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1 IntroductionA rare�ed gas is usually described by the Boltzmann equation (Cf. [Ce],[Ch, Co], [Tr, Mu]). In this model, the dynamics of the gas is given by thenonnegative density f(t; x; v) of particles which at time t 2 [0; T ] and pointx 2 IR3, move with velocity v 2 IR3, where T is a stricly positive number.Such a density satis�es the Boltzmann equation,@f@t + v � rxf = Q(f); (1:1)f(0; x; v) = f0(x; v); (1:2)where Q is a quadratic collision kernel acting only on velocities and de�ned(with the notations of [DP, L]) byQ(f) = Q+(f)�Q�(f); (1:3)Q+(f)(v) = Zv�2IR3 Z!2S2 f(v0) f(v0�)B(v � v�; !) d!dv�; (1:4)A(z) = Z!2S2 B(z; !) d!; (1:5)L(f) = A �v f; (1:6)Q�(f)(v) = f(v)L(f)(v): (1:7)In formula (1.4), the post{collisional velocities v0 and v0� are parametrizedby v0 = v + ((v� � v) � !)!; (1:8)v0� = v� � ((v� � v) � !)!; (1:9)where ! is a unit vector varying in the sphere S2.Finally, the nonnegative cross section B is assumed to satisfy the follow-ing properties, �rst introduced in [DP, L]:Assumption 1: The function B(z; !) belongs to L1loc(IR3 � S2) anddepends only on jzj and jz � !j.Moreover, the function A satis�es for all R > 0,(1 + jzj2)�1 Zv2BR A(z + v) dv �!jzj!1 0; (1:10)where BR (or BRv ) is the set fv 2 IR3; jvj < Rg.2



Finally, we assume that the nonnegative initial datum f0 satis�es thefollowing physically relevant assumption:Assumption 2: The function f0 is such thatZx2IR3 Zv2IR3 f0(x; v) f1 + jxj2 + jvj2 + j log f0(x; v)j gdvdx < +1: (1:11)R.J. DiPerna and P-L. Lions proved in [DP, L] that under assumptions1 and 2, the Boltzmann equation (1.1) { (1.9) admits a nonnegative renor-malized solution in C([0; T ]; L1(IR3 � IR3)).The proof uses the averaging lemmas introduced by F. Golse, B. Perthameand R. Sentis in [G, P, S], and developed by F. Golse, P-L. Lions, B.Perthame and R. Sentis in [G, L, P, S] and by R.J. DiPerna, P-L. Lionsand Y. Meyer in [DP, L, M].Note that a new and simpler proof was given by P-L. Lions in [L 1].We shall also consider in the sequel a simpler model of rare�ed gases,namely the B.G.K. model, �rst introduced in [Bh, Gr, Kr].The gas is still described by a nonnegative density f(t; x; v), but theequation satis�ed by f now becomes@f@t + v � rxf =M [f ]� f; (1:12)f(0; x; v) = f0(x; v); (1:13)where M [f ](t; x; v) is a Maxwellian function of v:M [f ](t; x; v) = �(t; x)(2� T (t; x))3=2 exp� � jv � u(t; x)j22T (t; x) �; (1:14)and �; u; T are the respective density, global velocity and temperature of thegas. More precisely, �(t; x) = Zv2IR3 f(t; x; v) dv; (1:15)�(t; x) u(t; x) = Zv2IR3 v f(t; x; v) dv; (1:16)�(t; x) fju(t; x)j2+ 3 T (t; x)g = Zv2IR3 jvj2 f(t; x; v) dv: (1:17)3



Note that the previous quantities are not well{de�ned when � = 0, thereforewe de�ne M [0] = 0.The existence of a global nonnegative solution for the B.G.K. system(1.12) { (1.17) under assumption 2 on the initial datum was proved byB. Perthame in [Pe]. The proof was based on a dispersion lemma. Anotherproof was given by E. Ringeissen in [Ri], allowing to take into account a gasin a bounded domain with boundary conditions.Equation (1.1) { (1.9) as well as (1.12) { (1.17) can be written in theform @f@t = Af + Bf; (1:18)f(t = 0) = f0; (1:19)where A = �v � rx; (1:20)and B is a nonlinear operator acting only on the variable v.Therefore, in order to compute numerically their solution, it is usual tosolve equations @f@t = Af (1:21)and @f@t = Bf (1:22)one after another and to apply Trotter's formulaet(A+B) = limn!+1(e tnAe tnB)n: (1:23)This procedure is known as a splitting method for system (1.18), (1.19)and it is said to converge if Trotter's formula (1.23) holds when A and B arethe operators introduced in (1.18). A large amount of splitting algorithmsinvolving discretization in time can be found in [L, M].We intend to prove that the splitting method converges for the Boltz-mann and B.G.K. equations in the cases described earlier.Note that this method is actually used in the numerical computation ofboth equations (Cf. [De, Pr]).Note also that we proved in an earlier work the convergence of the split-ting algorithm in the simpler cases of the \grey" radiative transfer equationand of Vlasov{Maxwell system (Cf. [De 1] and [De 2]). The proofs of exis-tence of global solutions for the Boltzmann equation (Cf. [DP, L]) and for4



the B.G.K. model (Cf. [Pe]) were already known at that time, but it seemeddi�cult to prove the convergence of the splitting algorithm in the context ofthose works. Namely, the analysis of sub- and supersolutions in [DP, L] didnot seem well{adapted to the splitting algorithm, and the dispersion lemmaof [Pe] seemed also inoperant in this context.However, the new proof of existence for the Boltzmann equation of [L 1],and the proof of existence for the B.G.K. model of [Ri] are better{adaptedto the method of splitting and can therefore be followed, as will be seen inthe sequel.Therefore, in section 2, we prove the convergence of Trotter's formulafor the Boltzmann equation, and the corresponding result for B.G.K. modelin section 3.2 Splitting for Boltzmann equation2.1 Introduction and main resultIn this section, we introduce the splitting algorithm for equation (1.1) { (1.9).We de�ne Af = �v � rxf; (2:1:1)Bf = Q(f); (2:1:2)and we intend to prove Trotter's formula (1.23) in this context.Therefore, we de�ne for every n in IN� and k in [0; n� 1] two sequencesfkn and gkn by the following procedure:we note �T = Tn ; tk = k�T; (2:1:3)and the functions fkn and gkn are de�ned on [tk; tk+1] by induction on k:f0n(0) = f0; (2:1:4)@fkn@t = Afkn ; (2:1:5)fkn (tk) = gk�1n (tk) when k > 0; (2:1:6)@gkn@t = Bgkn; (2:1:7)gkn(tk) = fkn (tk+1): (2:1:8)5



This de�nition is meaningful because the solutions of equations (2.1.5),(2.1.6) and (2.1.7), (2.1.8) belong to C([tk; tk+1]; L1(IR3 � IR3)).Then, we de�ne fn(t) = fkn(t); (2:1:9)gn(t) = gkn(t); (2:1:10)for every t lying in [tk; tk+1[.The functions fn and gn are therefore piecewise continuous with respectto the time variable on [0; T ] with values in L1(IR3� IR3), and their discon-tinuities appear at points tk for each k in [1; n].The main result of this section is the following:Theorem 1: Under assumptions 1 and 2 on the cross section and ini-tial datum, the sequences fn and gn de�ned in (2.1.4) { (2.1.10) convergeup to extraction to the same nonnegative limit f in L1([0; T ];L1(IR3�IR3))weak *, and this limit satis�es equation (1.1) { (1.9) in the sense of renor-malized solutions. More precisely,Q�(f)1 + f 2 L1loc([0; T ]� IR3 � IR3); (2:1:11)and f @@t + v � rxg log(1 + f) = Q(f)1 + f (2:1:12)in the sense of distributions.Remark: This property exactly means that Trotter's formula (1.23)holds for A and B de�ned in (2.1.1), (2.1.2).The proof of this theorem is given in subsections 2.2 to 2.7.2.2 Equation satis�ed by fn and gnFor all nonnegative and smooth function � such that�(0) = 0; j�0(s)j � 11 + s; (2:2:1)we compute:@�(fn)@t = nXi=1 @�(fn)@t 1](i�1)�T;i�T [+ nXi=1��(f in)(i�T )��(f i�1n )(i�T )��i�T6



= nXi=1�v � rx�(fn) 1](i�1)�T;i�T [+ nXi=1��(gi�1n )(i�T )� �(gi�1n )((i� 1)�T )� �i�T= �v � rx�(fn) + nXi=1�Z i�T(i�1)�T @�(gn)@t (s)ds� �i�T= �v � rx�(fn) + nXi=1�Z i�T(i�1)�T �0(gn)(s)Q(gn)(s)ds� �i�T :Therefore, we obtain the following equation for fn and gn:@�(fn)@t + v � rx�(fn) = nXi=1  Z i�T(i�1)�T �0(gn)(s)Q(gn)(s)ds! �i�T : (2:2:2)In order to pass to the limit in equation (2.2.2), we need estimates for thesequences fn and gn.2.3 Estimates on fn and gnLemma 1: The sequences fn and gn de�ned in Theorem 1 are nonnegativeand satisfy for some nonnegative constant CT :supt2[0;T ]Zx2IR3 Zv2IR3 fn(t; x; v) f1 + jxj2 + jvj2+ j log fn(t; x; v)jgdxdv � CT ;(2:3:1)supt2[0;T ]Zx2IR3 Zv2IR3 gn(t; x; v) f1 + jxj2 + jvj2+ j log gn(t; x; v)jgdxdv � CT :(2:3:2)Moreover, the quantity e(gn) de�ned bye(gn)(t; x; v) = Zv�2IR3 Z!2S2 fgn(t; x; v0�)gn(t; x; v0)� gn(t; x; v�)gn(t; x; v)g� log�gn(t; x; v0�)gn(t; x; v0)gn(t; x; v�)gn(t; x; v)�B(v � v�; !) d!dv� (2:3:3)satis�es the following estimate:Z T0 Zx2IR3 Zv2IR3 e(gn)(t; x; v) dvdxdt� CT : (2:3:4)7



Proof: The total density and total energy are conserved in the two stepsof the splitting algorithm, thereforeZ ZIR3�IR3 fn(t) (1 + jvj2) dxdv = Z ZIR3�IR3 gn(t) (1 + jvj2) dxdv= Z ZIR3�IR3 f0 (1 + jvj2) dxdv: (2:3:5)During the �rst step we also getZ ZIR3�IR3 jx� vtj2 fkn(t) dxdv = Z ZIR3�IR3 jx� vtkj2 fkn (tk) dxdv (2:3:6)for all t 2 [tk; tk+1[, whereas during the second step we haveZ ZIR3�IR3 jx� vtk j2 gkn(t) dxdv = Z ZIR3�IR3 jx� vtk j2 gkn(tk) dxdv (2:3:7)for all t 2 [tk; tk+1[. Therefore,Z ZIR3�IR3 jx� vtj2 fn(t) dxdv = Z ZIR3�IR3 jxj2 f0 dxdv (2:3:8)for all t 2 [0; T [, andsupt2[0;T ]Z ZIR3�IR3 gn(t) jxj2 dxdv � supt2[0;T ]Z ZIR3�IR3 fn(t) jxj2 dxdv� Z ZIR3�IR3 2 f0 (jxj2 + T 2jvj2) dxdv: (2:3:9)Finally, we prove the estimate on the entropy production:ddt Z ZIR3�IR3 fkn log fkn dxdv = 0;and ddt Z ZIR3�IR3 gkn log gkn dxdv = �14 Z ZIR3�IR3 e(gkn) dxdv � 0for all t 2 [tk; tk+1[. Therefore,Z ZIR3�IR3 fn log fn dxdv(t) � Z ZIR3�IR3 f0 log f0 dxdv; (2:3:10)8



and Z ZIR3�IR3 gn log gn dxdv(t)� Z ZIR3�IR3 f0 log f0 dxdv� �14 Z T0 ZIR3�IR3 e(gn) dxdvdt (2:3:11)for all t 2 [0; T [. Finally, it is now classical (Cf. [DP, L]) that estimates(2.3.5) and (2.3.9) { (2.3.11) ensure the existence of a constant CT suchthat supt2[0;T ]Z ZIR3�IR3 fn j log fnj dxdv � CT ; (2:3:12)supt2[0;T ]Z ZIR3�IR3 gn j log gnj dxdv � CT ; (2:3:13)and Z T0 ZIR3�IR3 e(gn) dxdvdt � CT ; (2:3:14)which ends the proof of lemma 1.According to lemma 1, we can extract from the sequences fn and gnsubsequences still denoted by fn and gn, which converge respectively to fand g in L1([0; T ];L1(IR3 � IR3)) weak *.2.4 Weak compactness of the renormalized collision termsWe present here the main estimate on the collision term:Lemma 2: The sequences Q�(gn)1+gn and Q+(gn)1+L(gn) belong to a weakly compactset of L1([0; T ]� IR3x � BRv ), for all R > 0.Proof: We only prove here that the sequences are bounded in L1. Thereader will �nd in [DP, L] the proof of weak compactness.For all R > 0, we computeZx2IR3 Zv2BR Q�(gn)1 + gn dvdx � Zx2IR3 Zv2BR L(gn) dvdx� Zx2IR3 Zv�2IR3 gn(v�)�Zv2BR A(v � v�)dv�dv�dx� supz2IR3 �(1 + jzj2)�1 Zv2BR A(v � z) dv�9



� Zx2IR3 Zv�2IR3 gn(v�) (1+ jv�j2) dv�dx; (2:4:1)which is bounded because of assumption 1 and estimate (2.3.2).Then, the boundedness of Q+(gn)1+gn and Q+(gn)1+L(gn) comes out of the bound-edness of Q�(gn)1+gn and of estimate (2.3.4).More precisely, we recall that for all K > 0,Q+(gn) � KQ�(gn) + e(gn)logK : (2:4:2)2.5 The sequences fn and gn converge to the same limitIn order to pass to the limit in equation (2.2.2) we need to know that �(gn)and �(fn) converge to the same limit, and that the same holds for fn andgn. lemma 3: Up to extraction, the sequences fn and gn satisfy the followingproperties:i) For all nonnegative and smooth function � such that (2.2.1) holds,�(fn) and �(gn) converge to the same limit in L1([0; T ]� IR3 � IR3)weak.ii) the sequences fn and gn have the same limit f in L1([0; T ]�IR3�IR3)weak.Proof:Step 1 : We prove i). Because of lemma 1, we just have to show that�(fn) and �(gn) converge to the same limit in the sense of distributions. Let' belong to D(]0; T [�IR3� IR3) and K be its compact support.We computej Z T0 Zx2IR3 Zv2IR3(�(fn)� �(gn))(t; x; v)'(t; x; v)dv dx dtj� n�1Xj=0 j Z (j+1)�Tj�T Zx2IR3 Zv2IR3(�(fn)(t; x; v)��(f jn)((j + 1)�T; x; v))'(t; x; v)dv dx dtj10



+ n�1Xj=0 j Z (j+1)�Tj�T Zx2IR3 Zv2IR3(�(gn)(t; x; v)��(gjn)(j�T; x; v))'(t; x; v)dx dvj dt� n�1Xj=0 Z (j+1)�Tj�T Zx2IR3 Zv2IR3 Z (j+1)�Tt �v � rx�(fn)(s; x; v) ds'(t; x; v) dx dvj dt+ n�1Xj=0 Z (j+1)�Tj�T Zx2IR3 Zv2IR3 j Z tj�T �0(gn)(s)Q(gn)(s) dsdxdvj dt� �T kv � rx 'kL1(K) k�(fn)kL1([0;T ]�IR3�IR3)+ �T k'kL1(K)k�0(gn) Q(gn)kL1(K); (2:5:1)which clearly tends to 0 when �T = Tn tends to 0.Step 2 : We prove ii). Taking ��(s) = s1+�s , we note that0 � s� ��(s) � �R s+ s 1s>R: (2:5:2)Therefore, 0 � gn � ��(gn) � �Rgn + gn j log gnjlogR ; (2:5:3)and the same estimate holds for fn. Using then estimates (2.3.12) and(2.3.13), we get supn2IN supt2[0;T ]kfn � ��(fn)kL1(IR3�IR3)�!�!0 0; (2:5:4)and supn2IN supt2[0;T ]kgn � ��(gn)kL1(IR3�IR3)�!�!0 0: (2:5:5)According to step 1 and estimates (2.5.4), (2.5.5), we get ii).11



2.6 Strong compactness for velocity averagesIn this section we get some informations on the limits of the sequence Q�(gn)which follow from the strong compactness of the velocity averages of gn.lemma 4: For all ' in L1([0; T ]� IR3 � IR3), the sequencejn(t; x) = Zv2IR3 gn(t; x; v) (t; x; v) dv (2:6:1)lies in a strongly compact set of L1([0; T ]� IR3).Proof: The proof is divided in six steps. During the �ve �rst steps, we�x a function  in L1c (IR3), a nonnegative and smooth function � satisfying(2.2.1). Denoting for every function h in L1loc([0; T ]� IR3 � IR3),~h(t; x) = ZIR3 h(t; x; v) (v) dv (2:6:2)we prove that g�(gn) lies in a strongly compact set of L1([0; T ]� IR3).Step 1 : We compute@@t�(gn) = �0(gn)Q(gn) + n�1Xj=1 n�(gjn)(j�T )� �(gj�1n )(j�T )o �j�T (t)= �0(gn)Q(gn) + n�1Xj=1 n�(f jn)((j + 1)�T )� �(f jn)(j�T )o �j�T (t)= �0(gn)Q(gn) + n�1Xj=1 (Z (j+1)�Tj�T �v � rx�(fn)(s; x; v) ds) �j�T (t): (2:6:3)Therefore, for all function � in C1c (IR3x), we haveddt Zx2IR3 g�(gn)'(x) dx = Z ZIR3�IR3 �0(gn)Q(gn) (v)�(x) dv dx+ n�1Xj=1 Z (j+1)�Tj�T �Zx2IR3 Zv2IR3 �(fn)  (v) v � rx�(x) dxdv�ds �j�T (t);(2:6:4)12



which is a bounded sequence of measures in [0; T ], thanks to (2.3.1) andlemma 2.Thus, the quantityan(t) = Zx2IR3 g�(gn)(t; x)'(x) dx (2:6:5)is bounded in BV ([0; T ]).Considering now a sequence of (compactly supported) molli�ers �"(x),the previous statement implies that for every �xed " > 0, the sequenceg�(gn) �x �" is strongly compact in L1([0; T ]� IR3).Thanks to the identityg�(gn) = g�(gn)�x�" + n g�(gn)� g�(gn)�x�"o ; (2:6:6)we only need to prove that the second term is uniformly (in n) small inL1([0; T ]�IR3) when " tends to 0 to get the strong compactness in L1([0; T ]�IR3) of g�(gn).This will in turn be true if we prove thatIh = supn2IN Z T0 ZIR3 j g�(gn)(t; x+ h)� g�(gn)(t; x)j dx dt (2:6:7)tends to 0 when h tends to 0. Steps 2 to 5 are devoted to the proof of thisestimate.Step 2 : We computeIh � supn2IN n�1Xj=0 ZIR3 Z (j+1)�Tj�T j g�(gn)(t; x+ h)� g�(gjn)(j�T; x+ h)j dx dt+ supn2IN n�1Xj=0 ZIR3 Z (j+1)�Tj�T j g�(gjn)(j�T; x+ h)� g�(gjn)(j�T; x)j dx dt+ supn2IN n�1Xj=0 ZIR3 Z (j+1)�Tj�T j g�(gjn)(j�T; x)� g�(gn)(t; x)j dx dt� 2�T jj jjL1(IR3v) supn2IN jj�0(gn)Q(gn)jjL1([0;T ]�IR3�Supp ) + Jh; (2:6:8)13



whereJh = supn2IN �T ZIR3 n�1Xj=0 j g�(f jn)((j + 1)�T; x+ h)� g�(f jn)((j + 1)�T; x)j dx:(2:6:9)Step 3: In order to use the Fourier transform, we recast in this step theproblem in an L2 setting.Fixing " > 0 and using lemma 2, we decompose �0(gn)Q(gn) in such away that �0(gn)Q(gn) = q1;�n + q2;�n ; (2:6:10)andkq1;�n kL1([0;T ]�IR3�Supp ) � "; kq2;�n k2L2([0;T ]�IR3�Supp ) � C": (2:6:11)We also decompose �(f0) in such a way that�(f0) = h1;�0 + h2;�0 ; (2:6:12)and kh1;�0 kL1(IR3� Supp ) � "; kh2;�0 k2L2(IR3� Supp ) � C": (2:6:13)Then, we de�ne h1;�n ; h2;�n the solutions of the (linear) problems@hp;�n@t + v � rxhp;�n = n�1Xj=0(Z (j+1)�Tj�T qp;�n (s) ds) �(j+1)�T (t); (2:6:14)hp;�n (0; :) = hp;�0 (:): (2:6:15)Note that hpn is not continuous with respect to the time variable at pointsj�T for j 2 ZZ. Therefore, we denote by hpn(j�T+) (respt. hpn(j�T�)))the right{hand (respt. left{hand) limit of hpn at points j�T .Classical estimates yield then the following result:lemma 5: The sequences h1;�n and h2;�n are such that�T n�1Xj=0 Zx2IR3 Zv2IR3 jh1;�n ((j + 1)�T�; x; v) (v)jdx dv� CTk kL1(kh1;�0 kL1(IR3� Supp ) + kq1;�n kL1([0;T ]�IR3� Supp  )); (2:6:16)14



�T n�1Xj=0 Zx2IR3 Zv2IR3 jh2;�n ((j + 1)�T�; x; v) (v)j2dx dv� CTk k2L1(kh2;�0 k2L2(IR3� Supp  ) + kq2;�n k2L2([0;T ]�IR3� Supp  )): (2:6:17)The de�nitions of the sequences hp;�n imply that�(fn) = h1;�n + h2;�n : (2:6:18)Using then the Cauchy-Schwarz inequality and lemma 5, we getJh � supn2IN �T n�1Xj=0 ZIR3(jgh1;�n ((j + 1)�T�; x+ h)j+ jgh1;�n ((j + 1)�T�; x)j dx+ supn2IN �T n�1Xj=0 ZIR3 jgh2;�n ((j + 1)�T�; x+ h)� gh2;�n (j�T�; x)j dx� 2CT k kL1�+ (T R3)1=2 supn2IN (Kh;�(n))1=2; (2:6:19)whereKh;�(n) = �T n�1Xj=0 ZIR3 jgh2;�n ((j + 1)�T�; x+ h)� gh2;�n ((j + 1)�T�; x)j2dx:(2:6:20)We now need to prove that for any �xed " > 0, the quantity Kh;�(n) tendsuniformly (in n) to 0 when h tends to 0.This property is proved in steps 4 and 5. Note that in the sequel, weshall not write down explicitly the dependance of Kh or h2n with respect tothe parameter �.Step 4: We now denote by f̂ = f̂(t; �; v) and bef = bef(t; �) the Fouriertransform with respect to the space variable of the functions f(t; x; v) and~f(t; x).We shall assume in this step that there exists a bounded sequence kn inL2(IR3�) such that�T n�1Xj=0 jcfh2n((j + 1)�T�; �)j2 � � 1n + 1j�j� jkn(�)j2: (2:6:21)15



This fact will be proved in the �fth step.Thanks to the Fourier-Plancherel identity, one getsKh(n) = �T n�1Xj=0 Z�2IR3 je�ih� � 1j2jcfh2n((j + 1)�T�; �)j2d�� �T n�1Xj=0 Zj�j�R(hR)2jcfh2n((j + 1)�T�; �)j2d�+�T n�1Xj=0 Z��R 4jcfh2n(j�T�; �)j2d�: (2:6:22)Using lemma 5 and estimates (2.6.11), (2.6.13), we getKh(n) � (hR)2 k k2L12C" + 4 Zj�j�R� 1n + 1j�j� jkn(�)j2d�: (2:6:23)Therefore, Kh(n) tends to 0 uniformly (in n) when h tends to 0.This ends the proof of the compactness of g�(gn) in L1([0; T ]�IR3) underassumption (2.6.21).Step 5 is dedicated to the proof of this assumption.Step 5 : In this step, we prove in fact the averaging lemma replacing inthe context of the splitting method the averaging lemma used in [DP, L].Taking the Fourier transformwith respect to the variable x of eq. (2.6.14),(2.6.15) for p = 2, we get@@t ĥ2n + iv � � ĥ2n = n�1Xj=0  Z (j+1)�Tj q̂2n(s) ds!�(j+1)�T (t): (2:6:24)The Duhamel representation of the solution of this equation isĥ2n(t; �; v) = ĥ20(�; v) e�i��vt+ Z t0 e�iv�(t�s) n�1Xj=0  Z (j+1)�Tj�T q̂2n(�)d�! �(j+1)�T (s) ds: (2:6:25)The velocity average cfh2n satis�escfh2n(t; �) = ZIR3  (v)ch20(�; v) e�itv�� dv16



+ X0�(j+1)�T�t ZIR3  (v)e�iv:�(t�(j+1)�T ) Z (j+1)�Tj�T cq2n(�)d�!dv: (2:6:26)Then, we compute�T n�1Xk=0 jcfh2n((k+ 1)�T�; �)j2 � 2�T n�1Xk=0 j ZIR3  (v)ch20(�; v) e�i(k+1)v���Tdvj2+2�T n�1Xk=0 T kXj=0 Z (j+1)�Tj�T j ZIR3  (v)cq2n(�; �; v)e�iv���T (k�j)dvj2d�: (2:6:27)We prove the bound (2.6.21) only for the second term of the right{hand sideof (2.6.27) (which will be denoted by Ln(�)). Note that the �rst term couldbe bounded in the same way.We make the change of variablesv = v1�T j�j2� + v? with v? � � = 0: (2:6:28)Then, Ln(�) � 2�T T n�1Xl=0 Z T0 j ZIR3  (v)cq2n(�; �; v)e�iv���T ldvj2d�� 2T�T Xl2ZZ Z T0 j Zv12IR e�iv1l Zv?2IR2( cq2n)(�; �; v1�T j�j2�+ v?)dv1dv?�T j�j j2d�:(2:6:29)We use then he Poisson identity with respect to the variable v1.Xl2ZZ jFv1(')(l)j2 = Xl2ZZFv1(' � ')(l) = 2� Xl2ZZ(' �v1 ')(2�l): (2:6:30)Therefore, using the change of variables v1 ! w = �T j�jv1, we getLn(�) � 4� T�T j�j2 Xl2ZZ Z T0 j Zv12IR Zy2IR2( cq2n)(�; �; v1�T j�j2 � + y)dy� Zz2IR2( cq2n)(�; �; 2�l� v1�T j�j2 � + z) dzdv1j d�� 4� Tj�j Xl2ZZ Z T0 Zw2IR Zy2IR2 j( cq2n)(�; �; w �j�j + y)jdy17



� Zz2IR2 j( cq2n)(�; �; ( 2�l�T j�j � w) �j�j + z)jdzdwd�: (2:6:31)Because of the compact support of  , the integrations with respect to y; zand w are made over a compact set. Therefore, the sum over l is di�erentfrom 0 only if jlj � �T j�jC . Then,Ln(�) � 4� Tj�j Xjlj��T j�jC Z T0 (Zw2IR j Zjyj�C ( cq2n)��; �; w �j�j + y�dyj2+j Zjzj�C ( cq2n)��; �;� 2�l�T j�j � w� �j�j + z�dzj2dw)d�� 4� Tj�j(1 + �T j�jC ) 2 Z T0 k k2L1(2C )3 Zv2IR3 jcq2n(�; �; v)j2dv d�� CT; � 1j�j +�T�Z T0 Zv2IR3 jcq2n(�; �; v)j2dv d�: (2:6:32)This estimate clearly yields (2.6.21).step 6 We wish to prove that for all  2 L1([0; T ] � IR3 � IR3), thesequence sn(t; x) = Zv2IR3 �(gn)(t; x; v) (t; x; v)dv (2:6:33)is strongly compact in L1([0; T ]� IR3).This result is an immediate consequence of steps 1 to 5 in the case ofseparated variables, namely when (t; x; v) = mXi=1 1i (t; x) 2i (v);  1i 2 L1c ([0; T ]� IR3);  2i 2 L1c (IR3):(2:6:34)Therefore, in order to establish the general case, we �x an arbitrary  andconsider a sequence  k of separated functions which are uniformy boundedin L1([0; T ]�IR3�IR3) by k k1 and converge to  in L1loc([0; T ]�IR3�IR3).We only have to prove that:supn2IN k�(gn) ( k �  )kL1([0;T ]�IR3�IR3) �!k!1 0: (2:6:35)In order to prove this assertion, note thatk�(gn) ( k �  )�kL1([0;T ]�IR3�IR3) � 2 k kL1 Z T0 ZIR3 ZIR3 �(gn)� dvdxdt;(2:6:36)18



where � = 1jxj�R + 1jvj�R + 1gn�R: (2:6:37)Using the weak compactness of gn, we can see that the last term of (2.6.36)is arbitrary small for large R. Finally, we note thatZ T0 ZBR ZBR �(gn) 1gn�R j k�  j dvdxdt � CR Z T0 ZBR ZBR j k�  j dvdxdt;(2:6:38)where CR = sups2[0;R] j�(s)j; (2:6:39)and we conclude by letting k and R go to +1.Finally, we choose ��(s) = s1+�s and we let � go to 0. Then, the argu-ments used in the proof of the step 2 of lemma 3 yield lemma 4.We now state some facts that come out of lemmas 1 to 5. The proofexactly follows that of [DP, L].Lemma 6: The following properties hold for gn:i) The sequence L(gn) converges towards L(f) strongly in L1([0; T ] �IR3 � BRv ).ii) For all � > 0, the sequence Q+(gn)1+�L(gn) converges towards Q+(f)1+�L(f) weaklyin L1([0; T ]� IR3 � IR3).2.7 Passing to the limitWe now wish to prove that f is a renormalised solution of (1.1). Following[L 1], we consider ��(s) = s1+�s and pass to the limit as n goes to +1 weaklyin equation (2.2.2) with � = ��. Then we renormalize the resulting limitequation and let � go to 0 in order to recover (2.1.12).We shall use in the sequel some notations. Without loss of generality,extracting subsequences if necessary, we may assume that for all � > 0,��(fn); ��(gn) *n!+1 �� weakly in L1([0; T ]� IR3x � IR3v); (2:7:1)
n� = gn (1 + �gn)�2 *n!+1 
� weakly in L1([0; T ]� IR3x � IR3v); (2:7:2)19



Q�(gn)(1 + �gn)2 *n!+1Q�� weakly in L1([0; T ]� IR3x �BRv ): (2:7:3)Then, we use the following lemma (Cf. [De 1]):Lemma 7: Assume that a sequence hn converges weakly in L1loc([0; T ]�IR3 � IR3) to h.Then, in = n�1Xi=1 �i�T Z i�T(i�1)�T hn(s) ds (2:7:4)converges to h weakly in the sense of measures.Passing to the limit in (2.2.2) as n tends to +1, we get:@��@t + v � rx�� = Q+� � Q�� in D0: (2:7:5)Since Q+� ; Q�� 2 L1loc([0; T ]�IR3�IR3), we can see that �� 2 C([0; T ]; L1(IR3�IR3)). Thus, estimate (2.5.17) implies that �� converges to f as � tends to 0in the space C([0; T ]; L1(IR3� IR3)). Moreover, using the convexity of ���,we get �� � ��(f); (2:7:6)and (because � t(1+�t)2 = ���(t)(1� ���(t)) is convex with respect to ��),
� � �� (1� ���) � ��(f): (2:7:7)Finally, because of lemma 5,Q�� = 
� L(f): (2:7:8)We now renormalize (2.7.5) by �(s) = log(1 + s) and get( @@t + v � rx)�(��) = Q+�1 + �� � Q��1 + �� in D0: (2:7:9)To prove that f is a renormalized solution of Boltzmann equation we let� go to 0+ and thanks to the strong convergence of �� towards f , we onlyhave to prove the weak compactness of Q��1+�� in L1([0; T ]� IR3x � BRv ) andthe following convergence:Q��1 + �� �!�!0+ Q�(f)1 + f a:e: (2:7:10)20



The weak compactness comes out of estimate (2.3.1) and the following in-equality (based on estimates (2.7.7) and (2.7.8)):Q��1 + �� = 
�L(f)1 + �� � L(f): (2:7:11)For more details, we refer to [L 1].Then, we prove that the convergence (2.7.10) holds. The proof exactlyfollows that of [L 1] and therefore we only give the main steps.Note that for all R > 10 � gn � gn (1 + �gn)�2 � R� gn + gn 1(gn>R); (2:7:12)therefore 
� converges to f in C([0; T ];L1(IR3�IR3)) when � go to 0+ . Thisremark ensures that Q��1 + �� = 
�L(f)1 + �� �!�!0 fL(f)1 + f a.e. : (2:7:13)It remains to prove eq. (2.7.10) for Q+� : Using lemma 6 and the inequalityQ+(gn)1 + L(gn) � Q+(gn)(1 + �gn)2 11 + L(gn) ; (2:7:14)we get the following estimate:Q+(f)1 + L(f) � Q+�1 + L(f) for all � > 0: (2:7:15)Then, for any �;K > 0,(1 + �R)�2(1 + �L(gn))�1Q+(gn)� Q+(gn)(1 + �gn)2 + Q+(gn)1 + �L(gn) 1gn�R: (2:7:16)Using then inequality (2.4.2), one gets(1 + �R)�2(1 + �L(gn))�1Q+(gn)� (1 + �gn)�2Q+(gn) + e(gn)logK + K� gn 1gn�R: (2:7:17)21



Passing to the limit in (2.7.17), we get(1 + �R)�2(1 + �L(f))�1Q+(f) � Q+� + e0logK + K� gR; (2:7:18)where gR is the weak limit of gn1(gn>R). Letting � go to 0, then R and Kgo to +1 and �nally � go to 0+, we can see thatQ+(f) � liminf�!0+ Q+� a.e. : (2:7:19)Therefore, theorem 1 holds.Remark: It is also possible to prove that the convergence of fn and gntowards f is in fact strong. The proof is exactly the same as that of [L 1].3 Splitting for the B.G.K. modelWe prove in this section the result corresponding to theorem 1 in a slightlydi�erent context, namely that of the B.G.K. model.3.1 De�nition and main resultAs in section 2, we introduce a splitting algorithm for equations (1.12) {(1.17), where Af = �v � rxf; (3:1:1)and Bf =M [f ]� f: (3:1:2)We de�ne therefore for every n in IN� and every k in [0; n� 1] the functionsfkn , gkn. We denote �T = Tn ; tk = k�T; (3:1:3)and fkn , gkn, are de�ned on [tk; tk+1] by induction on k and according toformulas (2.1.4) { (2.1.8), where A and B are de�ned by (3.1.1) { (3.1.2).This de�nition is meaningful because the solutions of (2.1.5), (2.1.6) andof (2.1.7), (2.1.8) are such that fkn ; gkn belong to C([tk; tk+1];L1(IR3 � IR3)).Then, we de�ne fn(t) = fkn(t); (3:1:4)gn(t) = gkn(t); (3:1:5)22



for every t lying in [tk; tk+1[. The functions fn and gn de�ned by (3.1.4) and(3.1.5) are piecewise continuous with respect to the time variable on [0; T ]with values in L1(IR3 � IR3), and their discontinuities appear at each pointtk for k in [1; n].The main result of this section is the following:Theorem 2: We suppose that assumption 2 on the initial datum holds.Then, the sequences fn and gn de�ned in (3.1.4) { (3.1.5) converge up toextraction to the same limit f in L1([0; T ];L1(IR3 � IR3)) weak * . Thislimit f satis�es equation (1.12) { (1.17) in the sense of distributions.Remark: This property exactly means that formula (1.23) holds for Aand B de�ned in (3.1.1) { (3.1.2).The proof of this theorem is given in subsections 3.2 and 3.3 .3.2 Estimates on fn and gnWe proceed as in subsection 2.2, and give for fn and gn the following equa-tion: @fn@t + v � rxfn = nXi=1 Z i�T(i�1)�T �M [gn](s)� gn(s)� ds �i�T : (3:2:1)We now wish to pass to the limit in equation (3.2.1), we give therefore someestimates on the di�erent terms of the equation.Lemma 8: The sequences fn and gn de�ned in theorem 2 satisfy thefollowing bound for some nonnegative constant CT :supt2[0;T ]Zx2IR3 Zv2IR3 fn(t; x; v)f1+ jvj2 + jxj2 + j log fn(t; x; v)jg dvdx� CT ;(3:2:2)supt2[0;T ]Zx2IR3 Zv2IR3 gn(t; x; v)f1+ jvj2 + jxj2 + j log gn(t; x; v)jg dvdx� CT ;(3:2:3)supt2[0;T ]Zx2IR3 Zv2IR3M [gn](t; x; v)�f1 + jvj2 + jxj2 + j logM [gn](t; x; v)jg dvdx� CT : (3:2:4)23



Proof: The proof is quite similar to that of lemma 1, we only presenthere the estimate relative to the entropy. Denoting H(s) = s log s, we getduring the transport step:ddt Z ZIR3�IR3 H(fn) dxdv = 0 (3:2:5)for all t in [tk ; tk+1[, whereas during the collision step we haveddt Z ZIR3�IR3 H(gn) dxdv = Z ZIR3�IR3(M [gn]� gn)H 0(gn) dxdv: (3:2:6)Therefore, ddt Z ZIR3�IR3 H(gn) dxdv = Z ZIR3�IR3(M [gn]� gn)�(H 0(gn)�H 0(M [gn]) dxdv+ Z ZIR3�IR3(M [gn]� gn) (1+ logM [gn])dxdv: (3:2:7)But because of the de�nition of M [gn],Zv2IR3 �M [gn](t; x; v)� gn(t; x; v)� (v) dv = 0 (3:2:8)when  2 Vect�1; vi; jvj2�. Therefore, for t 2 [tk ; tk+1],ddt Z ZIR3�IR3 H(gn)(t; x; v) dvdx� 0: (3:2:9)Using now the convexity of H, we getH(gn) � H(M [gn]) + (gn �M [gn]) (1 + logM [gn]); (3:2:10)and thusZ ZIR3�IR3 H(M(gn)) dvdx � Z ZIR3�IR3 H(gn) dvdx: (3:2:11)The passage from gn log gn to gnj log gnj in estimate (3.2.3) { (3.2.4) is thenclassical. 24



The previous estimates can be improved in the following way:Lemma 9: There exists a nonnegative convex and nondecreasing func-tion � de�ned on [0;+1[ such that�(�)� �!�!+1+1; (3:2:12)�(��) � (1 + �2) �(�) (3:2:13)for all �; � > 0 and supt2[0;T ]Z ZIR3�IR3 �(jvj2) gn dvdx � CT : (3:2:14)This lemma will be a consequence of the following results, �rst given byE. Ringeisen (Cf. [Ri]):Lemma 10 (E. Ringeisen): Let f0 be a nonnegative function in L1((1+jvj2)dvdx). Then there exists a function � satisfying the assumptions oflemma 9 and C1 > 0 such thatZIR3 �(jvj2) f0(x; v) dxdv � C1: (3:2:15)Lemma 11 (E. Ringeisen): Let � be a nonnegative convex functionde�ned on [0;+1[ and satisfying �(��) � P (�)�(�) for all �; � � 0, whereP is a polynomial.Then we can �nd a constant C0 > 1 such that for every nonnegativefunction h in L1(IR3; (1+ jvj2)dv), the inequalityZIR3 �(jvj2)M [h](v) dv � C0 ZIR3 �(jvj2)h(v)dv (3:2:16)holds.Proof of Lemma 9: During the transport step, we can writeddt Z ZIR3�IR3 �(jvj2) fkn dxdv = 0; (3:2:17)25



whereas during the collisions step we getddt Z ZIR3�IR3 �(jvj2) gkn(t) et dxdv = Z ZIR3�IR3 �(jvj2)M [gkn(t)] et dxdv� C0 Z ZIR3�IR3 �(jvj2) gkn(t) et dxdv: (3:2:18)Thanks to Gronwall lemma, we get for all t 2 [tk; tk+1] (and according tolemma 11),Z ZIR3�IR3 �(jvj2) gkn(t) dxdv � e(C0�1)(t�tk) Z ZIR3�IR3 �(jvj2) gkn(tk) dxdv:(3:2:19)Then by induction and using (3.2.17) (note that the �rst step of theinduction is given by lemma 10), we getsupt2[0;T ]Z ZIR3�IR3 �(jvj2) gn(t) dxdv � e(C0�1)T C1: (3:2:20)According to lemmas 8 and 9, we can extract from the sequences fn, gnand M [gn] subsequences still denoted by fn, gn and M [gn], which convergeweakly * in L1([0; T ];L1(IR3 � IR3)) respectively to f , g and M .3.3 Averaging and passing to the limitWe now give the averaging lemma allowing us to pass to the limit in eq.(3.2.1).Lemma 12: The weak limits f and g are equal. Moreover, the macro-scopic quantities �n = Rv2IR3 gndv, �nun = Rv2IR3 gnvdv and �njunj2 +3�nTn = Rv2IR3 gnjvj2dv are strongly compact in L1([0; T ]� IR3).Proof: We get the result of lemma 4 with exactly the same proof. (Infact the proof can be simpli�ed a little since it is not necessary here torenormalize the equation. Note also that step 6 is not used here).Then, lemma 9 ensures that the same result also holds when  does notincrease more rapidly than a quadratic function.Note then that (up to extraction) the quantities �n; un and Tn pass tothe limit a.e. and converge (when � 6= 0) towards �; u and T . Finally, M [gn]converges toM [f ] a.e. and therefore in L1 strong (since it is weakly compact26
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