L2(
):(25)Moreover, when N = 2 or N = 3, a simpli�ed lower bound can be given as follows.De�ne the center of mass g of 
 by g = 1j
j Z
 x dx:Case N = 2 : De�ne 
� as the image of 
 by the rotation of angle � around g, andconstruct 
sym by symmetrizing 
 around g:
sym = [0���2�
�:Further de�ne the probability measure Lsym
 by symmetrization of L
,Lsym
 = 12� Z 2�0 L
� d�:Then there exists a numeric, explicit constant K such thatG(
) � Kj
jP (
) 12� Z 2�0 W2 (L
;L
�)2 d�(26) � Kj
jP (
) W2 (L
;Lsym
 )2(27) � Kj
jP (
) Z
symn
 dist (y;
)2 dLsym
 (y):(28)Case N = 3 : For any � 2 S2 de�ne �� as the line going through g and directed by�. Then de�ne 
�� as the image of 
 by the rotation of angle � around the axis ��, andde�ne 
sym;�, Lsym;�
 by symmetrization of 
 and L
 respectively:
sym;� = [0���2� 
�� ; Lsym;�
 = 12� Z 2�0 L
�� d�:



12 L. DESVILLETTES AND C. VILLANIThen there exists a numeric, explicit constant K such thatG(
) � Kj
jP (
) inf�2S2 12� Z 2�0 W2 �L
;L
�� �2 d�(29) � Kj
jP (
) inf�2S2W2 (L
;Lsym;�
 )2(30) � Kj
jP (
) inf�2S2 Z
sym;�n
 dist (y;
)2 dLsym;�
 (y):(31)Remarks:1. Note that Lsym
 6= L
sym !!2. Of course, in dimension 2, 
 is axisymmetric if and only if 
 = 
sym, which isequivalent to L
 = Lsym
 . Similarly, in dimension 3, 
 is axisymmetric if and only if thereexists � 2 S2 such that 
 = 
sym;�, which is equivalent to L
 = Lsym;�
 . The bounds (28)and (31) are of course extremely simple, but sometimes the bounds (27) and (30) aremuch more precise. We shall discuss this at the end of the section.3. It is quite easy to compute Lsym
 and Lsym;�
 \explicitly". For instance, in dimension 2,if we introduce a system of polar coordinates (r; �) with center g, then the density of Lsym
at a point (r0; �0) is given by 12� ���f� 2 [0; 2�]; (r0; �) 2 
g���:A similar expression can be derived in dimension 3 if one introduces a system of cylindricalcoordinates with vertical direction �.Proof of Proposition 6. It is immediate to show that G(
) = 0 if 
 is axisymmetric.Conversely, let us show that if 
 is not axisymmetric, then G(
) > 0. Assume bycontradiction that G(
) = 0, so there exists a sequence �n 2 UAN , vn 2 V�n such thatkrsymvnkL2 �! 0 as n ! 1. Then krvnkL2 is bounded, since kravnk is also bounded.By Poincar�e-Wirtinger's inequality (25) the sequence (vn�hvni) is bounded in H1(
;RN).Up to extraction of a subsequence, we may assume that it converges towards some v,weakly in H1(
;RN). Since UAN is compact, we may also assume that �n convergestowards some � 2 UAN as n!1. Then it is easily checked that v 2 V� and rsymv = 0,so in fact rv = � and v is a rigid motion. By Lemma 5, 
 is axisymmetric.Next, we turn to estimates (23) and (24). Let � 2 UAN , and let v 2 V�. De�ne therigid motion R by R(x) = �x+ b;where b 2 RN will be chosen later on. Introduce the exponential maps, solutions of8>>><>>>: ddtetv(x) = v(etv(x));ddtetR(x) = R(etR(x)):(32)



ON A VARIANT OF KORN'S INEQUALITY 13Then, ddtjetv(x)� etR(x)j � jv(etv(x))�R(etR(x))j� jv(etv(x))�R(etv(x))j+ jR(etv(x))�R(etR(x))j:Since the Lipschitz norm of R is j�j = 1, the last term is bounded by jetv(x) � etR(x)j,and by Gronwall's lemmajetv(x)� etR(x)j � et Z t0 jv(esv(x))�R(esv(x))j ds:Then, a crude estimate yields1T Z T0 jetv(x)� etR(x)j2 dt � Te2T Z T0 jv(esv(x))�R(esv(x))j2 ds:Integrating over 
, we �nd1T Z T0 Z
 jetv(x)� etR(x)j2 dx dt � Te2T Z T0 Z
 jv(etv(x))�R(etv(x))j2 dx dt:(33)Next, since v is divergence-free, we know that the image measure of the Lebesgue measureon 
 by the map etv is just the Lebesgue measure. So the right-hand side of (33) is infact Te2T Z T0 Z
 jv(x)�R(x)j2 dx dt = T 2e2T Z
 jv(x)�R(x)j2 dx:Now we choose b in such a way that hv � Ri = 0. Combining (33) with Poincar�e'sinequality (25) we obtain1T Z T0 Z
 jetv(x)� etR(x)j2 dx dt � P (
)T 2e2T Z
 jrv(x)� �j2 dx:But rav = � ! So this inequality can be rewritten as1T Z T0 Z
 jetv(x)� etR(x)j2 dx dt � P (
)T 2e2T Z
 jrsymvj2 dx:(34)Now, since v is tangent to the boundary of 
, it follows that for all x 2 
, one hasetv(x) 2 
. Thus the left-hand side of (34) is bounded below by1T Z T0 Z
 dist �etR(x);
�2 dx dt;which proves (24).To prove (23), start again from (34), and use the fact that etv is a measure-preservingdi�eomorphism of 
 (with inverse e�tv) to getZ
 jetv(x)� etR(x)j2 dx = Z
 jx� etR � e�tv(x)j2 dx;next note that (e�tR � e�tv)#L
 = e�tR#L
 = Le�tR
, because e�tR preserves Lebesguemeasure on RN. Apply de�nition (22) to conclude.



14 L. DESVILLETTES AND C. VILLANIWe now proceed to establish the simpli�ed expressions when N = 2 or 3. We shall onlytreat the case N = 2 since the case N = 3 is exactly similar. Without loss of generality,we assume g = 0. Let R be a rigid motion of R2 of the form R(x) = �x+ b, with j�j = 1.Then ep2�R is the rotation of angle � around a certain point x0, independent of t. Onecan write ep2�Rx = x0 + ��(x� x0);where �� stands for the rotation of angle � around 0. Note that e2p2�R is the identity.We shall show that for any � 2 [0; 2�],Z
��ep2�v(x)� ep2�R(x)��2 dx � Z
��ep2�v(x)� ��(x)��2 dx;(35)in other words, the left-hand side of (35) can only become smaller if we impose Rg = 0.This will prove that we only need to consider the symmetrization around g.To prove (35) we write, using the notation I for the identity,Z
��ep2�v(x)� ep2�R(x)��2 dx = Z
��ep2�v(x)� x0 � ��(x� x0)��2 dx= Z
��ep2�v(x)� ��(x)��2 dx+ j
j��(I � ��)x0��2 � 2�Z
[ep2�v(x)� ��(x)] dx; (I � ��)x0� :Then we notice that, since ep2�v is a measure-preserving map from 
 into itself,Z
 ep2�v(x) dx = Z
 x dx = 0;while Z
 ��(x) dx = �� �Z
 x dx� = ��(0) = 0:Thus Z
��ep2�v(x)� ep2�R(x)��2 dx = Z
��ep2�v(x)� ��(x)��2 dx+ j
j��(I � ��)x0��2;which proves (35).Remark: A reader familiar with mass transportation may have recognized the elemen-tary argument used to prove that the Monge-Kantorovich transportation problem withexponent 2 commutes with translations.From (35) and (23) we deduce (26). Then, (27) follows by convexity of W 22 . Next, bysymmetry of the Wasserstein distances,W2 (L
;Lsym
 )2 = infT#Lsym
 =L
 Z
sym jx� T (x)j2 dLsym
 (x):Of course, if T#Lsym
 = L
, then necessarily T (
sym) � 
, so that jx � T (x)j in theintegrand is greater than dist (x;
). This proves (28).



ON A VARIANT OF KORN'S INEQUALITY 15We conclude this section with some simple remarks about practical computations. Aswe said before, formulas (28) and (31) are very convenient and can easily be computednumerically. On the other hand, if 
 is very close to be axisymmetric, these lower boundsmay become much smaller than G(
). Consider for instance the situation where 
 is avery slightly elongated ellipse in the plane, something likeE = �(x1; x2) 2 R2; x21 + x221 + " � 1� ; 
 = EpjEj(here we have normalized the volume of 
 to unity) for small ". Then the symmetrizedLebesgue measure of 
 takes value 1 within a disc centered at 0, with radius approxi-mately 1, and then decreases to 0 on a thin shell of thickness O("). One can then showthat Z
sym dist (x;
)2 dLsym
 (x) = O("3):On the other hand, from elementary mass transportation theory,W2 (L
;Lsym
 )2 is at least of the order of "2:(36)A way to arrive at (36) is to apply the inequalityW2 (L
;Lsym
 )2 � W1 (L
;Lsym
 )2 ;and then to use the identityW1(�; �) = W1([�� �]+; [�� �]�):(37)The idea behind (37) is that when the cost function is a distance, then all the masswhich can stay in place in the transportation process (the shared mass between � and�) can be required to do so, and this does not a�ect the value of the optimal cost. Notethat in the right-hand side of (37), we have extended the de�nition of W1 to arbitrarynonnegative measures with a common mass, not necessarily normalized to 1. Then itis easy to convince oneself that transporting [L
 � Lsym
 ]+ onto [L
 � Lsym
 ]� with costc(x; y) = jx� yj requires at least a cost of order ", because at least a mass of order " hasto be moved on a distance of order 1.5. Some remarks about the axisymmetric caseWhat becomes of Theorem 1 when 
 is axisymmetric ? The question is of interest forour problem of relaxation to thermodynamical equilibrium, since it is natural to ask whathappens if the gas is enclosed in a cylinder. When the dimension N is 3 or higher, thenone should make the distinction between a cylinder with only one axis of symmetry, anda spherically symmetric domain. Recall that if a domain 
 � RN (N � 3) admits twononparallel axes of symmetry, then it is spherically symmetric around some point.If 
 has spherical symmetry, then we should just be content with inequality (1). WhenN � 3, the case of a cylinder with a unique axis of symmetry, is a little bit more involved.For simplicity let us only consider N = 3. Without loss of generality, assume that the



16 L. DESVILLETTES AND C. VILLANIaxis of symmetry of 
 passes through g = 0 and is directed by ! 2 S2. Introduce theorthogonal decomposition hr ^ ui = �� + �!; �?!:Introduce a rigid rotation R around !, of the form R(x) = �! ^ x; thenhr ^ (u�R)i = ��; rsym(u�R) = rsymu:Since R is tangent to the boundary of 
, one can repeat the proof of Theorem 3 and �ndkrsymuk2L2(
) � K(
) infR2R!(
) kr(u�R)k2L2(
);(38)where R!(
) stands for the set of all rotations with axis !. Moreover, R is optimal inright-hand side of (38) if and only if r^R is the average of the orthogonal projection ofr^ u onto !, and the constant K(
) is proportional toG!(
) = inf�2S2; ��!=0 infv2V� krsymuk2L2(
):To summarize the situation in dimension 3: if 
 is a ball, then inequality (1) onlyshows that rsymu controls the departure of u from being a rigid motion; while if 
 is acylinder with axis !, then rsymu controls the departure of u from being a rigid motionwith axis !. This is perfectly consistent with the context of trend to equilibrium for theBoltzmann equation, because the last indeterminacy about u will be compensated for by3 additional conservation laws (angular momentum) in the case of a ball, and by oneadditional conservation law (!-component of the angular momentum) in the case of thecylinder. AppendixHere we reproduce the elegant proof, communicated to us by O. Druet, of estimate (10)for a convex domain with CH = 1. It is based on the elementary identityjrsymuj2 � jrauj2 = (r � u)2 +r � �(u � r)u� u(r � u)�:(39)with the usual notation u � r = NXi=1 ui @@xi :Note that identity (39) is well-known in the theory of the Korn inequality because itprovides an elementary proof of (3) when � = @
: indeed, when u = 0 on @
, it implies,by divergence theorem,Z
 jrauj2 = Z
 jrsymuj2 � Z
(r � u)2 � Z
 jrsymuj2:Let us now turn to (10). The problem is somehow opposite since we have to controlthe symmetric part instead of the antisymmetric ! Let u be an arbitrary vector �eld



ON A VARIANT OF KORN'S INEQUALITY 17u 2 H1(
;RN), tangent to the boundary. Again, identity (39) and use of the divergencetheorem imply (remember that u � n = 0 on the boundary)Z
 jrsymuj2 = Z
 jrauj2 + Z
(r � u)2 + Z@
�(u � r)u� u(r � u)� � n(40) = Z
 jrauj2 + Z
(r � u)2 + Z@
�(u � r)u� � n:(41)But, since u is tangent to the boundary, u � r is just the covariant derivative along u, so[(u � r)u] � n = �(u � rn) � u = �II
(u; u);(42)where II
 stands for the real-valued second fundamental form of 
 (see for instance [7,p. 217]). A well-known property of the second fundamental form is that it is nonnegativeas soon as 
 is convex. Thus in the endZ
 jrsymuj2 = Z
 jrauj2 + Z
(r � u)2 � Z@
 II
(u; u) � Z
 jrauj2 + Z
(r � u)2;(43)which immediately implies (10) with CH = 1.D. Serre has a slightly di�erent argument (not more complicated), also based on (42),leading to the same result. We further note that the use of a trace theorem, combinedwith a Poincar�e-like inequality, impliesZ@
 juj2 � C Z
 jruj2;and this together with (43) enables one to get estimates of CH when 
 is a C2 perturbationof a convex set. The general case in which 
 is not close from a convex set looks muchmore di�cult.Acknowledgement: Even if the present paper is rather short, it bene�ted a lot from thekind advice of many colleagues who helped us make our ideas clear about the inequalitieswhich we discussed above: in particular Guy Bouchitt�e, Yann Brenier, Philippe Ciar-let, Olivier Druet, Craig Evans, Giuseppe Geymonat, Etienne Ghys, Yves Meyer, StefanM�uller, Denis Serre, Bruno S�evennec, Jean-Claude Sikorav. It is a pleasure to warmlythank them all.Acknowledgement: The support of the TMR contract \Asymptotic Methods in KineticTheory", ERB FMBX CT97 0157 is acknowledged.Dedication: This work is dedicated to the memory of Jacques-Louis Lions, whose con-tribution to the theory of Korn's inequality was both crucial and beautifully simple. It isalso a tribute to the brilliant intuitions of Harold Grad in the theory of the Boltzmannequation. We are particularly glad to note that our arguments rest not only on ideasarising from elasticity theory and the kinetic theory of gases, but also from the �eld ofmass transportation, which was once developed by Kantorovich for its links with econom-ics, and later impulsed by Brenier for its connections with hydrodynamics. Here Korn'sinequality appears as a beautiful link between all of these �elds.
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