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Abstract

Using the method of moments, we prove that any polynomial mo-
ment of the solution of the homogeneous Boltzmann equation with
hard potentials or hard spheres is bounded as soon as a moment of
order strictly higher than 2 exists initially. We also give partial results
of convergence towards the Maxwellian equilibrium in the case of soft
potentials. Finally, exponential as well as Maxwellian estimates are
introduced for the Kac equation.

1 Introduction

The spatially homogeneous Boltzmann equation of rarefied gas dynamics
writes

∂f

∂t
(t, v) = Q(f)(t, v), (1.1)

where f is a nonnegative function of the time t and the velocity v, and Q
is a quadratic collision kernel taking in account any collisions preserving
momentum and kinetic energy:

Q(f)(t, v) =

∫

v1∈IR3

∫

ω∈S2

{f(t, v′) f(t, v′1)− f(t, v) f(t, v1)}

B(|v − v1|, |ω ·
v − v1

|v − v1|
|) dωdv1, (1.2)
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with
v′ = v − (ω · (v − v1))ω, (1.3)

v′1 = v1 + (ω · (v − v1))ω, (1.4)

and the nonnegative cross section B depends on the type of interaction
between molecules (Cf. [Ce], [Ch, Co], [Tr, Mu]).

In a gas of hard spheres, the cross section is

B(x, y) = x y. (1.5)

However, for inverse sth power forces with angular cut–off (Cf. [Ce], [Gr]),

B(x, y) = xα β(y), (1.6)

where α = s−5
s−1 , and there exists β1 > 0 such that for a.e. y ∈ [0, 1],

0 < β(y) ≤ β1. (1.7)

When s > 5, the potentials are said to be hard and 0 < α < 1. But
when 3 < s < 5, the potentials are said to be soft and −1 < α < 0. The
intermediate case when s = 5 is called “Maxwellian molecules” and makes
exact computations possible (Cf. [Tr], [Tr, Mu] and [Bo]).

Since hard and soft potentials are fairly involved, (the function β is de-
fined implicitly), engineers often use in numerical computations the simpler
variable hard spheres (VHS) model, in which

B(x, y) = xα y, (1.8)

and 0 < α ≤ 1. Note that, at least formally, for every function ψ(v),

∫

v∈IR3

Q(f)(t, v)ψ(v)dv =

∫

v∈IR3

∫

v1∈IR3

∫

ω∈S2

{ψ(v′)− ψ(v)}f(t, v)f(t, v1)

B(|v − v1|, |ω ·
v − v1

|v − v1|
|) dωdv1dv, (1.9)

and also
∫

v∈IR3

Q(f)(t, v)ψ(v)dv = −
1

4

∫

v∈IR3

∫

v1∈IR3

∫

ω∈S2

{ψ(v′) + ψ(v′1)
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−ψ(v)− ψ(v1)} {f(t, v
′) f(t, v′1)− f(t, v) f(t, v1)}

B(|v − v1|, |ω ·
v − v1

|v − v1|
|) dωdv1dv. (1.10)

When ψ(v) = 1, v, |v|
2

2 in (1.10), one obtains the conservation of mass,
momentum and energy for the Boltzmann kernel:

∫

v∈IR3

Q(f)(t, v) (1, v,
|v|2

2
) dv = 0. (1.11)

Moreover, using (1.10) with ψ = log f , one obtains the entropy estimate:
∫

v∈IR3

Q(f)(t, v) log f(t, v) dv ≤ 0. (1.12)

According to [A 1], [A 2], for any of the cross sections previously pre-
sented, there exists a nonnegative solution f(t, v) of eq. (1.1) satisfying
f(0, v) = f0(v) as soon as f0 is nonnegative and

∫

v∈IR3

f0(v)(1 +
|v|r

2
+ | log f0(v)|) dv < +∞ (1.13)

for some r > 2. Moreover, estimates (1.11) and (1.12) hold for this solution,
and therefore f satisfies

∫

v∈IR3

f(t, v) (1, v,
|v|2

2
) dv =

∫

v∈IR3

f0(v) (1, v,
|v|2

2
) dv, (1.14)

∫

v∈IR3

f(t, v) log f(t, v) dv ≤
∫

v∈IR3

f0(v) log f0(v) dv (1.15)

when t ≥ 0.
Note that condition (1.13) can be relaxed by taking r = 2 for the proof of

existence, but in that case (1.14) may not hold (at least for soft potentials).
Note also the results in [DP, L 1] of existence and weak stability for the
inhomogeneous equation.

In this work, when we consider solutions of the Boltzmann equation (1.1),
it will always be the nonnegative solutions of [A 1] or [A 2].

It is now well–known that in the case of VHS models (including hard
spheres) and hard potentials (including Maxwellian molecules), the moments
of the solution of the Boltzmann equation

lr(t) =

∫

v∈IR3

f(t, v) |v|r dv (1.16)
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for r > 2, are bounded on [0,+∞[ as soon as they exist at time t = 0 (Cf. [El
1]).

The same estimate holds for soft potentials, except that lr(t) is bounded
only on [0, T ] for T > 0 and may blow up when t goes to infinity (Cf. [A 2]).

Note finally that the case of Maxwellian molecules is treated extensively
in [Tr, Mu] and [Bo].

We shall prove in section 2 that in fact, for VHS models (including
hard spheres) as well as in the case of hard potentials (but not including
Maxwellian molecules) and under assumption (1.13), the moments lq(t) (for
q > 2) are bounded on [ t,+∞[ (for any t > 0). In other words, every
polynomial moments of f exist for t > 0 as soon as one of them (of order
strictly higher than 2) exists initially.

In section 3, we give some estimates for the solution f of eq. (1.1) with
soft potentials. We write the cross section B under the form

B(x, y) = x−γ β(y), (1.17)

with γ > 0 (γ = −α in eq. (1.6)).
We prove that as soon as lr(0) exists (with r > 2), we can find K0 > 0

such that
lr(t) ≤ K0 t+K0. (1.18)

This estimate is a little more explicit than that of [A 2]. Moreover, we get
also

∫ t

0
lr−γ(s) ds ≤ K0 t+K0, (1.19)

which means that lr−γ is bounded in the Cesaro sense. Note that the same
kind of estimates can be found in [Pe 1] and [Pe 2], in a linear context.
Note also that the estimates can be derived from the works of Elmroth
(Cf. [El 1] and [El 2]). However, we give here for the sake of completness a
self–contained proof.

These estimates are then used to prove partial results of convergence
towards the equilibrium when t goes to infinity (the reader can find a survey
on this subject in [De 2]).

Finally, in section 4, we introduce Kac’s model (Cf. [K], [MK]) and,
using monotony results, we prove exponential and Maxwellian estimates for
its solution.
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2 Hard potentials

The bounds that we present in this work are based on formula (1.9). The
exploitation of this estimate is called “method of moments”. We begin by
putting (1.9) under a new form.

Writing

ω = cos θ
v1 − v

|v1 − v|
+ sin θ (cosφ iv,v1 + sinφ jv,v1), (2.1)

where
(

v1 − v

|v1 − v|
, iv,v1 , jv,v1

)

(2.2)

is an orthonormal basis of IR3, estimate (1.9) becomes

∫

v∈IR3

Q(f)(t, v)ψ(v) dv =

∫

v∈IR3

∫

v1∈IR3

∫ 2π

φ=0

∫ π/2

θ=0

{

ψ(v+cos θ |v−v1| {cos θ
v1 − v

|v1 − v|
+ sin θ (cos φ iv,v1 +sinφ jv,v1)}) − ψ(v)

}

f(t, v) f(t, v1) 2 sin θ B(|v − v1|, cos θ) dθdφdv1dv. (2.3)

Introducing in eq. (2.3) the change of variables θ = δ
2 , and defining

Rδ,φ(
v1 − v

|v1 − v|
) = cos δ

v1 − v

|v1 − v|
+ sin δ (cosφ iv,v1 + sinφ jv,v1), (2.4)

one obtains
∫

v∈IR3

Q(f)(t, v)ψ(v) dv

=

∫

v∈IR3

∫

v1∈IR3

∫ 2π

φ=0

∫ π

δ=0

{

ψ

(

v + v1

2
+

|v − v1|

2
Rδ,φ(

v1 − v

|v1 − v|
)

)

− ψ(v)

}

f(t, v) f(t, v1) sin
δ

2
B(|v − v1|, cos

δ

2
) dδdφdv1dv, (2.5)

which is in fact a classical form for the Boltzmann collision term (Cf. [Bo]
or [De 3] for example). We state now three useful lemmas:

Lemma 1: Assume that ǫ > 0 and that Λ is a strictly positive function of
L∞([0, π]). Then, there exists K1 > 0 and two functions T1(v, v1), T2(v, v1)
such that

W (v, v1) =

∫ 2π

φ=0

∫ π

δ=0

∣

∣

∣

∣

1 +
|v − v1||v + v1|

v2 + v21
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×

(

Rδ,φ(
v1 − v

|v1 − v|
) ·

v + v1

|v + v1|

)∣

∣

∣

∣

1+ǫ

Λ(δ) dδdφ

= T1(v, v1) + T2(v, v1), (2.6)

with
T1(v, v1) = −T1(v1, v) (2.7)

and

0 ≤ T2(v, v1) ≤ K1 < 21+ǫ π

∫ π

δ=0
Λ(δ) dδ. (2.8)

Proof of lemma 1: We take the following notations for i = 1, 2:

Ti(v, v1) =

∫ 2π

φ=0

∫ π

δ=0
χi

(

|v − v1||v + v1|

v2 + v21
{Rδ,φ(

v1 − v

|v1 − v|
)·
v + v1

|v + v1|
}

)

Λ(δ)dδdφ,

(2.9)
with

χi(x) =
(1 + x)1+ǫ + (−1)i(1− x)1+ǫ

2
. (2.10)

We can see that
W (v, v1) = T1(v, v1) + T2(v, v1), (2.11)

and
T1(v, v1) = −T1(v1, v). (2.12)

But χ2 is even, strictly increasing from x = 0 to x = 1, and

χ2(0) = 1, χ2(1) = 2ǫ. (2.13)

Therefore, using the inequality

|v − v1||v + v1| ≤ v2 + v21, (2.14)

we obtain the estimate

0 ≤ T2(v, v1) ≤ 21+ǫ π

∫ π

δ=0
Λ(δ) dδ. (2.15)

Then, a simple argument of compactness ensures that lemma 1 holds.

We now prove the second lemma.
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Lemma 2: Assume that ǫ > 0 and that the cross section B in (1.2)
satisfies

B(x, y) = B0(x)B1(y), (2.16)

where B1 ∈ L∞([0, π]) is strictly positive. Then, there exists K2 > 0 and
K3 ∈]0, 1[ such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫdv ≤ K2

∫

v∈IR3

∫

v1∈IR3

{
K3

2
(v2 + v21)

1+ǫ − |v|2+2ǫ}

× f(t, v) f(t, v1)B0(|v − v1|) dv1dv. (2.17)

Proof of lemma 2: According to eq. (2.5), for ǫ > 0,

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫdv =

∫

v∈IR3

∫

v1∈IR3

{

(
v2 + v21

2
)1+ǫ

∫ 2π

φ=0

∫ π

δ=0

∣

∣

∣

∣

1 +
|v − v1||v + v1|

v2 + v21

(

Rδ,φ(
v1 − v

|v1 − v|
) ·

v + v1

|v + v1|

)∣

∣

∣

∣

1+ǫ

sin
δ

2
B1( cos

δ

2
) dδdφ

− |v|2+2ǫ
∫ 2π

φ=0

∫ π

δ=0
sin

δ

2
B1( cos

δ

2
) dδdφ

}

f(t, v) f(t, v1)B0(|v − v1|) dv1dv.

(2.18)
Moreover, using lemma 1 with

Λ(δ) = sin
δ

2
B1( cos

δ

2
), (2.19)

we have
∫

v∈IR3

Q(f)(t, v) |v|2+2ǫdv

≤
∫

v∈IR3

∫

v1∈IR3

{

(
v2 + v21

2
)1+ǫ (K1 + T1(v, v1))

− |v|2+2ǫ
∫ 2π

φ=0

∫ π

δ=0
sin

δ

2
B1( cos

δ

2
) dδdφ

}

f(t, v) f(t, v1)B0(|v − v1|) dv1dv,

(2.20)
with K1 and T1(v, v1) as in lemma 1. Therefore, taking

K2 = 2π

∫ π

δ=0
sin

δ

2
B1( cos

δ

2
) dδ, (2.21)
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K3 =
K1

21+ǫπ

(
∫ π

δ=0
sin

δ

2
B1( cos

δ

2
) dδ

)−1

< 1, (2.22)

and using the change of variables (v, v1) −→ (v1, v), we obtain lemma 2.

We prove now the last lemma.

Lemma 3: Let B and ǫ be as in lemma 2. Then, there exist K4,K5 > 0
such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫdv

≤ −K4

∫

v∈IR3

∫

v1∈IR3

|v|2+2ǫf(t, v) f(t, v1)B0(|v − v1|) dv1dv

+K5

∫

v∈IR3

∫

v1∈IR3

|v|2|v1|
2ǫf(t, v) f(t, v1)B0(|v − v1|) dv1dv. (2.23)

Proof of lemma 3: Note that there exists K6 > 0 such that

(v2 + v21)
1+ǫ ≤ |v|2+2ǫ + |v1|

2+2ǫ +K6 (|v|
2|v1|

2ǫ + |v|2ǫ|v1|
2). (2.24)

Using lemma 2 and the change of variables (v, v1) −→ (v1, v), one easily
obtains lemma 3 with K4 = K2 (1−K3) and K5 = K2K3K6.

We now come to the main theorem of this section.

Theorem 1: Let f0 satisfying (1.13) be a nonnegative initial datum for
the Boltzmann equation (1.1) with hard potentials (but not with Maxwellian
molecules) or with the VHS model (including hard spheres). We denote by
f(t, v) a solution of the equation with this initial datum.

Then, for all r′ > 0, t > 0, there exists C(r′, t ) > 0 such that

∫

v∈IR3

f(t, v) |v|r
′
dv ≤ C(r′, t ) (2.25)

when t ≥ t.

Proof of theorem 1: According to (1.6) and (1.8), the cross section
for hard potentials (but not Maxwellian molecules) or for the VHS model
(including hard spheres) is of the form (2.16) with B0(x) = |x|α, and α ∈
]0, 1]. Therefore, we can apply lemma 3. For ǫ > 0, we write
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∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv

≤ −K4

∫

v∈IR3

∫

v1∈IR3

|v|2+2ǫ |v − v1|
α f(t, v) f(t, v1) dv1dv

+K5

∫

v∈IR3

∫

v1∈IR3

|v|2 |v1|
2ǫ |v − v1|

α f(t, v) f(t, v1) dv1dv (2.26)

≤ −K4 2
−α l2+2ǫ+α(t) l0(t) +K4 2

2−α l2(t) l2ǫ+α(t)

+K5 l2+α(t) l2ǫ(t) + K5 l2ǫ+α(t) l2(t), (2.27)

with the notation (1.16).
Since f is solution of eq. (1.1), the conservations of mass and energy

(1.14) ensure that for θ ∈ [0, 2], lθ(t) is bounded (for t ≥ 0). Therefore,
there exist K7,K8,K9 > 0 such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv ≤ −K7 l2+2ǫ+α(t)+K8 l2+α(t) l2ǫ(t)+K9 l2ǫ+α(t).

(2.28)
Remember that t > 0 and r > 2 are given in the hypothesis of theorem 1

(r is defined in (1.13)). We can always suppose that r ≤ 4. We prove in a
first step that there exists t0 ∈]0, t [ such that lr+α(t) is bounded on [t0,+∞[.

According to Hölder’s inequality, when 0 < µ < ν,

lµ(t) ≤ l
1−µ/ν
0 (t) lµ/νν (t). (2.29)

Therefore, using estimate (2.28) with ǫ = r
2 − 1, one obtains

∫

v∈IR3

Q(f)(t, v) |v|r dv ≤ −K7 lr+α(t)

+K8 l
2+α
r+α

r+α(t) l
1− 2+α

r+α

0 (t) lr−2(t) + K9 l
r+α−2

r+α

r+α (t) l
1− r+α−2

r+α

0 (t). (2.30)

Remember that since r−2 ∈]0, 2], the moments l0(t) and lr−2(t) are bounded
on [0,+∞[. Moreover, we can findK10,K11 > 0 such that when x ≥ 0, t ≥ 0,

−K7 x+K8 x
2+α
r+α l

1− 2+α
r+α

0 (t)lr−2(t) +K9 x
r+α−2

r+α l
1− r+α−2

r+α

0 (t) ≤ −K10 x+K11.

(2.31)
Therefore,

∫

v∈IR3

Q(f)(t, v) |v|r dv ≤ −K10 lr+α(t) +K11. (2.32)
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Integrating the Boltzmann equation (1.1) on [0, t ] × IR3 against |v|r and
using estimate (2.32), one gets

lr(t ) +K10

∫ t

0
lr+α(s) ds ≤ K11 t+ lr(0). (2.33)

According to (1.13) and (2.33), we can see that there exists t0 ∈]0, t [ such
that lr+α(t0) < +∞. But it is well known that if a moment exists at a given
time t0, then it is bounded for t ≥ t0 (Cf. [El 1] or the remark at the end of
section 2), therefore lr+α(t) is bounded for t ≥ t0.

We now come back to estimate (2.28). Using equation (2.29), an esti-
mate similar to (2.31) and the result of boundedness for lr+α(t), one obtains
K12,K13 > 0 such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv ≤ −K12 l2+2ǫ+α(t) +K13 (2.34)

for t ≥ t0.
We now integrate (when t0 ≤ t− < t ) the Boltzmann equation (1.1) on

[t−, t ]× IR3 against |v|2+2ǫ and we use estimate (2.34) to obtain

l2+2ǫ(t ) +K12

∫ t

t−
l2+2ǫ+α(s) ds ≤ K13 ( t− t−) + l2+2ǫ(t−). (2.35)

Therefore, if t0 ≤ t− and if l2+2ǫ(t−) < +∞, there exists τ ∈ [t−, t [ such
that l2+2ǫ+α(τ) < +∞.

Finally, we note that any moment is bounded on [τ,+∞[ as soon as it
is defined at time τ (Cf. [El 1]), and we use a proof by induction to get
theorem 1.

Remark: Note that using eq. (2.35), we can produce explicitly the max-
imum principle for l2+2ǫ. Namely when ǫ > 0, estimate (2.29) ensures that
there exists K14 > 0 such that

d

dt
l2+2ǫ(t) ≤ −K14 l

2+2ǫ+α
2+ǫ

2+2ǫ (t) +K13, (2.36)

which gives

l2+2ǫ(t) ≤ sup

(

l2+2ǫ(t−), (
K13

K14
)

2+2ǫ
2+2ǫ+α

)

, (2.37)
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for t ≥ t− (this is another proof of the result of [El 1]).

Remark: Theorem 1 can be applied in a lot of situations. For example, it
allows to simplify the results on exponential convergence towards equilibrium
stated in [A 3]. Namely, the hypothesis used in [A 3] is that there exists
enough moments initially bounded.

Note also the recent application of this theorem by Wennberg in [We] to
the problem of uniqueness of the solution of the Boltzmann equation with
hard potentials.

Finally, note that in the same work, Wennberg proves a similar theorem
in an Lp ∩ L1 setting.

3 Soft potentials

We consider in this section the Boltzmann equation (1.1) with a cross section
B of the form

B(x, y) = x−γ β(y), (3.1)

with γ > 0 (γ = −α in formula (1.6)), and β satisfying (1.7). This is exactly
the hypothesis of soft potentials.

We begin by proving the

Theorem 2: We consider the operator Q defined in (1.2) with B satis-
fying (3.1). Then for ǫ > 0, there exist K20,K21 > 0 such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv ≤ K20 −K21

∫

v∈IR3

f(t, v) |v|2+2ǫ−γ dv (3.2)

when f(t, v) satisfies the conservations of mass and energy (1.14). (The
constants K20 and K21 depend in fact of this mass and this energy).

Proof of theorem 2: According to eq. (2.5), for ǫ > 0,

∫

v∈IR3

Q(f)(t, v)|v|2+2ǫdv

=

∫

v∈IR3

∫

v1∈IR3

∫ 2π

φ=0

∫ π

δ=0

{∣

∣

∣

∣

v + v1

2
+

|v − v1|

2
Rδ,φ(

v1 − v

|v1 − v|
)

∣

∣

∣

∣

2+2ǫ

− |v|2+2ǫ
}

f(t, v) f(t, v1) |v − v1|
−γ sin

δ

2
β( cos

δ

2
) dδdφdv1dv. (3.3)
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We make the change of variables u = v1 − v, and consider the integral in
(3.3) when |u| ≥ 1

2 and when |u| ≤ 1
2 . Then, we use lemma 3 for the first

term and get
∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv

≤ −K4

∫

v∈IR3

∫

v1∈IR3

|v|2+2ǫ f(t, v) f(t, v1)B0(|v − v1|) dv1dv

+K5

∫

v∈IR3

∫

v1∈IR3

|v|2 |v1|
2ǫ f(t, v) f(t, v1)B0(|v − v1|) dv1dv

+(
1

2
)1−γ (2 + 2ǫ)

∫

v∈IR3

∫

|u|≤ 1

2

∫ 2π

φ=0

∫ π

δ=0
(|v|+

1

2
)1+2ǫ

× f(t, v) f(t, v + u) sin
δ

2
β( cos

δ

2
) dδdφdudv, (3.4)

where
B0(x) = 1x≥ 1

2

x−γ . (3.5)

With the notation (1.16), one obtains after computations:

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv ≤ −
K4

4
l2+2ǫ−γ(t)

(l0(t))
2

l0(t) + l2(t)

+
K4

2
(l0(t))

2 + 2K4 l2ǫ−γ(t) (l2(t) +
1

4
l0(t)) + K5 2

γ l2(t) l2ǫ(t)

+ 2γ+2ǫ (2 + 2ǫ)π2β1 l1+2ǫ(t) l0(t) + 2γ−1 (2 + 2ǫ)π2β1 (l0(t))
2. (3.6)

Since we supposed that l0(t) = l0(0) and l2(t) = l2(0), there exist K15, K16,
K17, K18, K19 > 0 such that

∫

v∈IR3

Q(f)(t, v) |v|2+2ǫ dv ≤ −K15 l2+2ǫ−γ(t) + K16 l1+2ǫ(t)

+K17 l2ǫ(t) + K18 l2ǫ−γ(t) + K19. (3.7)

Using estimate (2.29) and working as in (2.31), we obtain theorem 2.

We give now the main corollaries of this theorem

Corollary 2.1: We suppose that f(t, v) is a solution of the Boltzmann
equation (1.1) with a cross section B satisfying (3.1)(i-e in the case of soft
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potentials), such that f(0, v) = f0(v) ≥ 0 and f0 satisfies (1.13). Then,
there exists K0 > 0 such that

∫

v∈IR3

f(t, v) |v|r dv ≤ K0 t+K0 (3.8)

(with r defined in (1.13)).

Proof of corollary 2.1: Integrating the Boltzmann equation (1.1) on
[0, t] × IR3 against |v|r and using theorem 2 with ǫ = r

2 − 1, one obtains

∫

v∈IR3

f(t, v)|v|rdv −
∫

v∈IR3

f0(v)|v|
rdv

≤ K20 t−K21

∫ t

0

∫

v∈IR3

f(s, v)|v|r−γdvds, (3.9)

which yields estimate (3.8) for K0 = sup (K20, lr(0)).

Corollary 2.2: We suppose that f(t, v) is a solution of the Boltzmann
equation (1.1) with a cross section B satisfying (3.1)(i-e in the case of soft
potentials), such that f(0, v) = f0(v) ≥ 0 and

∫

v∈IR3

f0(v) (1 + |v|r + | log f0(v)|) dv < +∞ (3.10)

for some r > 2 + γ. Then, there exist K0,K22 > 0 such that

∫ t

0

∫

v∈IR3

f(s, v) |v|r−γ dvds ≤ K0 t+K0, (3.11)

and
d

dt

∫

v∈IR3

f(t, v) |v|r−γ dv ≤ K22. (3.12)

Proof of corollary 2.2: Estimate (3.11) comes out of eq. (3.9). More-
over, injecting ǫ = r

2 −
γ
2 − 1 in theorem 2, we immediately obtain estimate

(3.12).

We now give a corollary of formulas (3.11) and (3.12), relative to the
convergence towards equilibrium for the Boltzmann equation (1.1) with soft
potentials.
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Corollary 2.3: We suppose that f(t, v) is a solution of the Boltzmann
equation (1.1) with a cross section B satisfying (3.1)(i-e in the case of soft
potentials), such that f(0, v) = f0(v) ≥ 0 and

∫

v∈IR3

f0(v)(1 + |v|r + | log f0(v)|) dv < +∞ (3.13)

for some r > 2 + γ. Then, there exists a sequence (tn)n∈IN going to infinity
such that for all T > 0, fn(t, v) = f(t+tn, v) converges in L

∞([0, T ];L1(IR3))
weak * to the time–independant Maxwellian

m(v) =
ρ̃

(2πT̃ )3/2
e
−

|v−ũ|2

2T̃ , (3.14)

with

ρ̃ =

∫

v∈IR3

f0(v) dv, (3.15)

ρ̃ ũ =

∫

v∈IR3

v f0(v) dv, (3.16)

and

ρ̃
|ũ|2

2
+

3

2
ρ̃ T̃ =

∫

v∈IR3

|v|2

2
f0(v) dv. (3.17)

Proof of corollary 2.3: We first note that the solution f of the Boltz-
mann equation (1.1) with soft potentials satisfies the following entropy es-
timate:

sup
t∈[0,+∞[

∫

v∈IR3

f(t, v) | log f(t, v)| dv

+

∫ +∞

s=0

∫

v∈IR3

∫

v1∈IR3

∫

ω∈S2

{f(s, v′) f(s, v′1)− f(s, v) f(s, v1)}

log {
f(s, v′) f(s, v′1)

f(s, v) f(s, v1)
} |v − v1|

−γ β(|ω ·
v − v1

|v − v1|
|) dωdv1dvds < +∞. (3.18)

This inequality is obtained from (1.12), (1.14), (1.15) and (3.13) as in the
space–dependant case (Cf. [DP, L 1] and [DP, L 2]).

Now according to corollary 2.2, there exists a sequence (tn)n∈IN going to
infinity and r̃ = r − γ > 2 such that

∫

v∈IR3

f(tn, v) |v|
r̃ dv ≤ K0 + 1. (3.19)
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Moreover, because of estimate (3.12), we have for t ∈ [0, T ],

∫

v∈IR3

f(tn + t, v) |v|r̃ dv ≤ K0 + 1 +K22 T. (3.20)

Denoting

Γ(x, y) = (x− y) log (
x

y
), (3.21)

and using estimates (3.18), (3.20) and the conservation of mass (1.14), we
can find K23 > 0 such that fn(t, v) = f(t+ tn, v) satisfies:

sup
t∈[0,T ]

∫

v∈IR3

fn(t, v) {1 + |v|r̃ + | log fn(t, v)|} dv ≤ K23, (3.22)

and

∫ T

s=0

∫

v∈IR3

∫

v1∈IR3

∫

ω∈S2

Γ(fn(s, v
′) fn(s, v

′
1), fn(s, v) fn(s, v1))

|v − v1|
−γ β(|ω ·

v − v1

|v − v1|
|) dωdv1dvds −→

n→+∞
0. (3.23)

According to estimate (3.22), there exists a subsequence of fn (still de-
noted by fn) which converges to a limitm(t, v) in L∞([0, T ];L1(IR3)) weak *.

To prove that m is a Maxwellian function of v which does not depend
on t, one can proceed essentially as in [De 1].

Then, one must identify ρ̃, ũ, and T̃ .

Using the conservations of mass, impulsion and energy (1.14), one gets
for all t ∈ [0, T ],

∫

v∈IR3

fn(t, v) (1, v,
|v|2

2
) dv =

∫

v∈IR3

f0(v) (1, v,
|v|2

2
) dv. (3.24)

But because of estimate (3.22),

∫ T

t=0

∫

v∈IR3

(1, v, |v|2) fn(t, v) dvdt −→
n→+∞

T

∫

v∈IR3

(1, v, |v|2)m(v) dv, (3.25)

and therefore the parameters ρ̃ ,ũ, T̃ are given by formulas (3.15) – (3.17).
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Remark: This is only a partial result. One would expect in fact that the
whole function tends when t −→ +∞ to the Maxwellian given in (3.14) –
(3.17). Note that this is the case when hard potentials are concerned, the
convergence being even strong and exponential under suitable assumptions
(Cf. [A 3]). Note also that the existence of a converging subsequence for
any sequence tn going to infinity can be derived from the papers of Arkeryd
(Cf. [A 2]), but the limits in that case may have less energy than the initial
datum.

3.1 The Kac equation

We introduce now the one–dimensional homogeneous Kac model (Cf. [K],
[MK]), where all collisions have the same probability. The density f(t, v) > 0
of particles which at time t move with velocity v satisfies

∂f

∂t
(t, v) = Q′(f)(t, v), (4.1)

where Q′ is a quadratic collision kernel:

Q′(f)(t, v) =

∫

v1∈IR

∫ π

θ=−π
{f(t, v∗)f(t, v∗1)− f(t, v)f(t, v1)}

dθ

2π
dv1, (4.2)

with
v∗ =

√

v2 + v21 cos θ, (4.3)

v∗1 =
√

v2 + v21 sin θ. (4.4)

It is easy to prove (at least at the formal level) the conservation of mass and
energy

∫

v∈IR
f(t, v) (1,

|v|2

2
) dv =

∫

v∈IR
f(0, v) (1,

|v|2

2
) dv, (4.5)

and the entropy estimate

∫

v∈IR
f(t, v) log f(t, v) dv ≤

∫

v∈IR
f(0, v) log f(0, v) dv. (4.6)

Adapting for example the proof of Arkeryd (Cf. [A 1] or [De 4]) for the
Boltzmann equation, one can prove that as soon as f0 ≥ 0 satisfies

∫

v∈IR
f0(v) (1 + |v|2 + | log f0(v)|) dv < +∞, (4.7)
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there exists a solution of the Kac equation (4.1) such that f(0, v) = f0(v).
Moreover, this solution satisfies estimates (4.5) and (4.6).

It is also easy to adapt the theorems of Truesdell (Cf. [Tr] and [Tr, Mu])
for this equation. Namely, one can give an explicit induction formula to
compute the moments

Ln(t) =

∫

v∈IR
f(t, v) vn dv (4.8)

when n ∈ IN , as soon as these moments exist initially. Therefore, we do not
deal in this work with the polynomial moments of f , but rather with the
Maxwellian moments

Mf (t, λ) =

∫

v∈IR
f(t, v) eλv

2

dv, (4.9)

for λ > 0.

We begin by proving the following theorem:

Theorem 3: Let f0 ≥ 0 satisfy (4.7), and consider a solution f(t, v) of
the Kac equation (4.1) such that f(0, v) = f0(v).

Suppose moreover that there exists λ0 > 0 such that Mf (0, λ0) < +∞.
Then, there exists λ > 0 and K24 > 0 such that when t ≥ 0, Mf (t, λ) ≤ K24.

Proof of theorem 3: We look for an equation satisfied by Mf (t, λ).

∂

∂t
Mf (t, λ) =

∫

v∈IR
Q′(f)(t, v) eλv

2

dv

=

∫

v∈IR

∫

v1∈IR

∫ π

θ=−π
f(t, v) f(t, v1) {e

λv∗2 − eλv
2

}
dθ

2π
dv1dv

=

∫

v∈IR

∫

v1∈IR

∫ π

θ=−π
f(t, v) f(t, v1) {e

λ(v2+v2
1
) cos2 θ − eλv

2

}
dθ

2π
dv1dv

=

∫ π

θ=−π
(M2

f (t, λ cos
2 θ)−Mf (t, λ)Mf (0, 0))

dθ

2π
, (4.10)

since the conservation of mass (4.5) holds.

For any ρ, T > 0, we denote by mρ,T the steady Maxwellian of density ρ

and temperature T ,

mρ,T (t, v) =
ρ

(2πT )1/2
e
−

|v|2

2T . (4.11)
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It is easy to see that mρ,T is a steady solution of the Kac equation (4.1).
Therefore

Mm
ρ,T

(t, λ) =
ρ

√

1− 2λT
(4.12)

is a steady solution of equation (4.10) on [0,+∞[×[0, 1
2T

[ (this can be seen
directly on equation (4.10)).

We now prove that under the hypothesis of theorem 3, there exist
λ̃ > 0, T > 0, such that

∀λ ∈ [0, λ̃], Mf (0, λ) ≤ Mm
ρ,T

(0, λ), (4.13)

with

ρ =

∫

v∈IR
f(0, v)dv. (4.14)

In order to prove (4.13), we use a development around 0 of Mf (0, λ):

Mf (0, λ) =

∫

v∈IR
f(0, v) eλv

2

dv

=

∫

v∈IR
f(0, v) (1 + λv2 + λ2v4

∫ 1

u=0
(1− u)eλuv

2

du ) dv

=

∫

v∈IR
f(0, v) dv + λ

∫

v∈IR
f(0, v) |v|2 dv +O(λ2), (4.15)

since

∫

v∈IR
f(0, v) v4 (

∫ 1

u=0
(1− u) eλuv

2

du ) dv ≤
∫

v∈IR
f(0, v) v4 eλv

2

dv < +∞

(4.16)
when λ < λ0.

But
Mm

ρ,T
(0, λ) = ρ+ λ ρT +O(λ2), (4.17)

and therefore (4.13) holds as soon as we take λ̃ small enough and

T >
1

ρ

∫

v∈IR
f(0, v) |v|2 dv. (4.18)
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But equation (4.10) satisfies clearly the following monotony property: If
a(0, λ) and b(0, λ) are two initial data for (4.10) and λ is a strictly positive
number such that

∀λ ∈ [0, λ [, a(0, λ) ≤ b(0, λ), (4.19)

and
a(0, 0) = b(0, 0), (4.20)

then for all t ≥ 0, the solutions a(t, λ) and b(t, λ) of (4.10) satisfy

∀λ ∈ [0, λ [, a(t, λ) ≤ b(t, λ). (4.21)

According to (4.12), (4.13), (4.21), and taking

0 < λ < inf (λ̃,
1

2T
), (4.22)

we obtain theorem 3.

We now give estimates for the exponential moments:

Nf (t, λ) =

∫

v∈IR
f(t, v) eλv dv, (4.23)

for λ ∈ IR.

We can prove the following theorem:

Theorem 4: Let f0 ≥ 0 satisfy (4.7), and consider a solution f(t, v) of
the Kac equation (4.1) such that f(0, v) = f0(v).

Suppose moreover that there exists λ0 > 0 such that Nf (0, λ0) < +∞,
Nf (0,−λ0) < +∞, and

∫

v∈IR
f0(v) v dv = 0. (4.24)

Then, there exists λ > 0 and K25 > 0 such that Nf (t, λ) +Nf (t,−λ) ≤ K25

for t ≥ 0.

Proof of theorem 4: It is easy to see that

∂

∂t
Nf (t, λ) =

∫ π

θ=−π
{Nf (t, λ cos θ)Nf (t, λ sin θ)−Nf (t, λ)Nf (0, 0)}

dθ

2π
.

(4.25)
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Moreover, since mρ,T is a steady solution of the Kac equation (4.1),

Nm
ρ,T

(t, λ) = ρ e
λ2

2
T (4.26)

is a steady solution of equation (4.25) on [0,+∞[×IR (this can be seen
directly on equation (4.25)).

Then, the proof is quite similar to the proof of theorem 3.

Aknowledgment: I would like to thank Professor Arkeryd and Doctor
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