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Abstract

We prove the convergence of splitting algorithms for Boltzmann and
B.G.K. equations. The proof in the case of the Boltzmann equation is
made in the framework of renormalized solutions.



1 Introduction

A rarefied gas is usually described by the Boltzmann equation (Cf. [Ce],
[Ch, Co], [Tr, Mu]). In this model, the dynamics of the gas is given by the
nonnegative density f(¢,,v) of particles which at time ¢ € [0, 7] and point
z € IR?, move with velocity v € IR3, where T is a stricly positive number.
Such a density satisfies the Boltzmann equation,
of

f(07$7?]):f0($7?])7 (12)
where () is a quadratic collision kernel acting only on velocities and defined
(with the notations of [DP, L]) by

QN =@ (1) - (), )
/wES2 f(0) f(v)) B(v = vs,w) dwdv,, (1.4)

Qe =[
Alz) = /%52 B(z,w) de, (1.5)
L(f)=Ax, [, (1.6)
Q7 (f)(w) = flv) L(f)(v). (1.7)

In formula (1.4), the post—collisional velocities v" and v/ are parametrized
by
v =v+ ((ve — ) - w)w, (1.8)

v, = v — (e — ) - W) w, (1.9)
where w is a unit vector varying in the sphere S2.

Finally, the nonnegative cross section B is assumed to satisfy the follow-
ing properties, first introduced in [DP, L]:

Assumption 1: The function B(z,w) belongs to L}OC(B?’ x S?) and
depends only on |z| and |z - w|.

Moreover, the function A satisfies for all R > 0,

(1—|—|z|2)_1/ Az + v)do —» 0, (1.10)

vEBR |z| o0

where Br (or BY) is the set {v € IR?;|v| < R}.



Finally, we assume that the nonnegative initial datum fy satisfies the
following physically relevant assumption:

Assumption 2: The function fy is such that

/ / fola, o) {1+ |2> + |02 + |log fo(z,v)| }dvde < +o00. (1.11)
r€R3 JveR?

R.J. DiPerna and P-L. Lions proved in [DP, L] that under assumptions
1 and 2, the Boltzmann equation (1.1) — (1.9) admits a nonnegative renor-
malized solution in C'([0,T], L}(IR® x IR?)).

The proof uses the averaging lemmas introduced by F. Golse, B. Perthame
and R. Sentis in [G, P, S], and developed by F. Golse, P-L. Lions, B.
Perthame and R. Sentis in [G, L, P, S] and by R.J. DiPerna, P-L. Lions
and Y. Meyer in [DP, L, M].

Note that a new and simpler proof was given by P-L. Lions in [L 1].

We shall also consider in the sequel a simpler model of rarefied gases,
namely the B.G.K. model, first introduced in [Bh, Gr, Kr].

The gas is still described by a nonnegative density f(¢,z,v), but the
equation satisfied by f now becomes

f(07$7?]):f0($7?])7 (113)
where M[f](t, z,v) is a Maxwellian function of v:
__ rlt) v — u(t,2)]?
M[f](t7$7v)—W€Xp{—W}7 (114)

and p,u, T are the respective density, global velocity and temperature of the
gas. More precisely,

p(t, ) :/UERSf(t,x,v) dv, (1.15)
p(t,z) u(t,z) = AeJRS v f(t,z,v)dv, (1.16)
p(t, ) {lu(t,x))* +3T(t,2)} = AeJRS o] f(t,z,v) dv. (1.17)



Note that the previous quantities are not well-defined when p = 0, therefore
we define M[0] = 0.

The existence of a global nonnegative solution for the B.G.K. system
(1.12) — (1.17) under assumption 2 on the initial datum was proved by
B. Perthame in [Pe]. The proof was based on a dispersion lemma. Another
proof was given by E. Ringeissen in [Ri], allowing to take into account a gas
in a bounded domain with boundary conditions.

Equation (1.1) — (1.9) as well as (1.12) — (1.17) can be written in the

form of
EZAf—I—Bf7 (1.18)
f(t=10) = fo, (1.19)
where
A=—-v-V,, (1.20)

and B is a nonlinear operator acting only on the variable v.
Therefore, in order to compute numerically their solution, it is usual to
solve equations
of

= 1.21
T 4 (1.21)
and of
- = 1.22
L 5y (1.22)
one after another and to apply Trotter’s formula
tA+B) _ 1 LA LB\n
e = nll}r_l{loo(e en”)", (1.23)

This procedure is known as a splitting method for system (1.18), (1.19)
and it is said to converge if Trotter’s formula (1.23) holds when A and B are
the operators introduced in (1.18). A large amount of splitting algorithms
involving discretization in time can be found in [L, M].

We intend to prove that the splitting method converges for the Boltz-
mann and B.G.K. equations in the cases described earlier.

Note that this method is actually used in the numerical computation of
both equations (Cf. [De, Pr]).

Note also that we proved in an earlier work the convergence of the split-
ting algorithm in the simpler cases of the “grey” radiative transfer equation
and of Vlasov-Maxwell system (Cf. [De 1] and [De 2]). The proofs of exis-
tence of global solutions for the Boltzmann equation (Cf. [DP, L]) and for



the B.G.K. model (Cf. [Pe]) were already known at that time, but it seemed
difficult to prove the convergence of the splitting algorithm in the context of
those works. Namely, the analysis of sub- and supersolutions in [DP, L] did
not seem well-adapted to the splitting algorithm, and the dispersion lemma
of [Pe] seemed also inoperant in this context.

However, the new proof of existence for the Boltzmann equation of [L 1],
and the proof of existence for the B.G.K. model of [Ri] are better-adapted
to the method of splitting and can therefore be followed, as will be seen in
the sequel.

Therefore, in section 2, we prove the convergence of Trotter’s formula
for the Boltzmann equation, and the corresponding result for B.G.K. model
in section 3.

2 Splitting for Boltzmann equation

2.1 Introduction and main result

In this section, we introduce the splitting algorithm for equation (1.1) - (1.9).
We define
Af = —v -V, f, (2.1.1)

Bf=Q(f), (2.1.2)

and we intend to prove Trotter’s formula (1.23) in this context.
Therefore, we define for every n in IN, and & in [0, n — 1] two sequences
[ and g% by the following procedure:

we note T
AT = —, ty = kAT, (2.1.3)
n
and the functions f* and ¢* are defined on [ty, ;4] by induction on k:
120) = fo, (2.1.4)
afy k
L= 2.1.
Rtr) = gF L (ty) when k > 0, (2.1.6)
gy, k
—t = 2.1.
9n(tr) = F (te).- (2.1.8)



This definition is meaningful because the solutions of equations (2.1.5),
(2.1.6) and (2.1.7), (2.1.8) belong to C([tx, tk+1], L'(IR? x IR?)).
Then, we define
Fult) = F5(), (2.19)
9n(l) = g (1), (2.1.10)
for every t lying in [tg, tr41]
The functions f, and ¢, are therefore piecewise continuous with respect

to the time variable on [0, 7] with values in L!(IR® x IR®), and their discon-
tinuities appear at points t; for each k in [1, n].

The main result of this section is the following:

Theorem 1: Under assumptions 1 and 2 on the cross section and ini-
tial datum, the sequences f, and g, defined in (2.1.4) — (2.1.10) converge
up to extraction to the same nonnegative limit f in L>([0, T]; LY(IR? x IR?))
weak *, and this limit satisfies equation (1.1) — (1.9) in the sense of renor-
malized solutions. More precisely,

Q*(f)

T3 7 € Leell0, TIx I x ), (2.1.11)
and 5 o)

%"‘U'Vx} log(1+ f) = T+ (2.1.12)

in the sense of distributions.

Remark: This property exactly means that Trotter’s formula (1.23)
holds for A and B defined in (2.1.1), (2.1.2).

The proof of this theorem is given in subsections 2.2 to 2.7.

2.2 Equation satisfied by f, and g,

For all nonnegative and smooth function 8 such that

1
1+ s’

BO)=0, [#(s)] < (2.2.1)

we compute:

D) 52 OB a3 {BUDGAT) =3 GAT) b
=1 =1




—Z 0 - ViB(fn) Yi—1)ATiaT]

=1

# 3 {0 GAT) = 16l (6= DAT) }fian

R NS (/ g ) (s ) st

— \J-nar

=—v-V.8(fa) + ZZ:; </

(i—1)AT

AT

3'(gn)(s) Q(gn)(s)ds) SiAT-

Therefore, we obtain the following equation for f, and g,:

0Un) vxmfn)—i(/(m ﬂ'(gn><s>@<gn><s>ds) Siar. (2:2.2)

— \J-nar

In order to pass to the limit in equation (2.2.2), we need estimates for the
sequences f, and g,.

2.3 Estimates on f, and g,

Lemma 1: The sequences f, and g, defined in Theorem 1 are nonnegative
and satisfy for some nonnegative constant Cp:

sup / / (o, 0) {1+ |22 + |of? + [Tog fu(t, 2, 0) |} dado < Cr,
r€R3 JveR?

te[0,1]

(2.3.1)
sup / / w(ty 2, 0) {1+ |2 4 v + |log g, (¢, 2, v)| } dedv < C7.
te[0,T] JzeR? UER3

(2.3.2)

Moreover, the quantity e(g,,) defined by

e(gn) (t, &, v) = / / (gt 2,0 gn (8, 2,0") — gn(t, 2, v3)gn (t, 2, v) )
v« €ER® JweS?

n(tx, 0)gn(t, z, v
xlog{g (7$7U*)g ( x U)}B(v—v*,w) dwdv, (233)
gn(t7$7v*)gn(t7x7v)

satisfies the following estimate:

T
/ / / e(gn)(t, z,v) dvdadt < Cr. (2.3.4)
0 JzelR? JveR®
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Proof: The total density and total energy are conserved in the two steps
of the splitting algorithm, therefore

// Fult) (1+ [o]?) dxdv—// ) (1 + |0]?) dado
R3xR3 R3x

_ // fo (14 [v]?) dedo. (2.3.5)
R3xIR3

During the first step we also get

// e — vt]? 4 (1) dedo = // e — oty? £ (1) dedo  (2.3.6)
R3xIR3 R3xIR3

for all ¢ € [tk,tx+1], whereas during the second step we have

// |z — vty |? g% (t) dedv = // |z — vtp]? gk () dadv (2.3.7)
R3*xR? R3*xR?

for all ¢ € [tk, tk+1[. Therefore,

// o — ot [ (t) dedo = // (2| fo dadv (2.3.8)
R3x IR3 R3x IR3
for all ¢ € [0, 77, and

sup // t) |z|* dedv < sup // t) |z|? dedv
tEOT BSXBS tEOT BSXBS

< // 2 fo (|2 + T2|0[?) dedo. (2.3.9)
R3xIR3

Finally, we prove the estimate on the entropy production:

d
—// X log 5 dadv =0,
dt J JrsxRe

and

d k k 1 L
%//RSXRS g, log g, dxdv = _Z//RSXBS e(gy) dedv <0

for all ¢ € [tk, tk+1[. Therefore,

// fn log f, dedv(t // fo log fo dzduv, (2.3.10)
R3xR? R3xR?

8



and

// , In log g,, dadv(t // fo log fo dadv
R3x R3x

< __/ / e(gn) ddvdt (2.3.11)
R3x IR3

for all t € [0,T[. Finally, it is now classical (Cf. [DP, L]) that estimates
(2.3.5) and (2.3.9) — (2.3.11) ensure the existence of a constant Cr such
that

sup // fn |log f,,| dedv < Cr, (2.3.12)
t€[0,7T] R?x

sup // dn |1og g, | dedv < Crp, (2.3.13)

t€[0,7] R3x IR?

and
T

/ / e(gy) dedvodt < C, (2.3.14)

0 JR:*xR®

which ends the proof of lemma 1.

According to lemma 1, we can extract from the sequences f, and g,
subsequences still denoted by f, and g,, which converge respectively to f

and g in L*°([0, T]; L'(IR® x IR®)) weak *.

2.4 Weak compactness of the renormalized collision terms

We present here the main estimate on the collision term:

Lemma 2: The sequences Qlj_:l_(g:) and ﬁL(f")) belong to a weakly compact

set of LY([0,T] x IR3 x BE), for all R > 0.

Proof: We only prove here that the sequences are bounded in L!. The
reader will find in [DP, L] the proof of weak compactness.
For all R > 0, we compute

/ / dvdac < / / L(g,) dvdx
z€R* JueBp 1-|-gn v€R? JueBR

< / / Gn(v4) {/ A(v — v.)dv } dv.dz
z€R? Jus€R? vEBR

< sup {(1—|—|z|2)_1/ A(v — 2) dv}
z€R? vE€BR



<[ e (o) dvda, (2.4.1)
z€R3 Ju.€R3

which is bounded because of assumption 1 and estimate (2.3.2).

Then, the boundedness of QH_(j") and ﬁL(f")) comes out of the bound-

edness of %_l_j—"l and of estimate (2.3.4).

More precisely, we recall that for all K > 0,

QT (g,) < KQ (g,) + 160(57}2" (2.4.2)

2.5 The sequences f, and g, converge to the same limit

In order to pass to the limit in equation (2.2.2) we need to know that 3(g,)
and §(f,) converge to the same limit, and that the same holds for f,, and

In-

lemma 3: Up to extraction, the sequences f, and g,, satisfy the following
properties:

i) For all nonnegative and smooth function 3 such that (2.2.1) holds,
B(fn) and B(gs) converge to the same limit in L'([0,T] x IR® x IR?)
weak.

ii) the sequences f, and g, have the same limit f in L1([0,T] x IR® x IR?)
weak.

Proof:

Step 1 : We prove i). Because of lemma 1, we just have to show that
B(fn) and §(g,) converge to the same limit in the sense of distributions. Let
¢ belong to D(]0, T[xIR? x IR*) and K be its compact support.

We compute

[ 60 = B ) el e ai

]—I—l AT
< Z|/ / / Bf")(¢t, z,v)
=0 z€R? JveR?

—3( ])((j—l- AT, z,v)) ¢(t,z,v) dv dz di|

10



n 1

- ]—I—l AT
—|— / / / )(t, @, v)
r€IR? ’UERS

—ﬁ( NGAT, z v))c,o(t,x,v) dx dv| dt

n—1

<Y/, LT s e s

o(t, z,v) de do| dt

(7+1)AT
/ / / |/ Q(9n)(s) dsdzdv| dt
zeR® Jve R® AT

< AT v Vi @llpe ) 1B )L jo,m1< rex R
+ AT [lopll oo 15"(9n) Qg L1(x0) (2.5.1)
which clearly tends to 0 when AT = % tends to 0.

M

Step 2 : We prove ii). Taking §s(s) = T35, We note that
0<s—0s5(s) <éRs+ slssp. (2.5.2)
Therefore,
0 < gn—Bs(gn) <ORGn + gn HZE‘(]JQ', (2.5.3)

and the same estimate holds for f,. Using then estimates (2.3.12) and
(2.3.13), we get

sup sup || fo = Bs(fu)llpr(rex ey = 0, (2.5.4)
nelN t€[0,T] §—0

and
sup sup Hgn Bs(gn)ll L1 (Rex m2) — 0. (2.5.5)
neN t€[0,T §—0

According to step 1 and estimates (2.5.4), (2.5.5), we get ii).

11



2.6 Strong compactness for velocity averages

In this section we get some informations on the limits of the sequence Q¥ (g,,)
which follow from the strong compactness of the velocity averages of g,.

lemma 4: For all ¢ in L>=([0,T] x IR® x IR®), the sequence
Jultie) = [ galte, o)t 0) do (2.6.1)
veIR3

lies in a strongly compact set of L1([0,T] x IR?).

Proof: The proof is divided in six steps. During the five first steps, we
fix a function ¢ in L2°(IR?), a nonnegative and smooth function 3 satisfying
(2.2.1). Denoting for every function h in L} ([0,T] x IR® x IR?),

Wt @) = /BS h(t, @, v) (o) dv (2.6.2)

we prove that 3(g,) lies in a strongly compact set of L*([0, 7] x IR?).

Step 1 : We compute

%ﬂ(gn) = 3'(92)Q(9n) + Z {Bl)UAT) = Blgi™GAT) | djar ()

= H()Q(0) + X {BUDG+ DAT) = BUDGAD)} Siar(t)

(G+1)AT

= '(9.)Q(gn) + nz:j {/ —v - Vo B(fn) (s, 2,0) ds} S;atr(t). (2.6.3)

SAT
Therefore, for all function ¢ in C'}(IR2), we have

%/xeRS Blgn) p(x) du = //IR3><]R3 ﬁ/(gn) Q(gn) ¥ (v) ¢(z) dv dx

(G+1)AT

(2.6.4)

AT

n—1
+Z/
=1 "7

12



which is a bounded sequence of measures in [0,7], thanks to (2.3.1) and
lemma 2.

Thus, the quantity

alt)= [ 8o o) da (2.6.5)

is bounded in BV ([0,17).

Considering now a sequence of (compactly supported) mollifiers p.(z),
the previous statement implies that for every fixed ¢ > 0, the sequence
B(gn) *z pe is strongly compact in L*([0,T] x IR?).

Thanks to the identity

B(g0) = B(gn)kepe + {5(00) = B(gn)rpe } (2.6.6)

we only need to prove that the second term is uniformly (in n) small in
L1([0,T] x IR®) when ¢ tends to 0 to get the strong compactness in L1 ([0, T'] x

BS) of ﬁ(gn)

This will in turn be true if we prove that

I = sup/ / Dtz + k) — Blgn)(t, 2)| de di (2.6.7)

neN

tends to 0 when h tends to 0. Steps 2 to 5 are devoted to the proof of this
estimate.

Step 2 : We compute

(J+1)A —
Iy, < sup / / (g0) (L, w + h) — B(gh)GAT, &+ h)| da dt
nelN ;g

(+1) AT — —
+ sup Z /BS [or BGDUAT 4 )= Bl GAT. 2} d i

]—I—l AT ——
+ sul% /JRS/ (jAT z)— ﬁ(gn)(t,wﬂ dz dt
ne

< 2AT ||| Lo m2) sup 15(9n) Qg) 1Lt (0,17 x e x Suppw) T Ths (2:6.8)

13



where

Tu=sup AT [ STIB() G+ VAT 2+ h) = B (G + AT, 2) do.
neN R? j=0

(2.6.9)
Step 3: In order to use the Fourier transform, we recast in this step the
problem in an L? setting.

Fixing ¢ > 0 and using lemma 2, we decompose 3'(¢,)Q(¢g,) in such a
way that

B'(9n)Q(9n) = ¢ + ¢, (2.6.10)
and
Hq}z’EHLl([O,T]XRSXSupde) S £, qu’EH%%[O,T]XRSXSUPW/’) S CE. (2611)
We also decompose 3(fp) in such a way that

B(fo) = ho + ha*, (2.6.12)

and

1,e 2,
1 Moo x suppyy <& 100" 1T2(me . Suppyy < Ce- (2.6.13)

Then, we define hl® h2¢ the solutions of the (linear) problems

Ohe:e o onsl AT

G Ve = ([ ) ) baar (). (2614)
7=0
hPE(0, ) = BE(.). (2.6.15)

Note that hE is not continuous with respect to the time variable at points
JAT for j € ZZ. Therefore, we denote by hZ(j ATT) (respt. hf(j AT™)))
the right-hand (respt. left-hand) limit of AL at points j AT.

Classical estimates yield then the following result:

lemma 5: The sequences hl® and h%° are such that

n—1
AT /GRS /GRS WL (G4 1AT™, 2, v) (v)|da dv
j=0"% v

< CTH¢HL°°(Hh(1J7EHL1(R3X Suppy) + Hq7117EHL1([O,T]><R3>< Supp d’))’ (2616)

14



n—1
ary [
j=0"%

2,6 ,€
< Crlle L (A6 W22k supp ) + 100 W20, 11 R Supp ) (2:6:17)

cIR? /ERS |h7%75((] ‘I’ 1)AT_7$7U) ¢(U)|2d$ dU

The definitions of the sequences hL:¢ imply that
B(fn) = hy + h2r. (2.6.18)

Using then the Cauchy-Schwarz inequality and lemma 5, we get

n—1 — —_
T < sup AT [ (RE(G+ VAT o+ ) 4 1 (( + DAT™ )| do
neN ]‘_0

n—1 —_ —_
+osup ATY [ |G+ VAT o b) = b GAT 2] do
neN =0 R3

<207 |[¢]|pee + (T R¥Y? sup (Kp.(n))'/?, (2.6.19)
neN

where

n—1 —_ —_
Ko (n)=ATY /BS W25+ AT, & + B) — h2*((j + )AT™, 2)|*dz.
7=0

(2.6.20)
We now need to prove that for any fixed ¢ > 0, the quantity K (n) tends
uniformly (in n) to 0 when A tends to 0.

This property is proved in steps 4 and 5. Note that in the sequel, we
shall not write down explicitly the dependance of K} or h2 with respect to
the parameter e.

Step 4: We now denote by f = f(t,f,v) and f = f(t,f) the Fourier

transform with respect to the space variable of the functions f(¢,z,v) and

f(t ).
We shall assume in this step that there exists a bounded sequence k, in

L?(IR}) such that

ATnZ_: B2 (G + VAT, )P < (% + |2—|) | ()] (2.6.21)

15



This fact will be proved in the fifth step.
Thanks to the Fourier-Plancherel identity, one gets

Ko ATZQ/ e~ APIE(G+ VAT, €) g

eR?

< ATZ/|<R (hR)2R2((j + 1) AT, €)2de

FAT Z/ B2 (GAT, €)2de. (2.6.22)
— Je>R
Using lemma 5 and estimates (2.6.11), (2.6.13), we get

K (n) < mmwwwgc+4/ (54 ) P (2029

N
Therefore, Kj(n) tends to 0 uniformly (in n) when A tends to 0.

This ends the proof of the compactness of 3(g,) in L*([0, T] x IR?) under
assumption (2.6.21).

Step 5 is dedicated to the proof of this assumption.

Step 5 : In this step, we prove in fact the averaging lemma replacing in
the context of the splitting method the averaging lemma used in [DP, L].

Taking the Fourier transform with respect to the variable z of eq. (2.6.14),
(2.6.15) for p = 2, we get

n—1

d .~ . A (F+1D)AT
S gt =Y / 2(s)ds | disnar(t).  (2.6.24)
J

=0

The Duhamel representation of the solution of this equation is

B2(1, € v) = h3(€,v) e
t n—1 (j+1)AT
+ /0 emive(t=9) 3 ( / qg(a)da) Siinar(s)ds.  (2.6.25)
7=0

JAT

The velocity average h?2 satisfies
W6 = [ ) RE v e e
R3

16



e—ivE(t=(j+1)AT) GHDAT =
—|— Z / /] q2(o)do | dv. (2.6.26)

<(+1)AT<t AT

Then7 we compute

n—1l ~ n—1
12 - )2 72 —i(k+1)v-EAT 7,12
AT S (k4 DATZ < 28T 3| [ 00 (E.0)e ol

(7+1)A — . .
—|—2ATZTZ / Y D) (0,6 0)e AT E g0 g (2.6.27)
= 7=0 iA R

We prove the bound (2.6.21) only for the second term of the right-hand side
of (2.6.27) (which will be denoted by L, (§)). Note that the first term could
be bounded in the same way.

We make the change of variables

v = AT|€|25 +ovt with ot-¢=0. (2.6.28)
Then,
) <2ATT Z/ / qn 0,&,v)e ATy 2o
— dvydvt
< 2TAT / / —W/ bg2) (o, €, — ¢ 1yt 2do.
20y e v VI E Kt ) Ky
(2.6.29)

We use then he Poisson identity with respect to the variable vy.

Y Fu@OF =Y Fulex)(l) =27 Y (00 ¢)271).  (2.6.30)

leZz leZz leZZ

Therefore, using the change of variables vy — w = AT|¢|vy, we get

_ v
Z/ /UleR/yeRQ(zbq%)(mé7AT|5|25+y)dy

lezz

Lal€) < 7577

<[ ) o€ e ) dedu do

;
<4WEZ/A o 1) 0.6 w4 )y

lezz

17



27l ¢

X /Z€R2 |($47) (0, &, (Flfl - w)m + 2)|dzdwdo. (2.6.31)

Because of the compact support of 4, the integrations with respect to y, z
and w are made over a compact set. Therefore, the sum over [ is different

from 0 only if |I| < AT |£] Cy. Then,

L.(6) < 4%% ) /OT {/WR | /MS% (62) (avaw% +y) dyf

[H<ATIEICY,
-5 27l £ 9
+ ¢q% <0-757 ( _w) _—|—Z) dz dw}da
<o, S ST ) e |
T T —
<ar=(L ATIEC) 2 [0, 0" [ I8 ) o do
|€| 0 veEIR?
1 T — 9
< Cro (- 4 AT) / / 12 (0, €, v)|%dv do. (2.6.32)
|€| 0 vEIR3

This estimate clearly yields (2.6.21).

step 6 We wish to prove that for all ¢ € L*([0,7] x IR® x IR®), the
sequence

snlt,a) = /UERS B(gn) (t, 2, v) b(t, @, v) do (2.6.33)

is strongly compact in L*([0,T] x IR?).
This result is an immediate consequence of steps 1 to 5 in the case of
separated variables, namely when

et w,v) = i%’l(tw) Vi(v), i € LE([0,T]x IRY), f € LT (IRY).
=1

(2.6.34)
Therefore, in order to establish the general case, we fix an arbitrary 4 and
consider a sequence ¥* of separated functions which are uniformy bounded
in L°([0, T]x IR*x IR?) by ||1)]|c and converge to ¢ in Llloc([o’ TIx R*x IR?).
We only have to prove that:

sup [|8(gn) (V* — )|z o, 71x Rex R2) — 0 (2.6.35)
nelN k— 00

In order to prove this assertion, note that

T
18(90) (0 = ) \lles iy < 2lle= [ [ [ 8(g) xavdeat,
(2.6.36)
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where
X =lig>r+ Lp>r + lg.>R- (2.6.37)

Using the weak compactness of g,,, we can see that the last term of (2.6.36)
is arbitrary small for large R. Finally, we note that

/OT/BR/BRﬂ(gn) 1gn§R|¢k—¢|dvdxdt§ Cr /OT/BR/BRQkabZZ]Zde;)?

where

Cr= sup |B(s)], (2.6.39)
s€[0,R)]

and we conclude by letting k£ and R go to +o0.

Finally, we choose f5(s) = 175, and we let & go to 0. Then, the argu-

ments used in the proof of the step 2 of lemma 3 yield lemma 4.

We now state some facts that come out of lemmas 1 to 5. The proof
exactly follows that of [DP, L].

Lemma 6: The following properties hold for g,:

i) The sequence L(g,) converges towards L(f) strongly in L*([0,T] x
IR? x BF).

ii) For allv > 0, the sequence %ﬁz—;% converges towards %{% weakly
in LY([0,T] x IR® x IR?).

2.7 Passing to the limit

We now wish to prove that f is a renormalised solution of (1.1). Following
[Li 1], we consider 35(s) = 135, and pass to the limit as n goes to +-o0o weakly
in equation (2.2.2) with 8 = 5. Then we renormalize the resulting limit
equation and let 6 go to 0 in order to recover (2.1.12).

We shall use in the sequel some notations. Without loss of generality,
extracting subsequences if necessary, we may assume that for all & > 0,

Bs(f"), Bs(g") | = Bs weakly in LY[0,T) x IR? x IR?), (2.7.1)

v =g, (14 6g,) "2 L weakly in L*([0,7] x IR2 x IR), (2.7.2)
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Qi(gn) + . 1 3 R
(1 +6g.)° o Q3 weakly in L*([0,7] x IR, x By"). (2.7.3)

Then, we use the following lemma (Cf. [De 1]):

Lemma 7: Assume that a sequence h,, converges weakly in L}OC([O7 T] x
IR? x IR?) to h.
Then,
n—1 iAT
in=Sbiar / I (s) ds (2.7.4)

i—1)AT

converges to h weakly in the sense of measures.

Passing to the limit in (2.2.2) as n tends to +oo, we get:

)
% +v-Vu8=Qf — Q5 inD. (2.7.5)

Since QF, Q5 € Llloc([o’ TIxIR*x IR?), we can see that 85 € C([0,T], L*(IR>x
IR?)). Thus, estimate (2.5.17) implies that 35 converges to f as § tends to 0
in the space C'([0,T], L}(IR® x IR?)). Moreover, using the convexity of — s,

we get

Bs < Bs(f), (2.7.6)

and (because —W = —5(t)(1 — 855(t)) is convex with respect to fs),
vs < Ps (1= 6s) < Bs5(f). (2.7.7)

Finally, because of lemma 5,
Q5 =75 L(f). (2.7.8)
We now renormalize (2.7.5) by 3(s) = log(1 + s) and get
0 1y 5. v

(% +v-V,)B(8s) = 1?_5@; — 1?_5@; in D, (2.7.9)

To prove that f is a renormalized solution of Boltzmann equation we let
5 go to 0T and thanks to the strong convergence of (s towards f, we only

QF .
T in LY([0,T] x R2 x BEF) and

have to prove the weak compactness of
the following convergence:

QF Q*(f)
1+ 55 5;1 1+ f

1

a.e. (2.7.10)
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The weak compactness comes out of estimate (2.3.1) and the following in-
equality (based on estimates (2.7.7) and (2.7.8)):

Qs _wblf)
14+8s 1485 ~

L(f). (2.7.11)

For more details, we refer to [L 1].

Then, we prove that the convergence (2.7.10) holds. The proof exactly
follows that of [ 1] and therefore we only give the main steps.
Note that for all R > 1

0< gn—9n(14692) > < RS gn + gn 1(g>R)s (2.7.12)

therefore v5 converges to f in C'([0,T]; L'(IR® x IR®)) when § go to 04 . This
remark ensures that

Qs _ vsL(f) JL(f)
1485 1+ 8s 50 1+ f e

(2.7.13)

It remains to prove eq. (2.7.10) for Qg’ Using lemma 6 and the inequality

Q7 (gn) Q7 (90) 1
1+ L(g,) = (146g2)2 1+ L(g,)

> (2.7.14)

we get the following estimate:

Qr() . QF
L+L(f) = 1+ L)

Then, for any v, K > 0,

for all § > 0. (2.7.15)

(14 6R) 21+ vL(g,) "' Q* (g,)

Q" (92 Q" (g2)
~ (1446¢,)? 14+vL(gn)

Using then inequality (2.4.2), one gets

1y, >R- (2.7.16)

(14 6R) 21+ vL(g,) "' Q* (g,)

_ e(gn K
< (14 389,)72Q " (90) + b(g—lj +— gnlg.zn- (2.7.17)
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Passing to the limit in (2.7.17), we get

€0 K

(L+0R) 1 +vL(f)T'Q(f) < QF + sk T I (2.7.18)

where gg is the weak limit of g,1(,,>r). Letting ¢ go to 0, then R and K
go to 400 and finally v go to 04, we can see that

Q1 (f) < liminf QF aee. . (2.7.19)
§—04

Therefore, theorem 1 holds.

Remark: It is also possible to prove that the convergence of f, and g,
towards f is in fact strong. The proof is exactly the same as that of [L 1].

3 Splitting for the B.G.K. model

We prove in this section the result corresponding to theorem 1 in a slightly
different context, namely that of the B.G.K. model.

3.1 Definition and main result

As in section 2, we introduce a splitting algorithm for equations (1.12) —
(1.17), where
Af = —v-V.f, (3.1.1)

and
Bf = M[f]- f. (3.1.2)

We define therefore for every n in IV, and every k in [0, n — 1] the functions
kg% We denote

T
AT = =, 1 = kAT, (3.1.3)
n

and f%, g* are defined on [t,tr4] by induction on k and according to
formulas (2.1.4) — (2.1.8), where A and B are defined by (3.1.1) - (3.1.2).
This definition is meaningful because the solutions of (2.1.5), (2.1.6) and
of (2.1.7), (2.1.8) are such that f¥ g% belong to C'([tg, trt1]; L'(IR? x IR?)).
Then, we define



for every ¢ lying in [tx, tx4+1[. The functions f,, and g¢,, defined by (3.1.4) and
(3.1.5) are piecewise continuous with respect to the time variable on [0, 7]
with values in L'(IR® x IR?), and their discontinuities appear at each point
ty for kin [1,n].

The main result of this section is the following:

Theorem 2: We suppose that assumption 2 on the initial datum holds.
Then, the sequences f, and g, defined in (3.1.4) — (3.1.5) converge up to
extraction to the same limit f in L>([0,T]; LY(IR® x IR®)) weak * . This
limit f satisfies equation (1.12) — (1.17) in the sense of distributions.

Remark: This property exactly means that formula (1.23) holds for A
and B defined in (3.1.1) — (3.1.2).

The proof of this theorem is given in subsections 3.2 and 3.3 .

3.2 Estimates on f, and g,

We proceed as in subsection 2.2, and give for f,, and ¢, the following equa-
tion:

R fn—Z/ m{ J(s)—gn<s>}ds Sar. (3:2.1)

We now wish to pass to the limit in equation (3.2.1), we give therefore some
estimates on the different terms of the equation.

Lemma 8: The sequences f, and g, defined in theorem 2 satisfy the
Jollowing bound for some nonnegative constant Cp:

sup / / (1w, o) {1+ o] + 22 + | log fu(t, 2, v)[} dvdz < Cr,
rz€IR3 ’UERS

te[0,1]
(3.2.2)
sup / / w(t 2, {1+ o] + |2)? + |log g (¢, 2, v)|} dvda < C,
tel0,1]/reiR? UER3
(3.2.3)
sup / Mlg,](t, z,v)
tefo, 1] /zelR® JvelR?
x {14 |v|* + |2* 4 | log M[g,](t, x,v)|} dvdz < Cr. (3.2.4)
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Proof: The proof is quite similar to that of lemma 1, we only present
here the estimate relative to the entropy. Denoting H(s) = slogs, we get
during the transport step:

d
. / /JR3><JR3 H(f,) dedo =0 (3.2.5)

for all ¢t in [tg,try1[, whereas during the collision step we have

ST Heydsdo= [ [ ilg) - g) Hg) dede. (320

Therefore,

i) e o ot = [ [ M) )
x(H'(gn) — H'(Mlgy)) dedv

+// (M[gn] = gn) (1 + log Mg,])dzdv. (3.2.7)
R®x IR®
But because of the definition of M]g,],

fwe (ML%] (t2,0) = galt, @, v>) (o) do=0 (3.2.8)

when 1 € Vect{l7 V5, |v|2}. Therefore, for ¢ € [tg, try1],

d

—_ < 0. 2.

o //RSXJRS Hg,)(t,z,v)dvdz <0 (3.2.9)
Using now the convexity of H, we get

H(gn) > H(M[gn]) + (gn - M[gn]) (1 + log M[gn])v (3'2'10)

and thus

//RSX]RS H(M(g)) dvde < //RSXJRS H(g,) dvdz. (3.2.11)

The passage from g, log g,, to g,|log g,| in estimate (3.2.3) — (3.2.4) is then
classical.
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The previous estimates can be improved in the following way:

Lemma 9: There exists a nonnegative conver and nondecreasing func-
tion ® defined on [0, 4o0[ such that

¢
D _, i, (3.2.12)
T 7T—+o0
D(AT) < (1+ A% o(7) (3.2.13)
Jor all T, A > 0 and
sup // ®(|v)?) g, dvdz < Cy. (3.2.14)
t€fo,T] R*xR?

This lemma will be a consequence of the following results, first given by

E. Ringeisen (Cf. [Ri]):
Lemma 10 (E. Ringeisen): Let fo be a nonnegative function in L' ((1+

|v|?)dvdz). Then there exvists a function ® satisfying the assumptions of
lemma 9 and C'y > 0 such that

l[%s(b(hﬂz)jb(x,v)dxdv <. (3.2.15)

Lemma 11 (E. Ringeisen): Let ¢ be a nonnegative convex function
defined on [0, +oo[ and satisfying ¢(AT) < P(X) ¢(7) for all \,7 > 0, where
P is a polynomial.

Then we can find a constant Cy > 1 such that for every nonnegative
Junction h in LY (IR%; (14 |v|?)dv), the inequality

/¢WHMW@M§QJ)MWM@M (3.2.16)
R3 R3
holds.

Proof of Lemma 9: During the transport step, we can write

d 2 k _
%/AMWQWUEMM—Q (3.2.17)
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whereas during the collisions step we get
ST a@epghoetdeao= [ [ (o) dlgh) e dede
dt R2x R? R xR?

< co// &(|o[?) ¢ (1) ¢ dado. (3.2.18)
R3x IR3

Thanks to Gronwall lemma, we get for all ¢ € [tx,tx4+1] (and according to
lemma 11),

[ el k) dedo < cComvit [ o) gh(n) dedv.
R3x IR3 R3 x IR3
(3.2.19)

Then by induction and using (3.2.17) (note that the first step of the
induction is given by lemma 10), we get

sup // ®(|v]?) g (1) dadv < S DT ¢y (3.2.20)
t€fo,T] R*xR?

According to lemmas 8 and 9, we can extract from the sequences f,, g,
and M[g,] subsequences still denoted by f,, g, and M|g,], which converge
weakly * in L>°([0, T]; L*(IR® x IR?)) respectively to f, g and M.

3.3 Averaging and passing to the limit

We now give the averaging lemma allowing us to pass to the limit in eq.
(3.2.1).

Lemma 12: The weak limits f and g are equal. Moreover, the macro-

scopic quantities p, = [ cps gndv, ppu, = f,UeRg) gnvdv and pp|u,|* +
300 Tn = Jyeme gn|v|?dv are strongly compact in L*([0,T] x IR?).

Proof: We get the result of lemma 4 with exactly the same proof. (In
fact the proof can be simplified a little since it is not necessary here to
renormalize the equation. Note also that step 6 is not used here).

Then, lemma 9 ensures that the same result also holds when 1 does not
increase more rapidly than a quadratic function.

Note then that (up to extraction) the quantities p,,, u, and 7, pass to

the limit a.e. and converge (when p # 0) towards p, uw and 7. Finally, M[g,]
converges to M| f] a.e. and therefore in L! strong (since it is weakly compact
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in L'). Using then lemma 7, one can pass to the limit in (3.2.1) and prove
theorem 2.

Remark: The convergence in theorem 2 is in fact strong in L'. Namely,
one can prove that log(1+ f,,) tends weakly towards log(1 + f).
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