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Parco Area delle Scienze 53/A, I-43124 Parma, Italy,

marzia.bisi@unipr.it (corresponding author)

♯ CMLA, ENS Cachan, CNRS; 61, Av. du Pdt Wilson, 94235 Cachan Cedex, France

desville@cmla.ens-cachan.fr

Abstract

We present in this paper the formal passage from a kinetic model to the incom-
pressible Navier-Stokes equations for a mixture of monoatomic gases with different
masses. The starting point of this derivation is the collection of coupled Boltzmann
equations for the mixture of gases. The diffusion coefficients for the concentrations
of the species, as well as the ones appearing in the equations for velocity and tem-
perature, are explicitly computed under the Maxwell molecule assumption in terms
of the cross sections appearing at the kinetic level.
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1 Introduction

The formal derivation of the incompressible Navier-Stokes system for a single gas starting
from the Boltzmann equation was first described in details in [3]. It was later made
rigorous under quite general assumptions on the cross section appearing in the Boltzmann
equation (for monoatomic gases) [23, 17, 25, 18, 26, 27, 2].

Our goal here is to extend the formal derivation of the incompressible Navier-Stokes
equations (still starting from equations of Boltzmann type) to the case of a mixture of
gases. More precisely, we consider the evolution of a mixture of N elastically scattering
monoatomic rarefied gases As, s = 1, . . . , N with particle mass of the s–th species denoted
by ms. Let f s := f s(t,x,v) (s = 1, . . . , N) be the phase space density of each gas. The
Boltzmann equation in this setting writes (for s = 1, . . . , N)

∂tf
s + v · ∇xf

s =

N
∑

r=1

Qsr(f s, f r) , (1)
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where

Qsr(f s, f r)(v) =

∫∫

g σsr(g, χ)

(

f s(v′) f r(w′)− f s(v) f r(w)

)

dw dΩ̂′, (2)

v′ =
ms

ms +mr
v +

mr

ms +mr
w +

mr

ms +mr
|v −w| Ω̂′ , (3)

w′ =
ms

ms +mr
v +

mr

ms +mr
w− ms

ms +mr
|v −w| Ω̂′ , (4)

the quantity g = v−w = g Ω̂ is the pre–collision relative velocity (g and Ω̂ are its modulus
and direction), g′ = v′−w′ = g Ω̂′ is the post–collision one (g′ = g because of momentum
and energy conservations), σsr is the differential cross section (note that σsr = σrs) and
χ is the angle formed by pre– and post–interaction relative velocity: cosχ = Ω̂ · Ω̂′.

It has been shown in the case of a single gas [3] that the scaling of the Boltzmann
equations for the distributions f s(t,x,v), s = 1, . . . , N that turns out to be compatible
with the incompressible fluid–dynamic limit is

ε ∂tf
s
ε + v · ∇xf

s
ε =

1

ε

N
∑

r=1

Qsr(f s
ε , f

r
ε ), (5)

where the small parameter ε stands for the Knudsen number. The dominant process in
the evolution is thus the elastic scattering, while the time scale is taken of order ε−1.
Analogously to [3], we look for solutions to (5) in the form

f s
ε = ρs Ms

(1,0,1)(1 + ε gsε), (6)

where ρs > 0 are constants and Ms
(1,0,1) are absolute normalized Maxwellians with number

density equal to 1, mass velocity equal to 0, temperature equal to 1, i.e.

Ms(v) =

(

ms

2π

)3/2

e−
ms

2
v2 . (7)

Without loss of generality, we may assume

ρ =

N
∑

s=1

ρs = 1 . (8)

A crucial role in the study of the re–scaled equations (5) will be played by the linearized
bi-species elastic operator

N
∑

r=1

ρsρr
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

. (9)

In the case of gases with different particle masses and different cross sections, it is well
known that classical Grad’s methodology [19, 20] cannot be easily applied to study the
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formal mean free path limit. However, for the most typical cross sections, that is, hard
potentials with cutoff, it has been recently proved [12] that the operator (9) has the
same good properties as the linearized operator for gases with the same mass (studied
for instance in [5]). In particular the non multiplicative part of the operator (9) is com-
pact in a suitable L2-type space, so that linearized systems of Boltzmann equations may
be solved owing to the Fredholm alternative. For this reason we expect that the gen-
eral form of evolution equations that we shall derive in the sequel still hold for a large
class of intermolecular potentials. However, since our aim is to build up consistent and
completely explicit macroscopic equations, that can be compared with analogous hydro-
dynamic systems (with coefficients found by means of thermodynamical considerations)
used in physical applications, we compute all diffusion coefficients appearing in the macro-
scopic equations in the case of cross sections of Maxwell molecules type. In this collision
frame, our main result is the following:

Proposition 1: Consider a family f s
ε of solutions of (5), with Qsr given by (2).

Assume also that the intermolecular potential is chosen in such a way that the collision
kernels (differential cross section times the relative speed) depend only on the deflection
angle χ [15] (that is, the interaction is of Maxwell molecules type):

g σsr(g, χ) = ϑsr(χ) , (10)

and define

κsr = 2π

∫ π

0

ϑsr(χ)(1− cosχ) sinχ dχ ,

νsr = 2π

∫ π

0

ϑsr(χ)(1− cos2 χ) sinχ dχ .

(11)

Then formally, the scaling (6) holds, with

gsε(v) = αs +ms v · u+

(

1

2
ms v2 − 3

2

)

T +O(ε) , (12)

where the parameters αs, u, T depend on t and x and satisfy the following Navier–Stokes
system for mixtures:

- Incompressibility condition:
∇x · u = 0 , (13)

- Boussinesq identity:

∇x

(

N
∑

s=1

(

ρs αs
)

+ T

)

= 0 , (14)

- Convection-diffusion equations for the densities of the species:

∂t

[

∑

r 6=s

ρrµsr κsr(αs − αr)

]

+ u · ∇x

[

∑

r 6=s

ρrµsrκsr(αs − αr)

]

= ∆x

[

∑

r 6=s

ρr(αs − αr)

]

, s = 1, . . . , N − 1,

(15)
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where µsr = ms mr

ms+mr is the reduced mass,

- Convection-diffusion equation for the momentum:

∂tu+ u · ∇xu+∇xp = d1 ∆xu, (16)

- Convection-diffusion equation for the temperature:

∂tT + u · ∇xT = d2∆xT. (17)

In the above equations, d1 > 0, d2 > 0 are diffusion coefficients given by the following
formulas:

d1 =

N
∑

s=1

ρs θs, (18)

where the parameters θs are the unique solution of the linear system

[

3

4
ρsνss +

∑

r 6=s

ρr
µsr

ms +mr

(

2κsr +
3

2

mr

ms
νsr

)

]

θs

+
∑

r 6=s

ρr
µsr

ms +mr

(

− 2κsr +
3

2
νsr

)

θr =

( N
∑

s=1

ρsms

)−1

, s = 1, . . . , N ;

(19)

and

d2 =

N
∑

s=1

ρs√
ms

ηs, (20)

where the parameters ηs are the unique solution of the linear system

{

1

2
ρs(ms)1/2νss +

∑

r 6=s

ρr
µsr

(ms +mr)2

[

(ms)−1/2
(

3(ms)2 + (mr)2
)

κsr + 2(ms)1/2mrνsr
]

}

ηs

+
∑

r 6=s

ρr
µsr

(ms +mr)2
ms(mr)1/2

(

− 4κsr + 2 νsr
)

ηr = 1 , s = 1, . . . , N .

(21)

We will see that the expression of the perturbation gsε given in (12), and the incom-
pressibility and Boussinesq constraints (13), (14) hold for any intermolecular potentials.

Note that the system (13)–(17) is not strongly coupled, in the sense that evolution
equation (16) could be solved separately (it does not depend on the other unknown fields
αs, T ) providing global velocity u as function of time t and space x. Then, there remains
a system of N + 1 equations for concentrations αs and temperature T : the Boussinesq
condition (14) and the N evolution equations (15) and (17).

Note that the Boussinesq relation becomes
∑N

s=1

(

ρs αs
)

+ T = 0 if suitable boundary
conditions are imposed, and this yields immediately one of the number densities (for
instance αN) as function of the other ones and of the temperature. Moreover, note that
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the parameters αs, T are not necessarily nonnegative, since they are only perturbations
at the first order of the coefficients appearing in a Maxwellian function of v.

A self–consistent system coupling number densities and temperature like (14), (15),
(17) provides a mathematical justification of the fact, known in physical applications and
in extended thermodynamics frame, that in several problems regarding gas mixtures the
evolution of concentrations is strongly affected by diffusion of the global temperature,
while it depends upon the velocity only through the advection term.

Note that in the present scaling, not all macroscopic degrees of freedom of the fluid
appear in the macroscopic equations. Velocities or temperatures specific to each species
would appear only if we considered higher orders in expansion (12), obtaining Burnett–
type equations, or if we took as dominant operator (of order 1/ε) in the s–th Boltz-
mann equation only Qss(f s

ε , f
s
ε ), describing elastic collisions between particles of the same

species. This scaling, leading of course to a completely different class of macroscopic
models (multi–temperatures and multi-velocities), has been studied for instance in [11].
Other formal hydrodynamic limits from kinetic models for (inert or reactive) mixtures
have been already performed in compressible asymptotic regimes [8, 10]. For binary mix-
tures, there are also results concerning a Cahn–Hilliard diffusion model coupled with a
fluid motion [24, 29, 7].

The main differences between this work and the incompressible limit performed in [3]
in the one-species case, are the following:

• In the one-species case, the Boussinesq condition in strong form is simply α+T = 0,
hence no equation is needed for concentration α since it is completely known from
the equation for T . For a mixture the Boussinesq constraint is a link between T
and the sum of number densities, so that N − 1 additional independent evolution
equations have to be consistently derived, and these are the ones given in (15).

Note that in the case of a mixture of two species, one can directly consider the
difference of the two kinetic equations satisfied by the two species in order to get
the needed equation. When more than two species are concerned, one has to find
the “right” linear combinations between the kinetic equations. These combinations
depend on the masses and cross sections, as can be seen in the limiting equation (15).

• Also, the assumption of different particle masses complicates the formal derivation
of the equations for u and T , even if at first glance they are exactly the ones expected
by physical considerations. Even for Maxwellian molecules, the computation of d1
and d2, and the proof that these diffusion coefficients are actually strictly positive for
any values of masses and collision frequencies require several algebraic manipulations
that are not a direct extension of the case of a mixture of two gases.

Before starting the (formal) proof of Proposition 1, we compare the set of equations
obtained in Proposition 1 to the equations which can be obtained by performing the limit
of low Mach number regime in the systems of compressible Navier-Stokes equations for
mixtures. We indeed know that incompressible Navier–Stokes equations may be derived
also as low Mach number limit of the compressible ones in the case of a single rarefied
gas (cf. [6, 22, 1]).
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We briefly indicate here how the same strategy can be applied for mixtures, starting
from the compressible Navier-Stokes equations for mixtures described for example in
[14, 13]. Denoting ρs, ms the number density and the particle mass of each species, and u

the global mass velocity, the system writes in the case of a mixture of monoatomic perfect
gases:






































∂tρ
s +∇x · (ρsu) = ∇x · Fs s = 1, . . . , N,

∂t

(

N
∑

s=1

ρsmsu

)

+∇x ·
(

N
∑

s=1

ρsmsu⊗ u

)

+∇xp = ∇x ·Π,

∂t

[

N
∑

s=1

ρs
(

ms u
2

2
+

3

2
T

)

]

+∇x ·
[

N
∑

s=1

ρs
(

ms u
2

2
+

5

2
T

)

u

]

= ∇x · (Π · u) +∇x · q,

(22)
where p =

∑N
s=1 ρ

s T is the state law, and Fs, Π, q are the diffusion terms given by

Fs =

N
∑

j=1

Lsj∇x

(

ρj

(2π T/mj)3/2

)

+ Lsq ∇x(1/T ),

Π =

(

κ− 2

3
η

)

(∇x · u) I+ η
(

∇xu+ (∇xu)
T
)

,

q =
N
∑

j=1

Lqj∇x

(

ρj

(2π T/mj)3/2

)

− Lqq ∇x(1/T ) .

(23)

Here the diffusion coefficients Lsj , Lsq, Lqj, Lqq, κ, η may depend on the temperature T
of the mixture. Moreover, they satisfy the constraints of conservation of total mass
∑N

s=1 ρ
sms.

Note that the equation of conservation of energy can be rewritten as an equation for
the temperature in the following way:

∂tT + u · ∇xT +
2

3

p
∑N

s=1 ρ
s
∇x · u =

2

3

1
∑N

s=1 ρ
s
∇xu : Π+

2

3

1
∑N

s=1 ρ
s
∇x · q .

The scaling of low Mach number corresponds [16] to keeping the first line of (22), and
rescaling the velocity and temperature equations as

ε2

[

∂t

(

N
∑

s=1

ρsmsu

)

+∇x ·
(

N
∑

s=1

ρsmsu⊗ u

)

−∇x ·Π
]

= −∇xp , (24)

and

∂tT + u · ∇xT +
2

3

p
∑N

s=1 ρ
s
∇x · u =

2

3

ε2
∑N

s=1 ρ
s
∇xu : Π+

2

3

1
∑N

s=1 ρ
s
∇x · q . (25)

We focus on the simple case when all masses are equal (we denote m = ms), and when
the Soret and Dufour coefficients Lqj and Lsq are zero, as is expected for Navier-Stokes
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equations coming out (by the Chapman-Enskog procedure) from the Boltzmann equation
in the case of Maxwell molecules (cf. [13]).

Expanding the densities, velocity, pressure and temperature around constant states
ρs0, u0, T0, p0, in powers of ε, we end up with

ρs(t,x) = ρs0 (1 + ε αs(t,x)) +O(ε2) , u(t,x) = u0(t,x) + εu1(t,x) +O(ε2),

T (t,x) = T0 + ε T1(t,x) +O(ε2) , p(t,x) = p0 + ε2p2(t,x) +O(ε2).

Writing

∇x

(

N
∑

s=1

ρs T

)

= ε∇x

(

T0

N
∑

s=1

ρs0α
s +

N
∑

s=1

ρs0 T1

)

+O(ε2) , (26)

and observing that the terms in O(ε) have to vanish, we get the Boussinesq relation (14),
where ρs is replaced by ρs0

T0

ρ0
(with ρ0 =

∑N
s=1 ρ

s
0), and T is replaced by T1, that is

∇x

(

T0

ρ0

N
∑

s=1

ρs0 α
s + T1

)

= 0.

Considering now the evolution equation for total mass density

m∂t

(

N
∑

s=1

ρs

)

+mu · ∇x

(

N
∑

s=1

ρs

)

+m
N
∑

s=1

ρs ∇x · u = 0 , (27)

and observing that the first and the second terms in the equation are of order O(ε), we
get in the limit the incompressibility condition (13), with u replaced by u0, that is,

∇x · u0 = 0.

Using eq. (27) at next order, we get

∂t

(

N
∑

s=1

ρs0α
s

)

+ u0 · ∇x

(

N
∑

s=1

ρs0α
s

)

+ ρ0∇x · u1 = 0 . (28)

By using this into the expression of Π given in (23), we get that ∇x ·Π tends to η∆xu0,
so that the momentum equation (24) becomes

∂tu0 + u0 · ∇xu0 +∇xp̃ = D1∆xu0 , (29)

where the diffusion coefficient D1 = η/(mρ0), and p̃ is a Lagrange multiplier. This
corresponds to (16), with u replaced by u0, p replaced by p̃, and d1 replaced by D1.

We now use the expansions in eq. (25), and get

ε(∂tT1 + u0 · ∇xT1) +
2

3
ε
p0
ρ0

∇x · u1 =
2

3

1

ρ0
ε2∇xu0 : Π+

2

3

1

ρ0
∇x · q+O(ε2). (30)
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Using eq. (28) in order to compute ∇x · u1 in the formula above, and dividing by ε, we
end up with

5

3
(∂tT1 + u0 · ∇xT1) =

2

3

Lqq(T0)

ρ0T 2
0

∆xT1.

We recover in this way eq. (17), with T replaced by T1, u replaced by u0, and d2 =
2
5

Lqq(T0)

ρ0T 2
0

.

Finally, let us consider the evolution equation for number densities. We start from the
first equation of (22), and use the expansion of ρs. We first observe that

∂tρ
s +∇x · (ρs u) = ε ρs0(∂tα

s + u0 · ∇xα
s +∇x · u1) +O(ε2).

Using (28), we get

∂tρ
s +∇x · (ρs u) = ε (∂t + u0 · ∇x)

(

ρs0α
s − ρs0

ρ0

N
∑

r=1

ρr0α
r

)

+O(ε2).

We also expand
N
∑

j=1

Lsj(T )∇x

(

ρj

(2π T/m)3/2

)

= ε

(

m

2π T0

)3/2 N
∑

j=1

Lsj(T0)∇x

(

ρj0α
j − 3

2

ρj0
T0

T1

)

+O(ε2)

= ε

(

m

2π T0

)3/2 N
∑

j=1

Lsj(T0)∇x

(

ρj0α
j +

3

2

ρj0
ρ0

N
∑

r=1

ρr0α
r

)

+O(ε2),

thanks to Boussinesq’s identity.
Finally, letting ε go to 0, we end up with the identity

(∂t+u0·∇x)

(

ρs0α
s − ρs0

ρ0

N
∑

r=1

ρr0α
r

)

=

(

m

2π T0

)3/2 N
∑

j=1

Lsj(T0)∆x

(

ρj0α
j +

3

2

ρj0
ρ0

N
∑

r=1

ρr0α
r

)

.

We obtain therefore an identity which relates linearly the advection terms (∂t+u0 ·∇x)α
s

with the diffusion terms ∆xα
j, as in eq. (15), with u replaced by u0.

As can be seen, the passage from Boltzmann equation to the incompressible Navier-
Stokes system gives compatible results when compared with the passage from the com-
pressible Navier-Stokes system towards the incompressible one.

The rest of the paper is devoted to the formal proof of Proposition 1 and is orga-
nized as follows. In Section 2, the expression (12) for the perturbation of a solution is
derived. Then, Section 3 concerns the incompressibility and Boussinesq relations (13),
(14). Section 4, Section 5 and Section 6 are devoted to the evolution equations (15) for
concentrations, (16) for momentum, (17) for temperature, respectively. Finally, we report
in an Appendix technical lemmas and evaluations of suitable collision contributions used
to obtain explicit expressions for diffusion coefficients d1, d2. Those computations are
specific to the Maxwell molecules case.
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2 The weak form of the collision operators

We recall that, in (5), Qsr denotes the bi–species elastic operator, describing elastic scat-
tering between particles of species s and r. The most useful tool in the sequel is its weak
form:
N
∑

r=1

∫

ϕs(v)Qsr(f s
ε , f

r
ε ) dv =

N
∑

r=1

∫∫∫

g σsr(g, χ)
[

ϕs(v′)− ϕs(v)
]

f s
ε (v)f

r
ε (w) dv dw dΩ̂′.

(31)
We observe that

∫

Ms(v) dv = 1,

∫

vMs(v) dv = 0, ms

∫

v2Ms(v) dv = 3 . (32)

By inserting distributions (6) into the Boltzmann equations (5), leading order terms
vanish since Maxwellians Ms do not depend on x and satisfy Qsr(Ms,M r) = 0. There
remain the equations

ε ρs∂t(g
s
εM

s) + v · ρs∇x(g
s
εM

s) =
1

ε

N
∑

r=1

ρsρr
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

+
N
∑

r=1

ρsρrQsr(gsεM
s, grεM

r).

(33)
Leading order terms yield, for s = 1, . . . , N ,

N
∑

r=1

ρsρr
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

= O(ε). (34)

Defining the linear operator L (with components L1, ..,LN) as

Ls(h1, .., hN) = (Ms)−1/2
N
∑

r=1

[

ρr Qsr(hs (Ms)1/2,M r) + ρs Qsr(Ms, hr (M r)1/2)
]

, (35)

we know from [12] that (for cross sections of hard potentials type with angular cutoff,
including pseudo-Maxwellian molecules and hard spheres) this operator L is the sum of,
on one hand, a compact operator K from (L2(R3))N to (L2(R3))N and, on the other hand,
a (component-wise) multiplication operator (−νs(v) Id)s=1,..,N with spectrum included in
an interval ]−∞,−Z], with Z > 0.

We also recall that using test functions ϕs(v) = gsε(v), we get the linearized entropy
inequality

N
∑

s=1

N
∑

r=1

ρsρr
∫

gsε(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= −1

4

N
∑

s=1

N
∑

r=1

ρsρr
∫∫∫

g σsr(g, χ)
[

gsε(v
′) + grε(w

′)− gsε(v)− grε(w)
]2

Ms(v)M r(w) dv dw dΩ̂′ ≤ 0

(36)
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with equal sign if and only if the content of the square brackets vanishes ∀s, r.
Consequently, the spectrum of L is included in R

−, and 0 is an eigenvalue of order 5
of L whose eigenvectors are [(Ms)1/2, msv(Ms)1/2, msv2(Ms)1/2]s=1,..,N , cf. [15].

Using Weyl’s Theorem on compact perturbations of operators, we see that the spec-
trum of L has a gap between 0 and a strictly negative number −C, so that for any
h = (h1, .., hN) ∈ L2(RN ),

||Lh||(L2(R3))N ≥ C ||h− Ph||(L2(R3))N , (37)

where P is the L2 projector on the vector space spanned by [(Ms)1/2, msv(Ms)1/2, msv2(Ms)1/2]s=1,..,N .

Using (34), we see that L([ρsgsε(Ms)1/2]s=1,..,N) = O(ε), so that thanks to (37), gsε is,
up to O(ε), a linear combination (with t,x-dependent coefficients) of 1, msv, msv2, and
(12) holds.

Notice that in (12) coefficients have been chosen in such a way that leading order
species moments are

∫

(gsεM
s)(v) dv = αs +O(ε),

∫

v (gsεM
s)(v) dv = u+O(ε),

ms

∫

v2(gsεM
s)(v) dv = 3 (αs + T ) +O(ε).

(38)

Consequently, putting together (32) and (38), the moments of distributions f s
ε are given

by
∫

f s
ε (v) dv = ρs(1 + ε αs) +O(ε2),

∫

v f s
ε (v) dv = ε ρs u+O(ε2),

ms

∫

v2f s
ε (v) dv = 3 ρs + ε 3 ρs(αs + T ) +O(ε2).

(39)

3 Conservation equations

By integrating the Boltzmann equations (5), we get

ε ∂t

∫

f s
ε (v) dv +∇x ·

∫

vf s
ε (v) dv = 0 , s = 1, . . . , N, (40)

representing conservation of single number densities, while by multiplying (5) by msv and
summing up the N equations, we recover the momentum equation

ε
N
∑

s=1

ms ∂t

∫

vf s
ε (v) dv+

N
∑

s=1

ms ∇x ·
∫

v ⊗ vf s
ε (v) dv = 0 . (41)

If we insert the ansatz (6) into (40) and (41), we get

ε ∂t

∫

(gsεM
s)(v) dv +∇x ·

∫

v (gsεM
s)(v) dv = 0 , s = 1, . . . , N,

ε

N
∑

s=1

ρs ms ∂t

∫

v(gsεM
s)(v) dv+

N
∑

s=1

ρs ms∇x ·
∫

v⊗ v(gsεM
s)(v) dv = 0 .

(42)
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Keeping the leading order term in the first line of (42) provides

∇x ·
∫

v (gsε M
s)(v) dv = O(ε) ,

that, bearing in mind the second equality of (38), is nothing but the divergence–free
condition for global velocity,

∇x · u = 0 , (43)

related to the incompressibility of the mixture.
On the other hand, keeping the leading order term in the second line of (42) yields

N
∑

s=1

ρsms
∑

j

∂

∂xj

∫

vi vj (g
s
εM

s)(v) dv = O(ε),

i.e., taking into account the third part of (38) and the assumption (8),

∇x

(

N
∑

s=1

(

ρs αs
)

+ T

)

= 0 , (44)

which is a natural extension to a mixture of the Boussinesq relation of [3]. If we consider for
example a bounded (periodic) space domain such as a torus, condition (44) implies [4, 21]
the stronger relation

N
∑

s=1

(

ρs αs
)

+ T = 0 . (45)

Note that since αs and T are perturbations, they are not required to be nonnegative;
more precisely, constraint (45) implies that, for any fixed time t and position x, at least
one of these fields is nonpositive.

4 Equations for concentrations

As already pointed out earlier (see the first line of (42)), integrating the Boltzmann
equations (5) yields

ε ∂t

∫

(gsεM
s)(v) dv +∇x ·

∫

v (gsεM
s)(v) dv = 0, s = 1, . . . , N . (46)

Unlike in the previous papers [3, 4, 21] dealing with a single rarefied gas, it is now necessary
to find a suitable strategy that provides a consistent closure of the streaming part. The
sought closure will be built up by resorting to the momentum equation of each species.
By multiplying the Boltzmann equations (5) by v, we get

ε ∂t

∫

vf s
ε (v) dv +∇x ·

∫

v ⊗ vf s
ε (v) dv =

1

ε

∑

r 6=s

∫

v Qsr(f s
ε , f

r
ε ) dv, s = 1, . . . , N,

(47)
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since the contributions due to Qss(f s
ε , f

s
ε ) vanish (elastic scattering between particles of

the same species preserves species momentum). By inserting (6) in the s–th equation
of (47), we obtain

ε2 ρs∂t

∫

v(gsεM
s)(v) dv + ε ρs∇x ·

∫

v ⊗ v(gsεM
s)(v) dv

=
∑

r 6=s

{

ρsρr
∫

v
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

+ ε ρsρr
∫

v Qsr(gsεM
s, grεM

r) dv

}

.

(48)

Let us evaluate the dominant term

∑

r 6=s

ρsρr
∫

v
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv,

with the Maxwell molecule assumption (10). If we recall (11), all angular integrations
needed here and in the rest of the paper will be amenable to the following ones [9]:

∫

S2

ϑsr(χ)(g′ − g) dΩ̂
′
= −κsr g, (49a)

∫

S2

ϑsr(χ)
∣

∣g′ − g
∣

∣

2
dΩ̂

′
= 2 κsr g2, (49b)

∫

S2

ϑsr(χ)(g′ − g)⊗ (g′ − g) dΩ̂
′
= 2 κsrg⊗ g +

1

2
νsr
(

g2 III− 3 g ⊗ g
)

, (49c)

∫

S2

ϑsr(χ)
∣

∣g′ − g
∣

∣

2
(g′ − g) dΩ̂

′
= −2

(

2 κsr − νsr
)

g2 g . (49d)

If we take ϕs(v) = v, from (3) we have

ϕs(v′)− ϕs(v) = − mr

ms +mr
(v −w) +

mr

ms +mr
|v −w| Ω̂′

,

hence from (10) and (49) we get
∫

g σsr(g, χ)
[

ϕs(v′)− ϕs(v)
]

dΩ̂′ = − µsr

ms
κsr g ,

where µsr = ms mr

ms+mr stands for the reduced mass. Consequently, bearing in mind the weak
form of the elastic operator (31),

∫

v
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= − µsr

ms
κsr

∫∫

(v −w)
[

(gsεM
s)(v)M r(w) +Ms(v) (grεM

r)(w)
]

dv dw

= − µsr

ms
κsr

[
∫

v (gsεM
s)(v) dv−

∫

v (grεM
r)(v) dv

]

.

(50)
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In conclusion, the dominant term of the s–th equation (48) may be rewritten as

∑

r 6=s

ρsρr
∫

v
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= −
(

∑

r 6=s

ρrµsr κsr

)

ρs

ms

∫

v (gsεM
s)(v) dv +

ρs

ms

(

∑

r 6=s

ρrµsr κsr

∫

v (grεM
r)(v) dv

)

.

(51)
Coming back to evolution equations for number densities, if we consider the following

linear combinations of equations (46):

ε

(

∑

r 6=s

ρrµsr κsr

)

∂t

∫

(gsεM
s)(v) dv− ε

∑

r 6=s

ρrµsr κsr∂t

∫

(grεM
r)(v) dv

+∇x ·
{(

∑

r 6=s

ρrµsr κsr

)

∫

v (gsεM
s)(v) dv−

∑

r 6=s

ρrµsr κsr

∫

v (grεM
r)(v) dv

}

= 0,

s = 1, . . . , N − 1 ,
(52)

we note that the content in the curly brackets is directly proportional to the right hand
side of (51), hence we can insert the s–th momentum equation (48) into (52), ending up
with
(

∑

r 6=s

ρrµsr κsr

)

∂t

∫

(gsεM
s)(v) dv−

∑

r 6=s

ρrµsr κsr∂t

∫

(grεM
r)(v) dv

+∇x ·
{

−ms∇x ·
∫

v ⊗ v(gsεM
s)(v) dv+ms

∑

r 6=s

ρr
∫

v Qsr(gsεM
s, grεM

r) dv

}

= O(ε)

(53)
(all terms have been divided by ε).

Let us recall that distributions gsε take the form (12), therefore
∫

(gsεM
s)(v) dv = αs +O(ε) ,

ms

∫

v ⊗ v(gsεM
s)(v) dv = (αs + T ) I+O(ε).

(54)

Moreover,
∫

v Qsr(gsεM
s, grεM

r) dv

= − µsr

ms
κsr

∫∫

(v −w)(gsεM
s)(v) (grεM

r)(w) dv dw

= − µsr

ms
κsr

[

αr

∫

v (gsεM
s)(v) dv− αs

∫

v (grεM
r)(v) dv

]

+O(ε)

= − µsr

ms
κsr(αr − αs)u+O(ε)

(55)
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(in the last two equalities, we have used the first and the second parts of (38)). Putting
results (54) and (55) into the macroscopic equation (53), we obtain

(

∑

r 6=s

ρrµsr κsr

)

∂tα
s −

∑

r 6=s

ρrµsr κsr∂tα
r

−∆x(α
s + T ) + u · ∇x

(

∑

r 6=s

ρrµsrκsr(αs − αr)

)

= 0,

(56)

where we have taken into account that ∇x · u = 0 (see (43)). Using the Boussinesq
condition (44) and bearing in mind that

∑N
s=1 ρ

s = 1, we get

αs + T = αs −
N
∑

r=1

ρrαr = (1− ρs)αs −
∑

r 6=s

ρrαr =
∑

r 6=s

ρr(αs − αr) . (57)

In conclusion, equation (56) may be recast as

∂t

[

∑

r 6=s

ρrµsr κsr(αs − αr)

]

+ u · ∇x

[

∑

r 6=s

ρrµsrκsr(αs − αr)

]

= ∆x

[

∑

r 6=s

ρr(αs − αr)

]

, s = 1, . . . , N − 1,

(58)

or in the equivalent form:

∂t

[

αs −
∑

r 6=s ρ
rµsr κsr αr

∑

r 6=s ρ
rµsr κsr

]

+ u · ∇x

[

αs −
∑

r 6=s ρ
rµsrκsr αr

∑

r 6=s ρ
rµsrκsr

]

= ∆x

[

∑

r 6=s ρ
r(αs − αr)

∑

r 6=s ρ
rµsrκsr

]

, s = 1, . . . , N − 1 .

(59)

These equations are reported in Proposition 1.

5 Momentum equation

We write down again the momentum equation given by the second line of (42), but
separating the drift term into two parts:

ε
N
∑

s=1

ρs ms ∂t

∫

v(gsεM
s)(v) dv+

N
∑

s=1

ρs ms∇x ·
∫
(

v ⊗ v − 1

3
v2I

)

(gsεM
s)(v) dv

+

N
∑

s=1

ρs ms∇x

∫

1

3
v2(gsεM

s)(v) dv = 0 .
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Dividing by ε and setting

p =
1

ε

N
∑

s=1

ρs ms

∫

1

3
v2(gsεM

s)(v) dv and B(v) = v ⊗ v− 1

3
v2I , (60)

the momentum equation reads as

N
∑

s=1

ρs ms ∂t

∫

v(gsεM
s)(v) dv+

1

ε

N
∑

s=1

ρs ms ∇x ·
∫

B(v)(gsεM
s)(v) dv+∇xp = 0 . (61)

We multiply the s–th Boltzmann equation (33) by msθsB(v) (where θs stand for
constants to be determined later), we integrate in dv and then we sum over s. We get

ε2
N
∑

s=1

ρs msθs ∂t

∫

B(v)(gsεM
s)(v) dv + ε

N
∑

s=1

ρs msθs∇x ·
∫

B(v)⊗ v(gsεM
s)(v) dv

=
N
∑

s,r=1

ρsρrmsθs
∫

B(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

+ ε

N
∑

s,r=1

ρsρrmsθs
∫

B(v)Qsr(gsεM
s, grεM

r) dv .

(62)
As concerns the dominant (elastic) contribution, we resort to the following lemma:

Lemma 5.1 For any constant C 6= 0, it is possible to determine θs in such a way that

N
∑

s,r=1

ρsρrmsθs
∫

B(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= C

N
∑

s=1

ρsms

∫

B(v)(gsεM
s)(v) dv +O(ε) .

(63)

For Maxwell molecule interactions, constants θs, s = 1, . . . , N , are the unique solution of
the following linear system:

C =
N
∑

r=1

ρr
µsr

ms +mr

[

2
(

− θs + θr
)

κsr − 3

2

(

mr

ms
θs + θr

)

νsr

]

, s = 1, . . . , N . (64)

The proof of this lemma involves a lot of quite technical computations, and for this
reason is postponed to the Appendix.

Remark 5.2 We may achieve another (equivalent) explicit expression for the constant C,
that will be useful in the sequel. If we multiply the s–th equation of (64) by ρsms, i.e.

ρsmsC =

N
∑

r=1

ρsρr
µsr

ms +mr

[

2ms
(

− θs + θr
)

κsr − 3

2
(mrθs +msθr) νsr

]

, s = 1, . . . N ,
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and then we sum over s, we get
(

N
∑

s=1

ρsms

)

C =

N
∑

s,r=1

ρsρr
µsr

ms +mr

[

2ms
(

− θs + θr
)

κsr − 3

2
(mrθs +msθr) νsr

]

=
N
∑

s=1

ρsθs

[

N
∑

r=1

ρr
µsr

ms +mr

(

−2msκsr − 3

2
mrνsr

)

]

+

N
∑

r=1

ρrθr

[

N
∑

s=1

ρs
µsr

ms +mr

(

2msκsr − 3

2
msνsr

)

]

= −
N
∑

s,r=1

ρsρr
µsr

ms +mr
[2(ms −mr)κsr + 3mrνsr] θs,

(65)

hence

C = −
N
∑

s,r=1

ρsρr(µsr)2
[

2
ms −mr

msmr
κsr +

3

ms
νsr

]

θs
/

(

N
∑

s=1

ρsms

)

. (66)

Note that in case of equal masses we would have the much simpler result

C = − 3

4

N
∑

s,r=1

ρsρrνsrθs . (67)

The right-hand side of (63) is the same contribution appearing in the momentum
equation (61), hence we can insert the equation (62) into (61), ending up with

N
∑

s=1

ρs ms ∂t

∫

v(gsεM
s)(v) dv+

1

C
∇x ·

{

N
∑

s=1

ρsmsθs ∇x ·
∫

B(v)⊗ v(gsεM
s)(v) dv

−
N
∑

s,r=1

ρsρrmsθs
∫

B(v)Qsr(gsεM
s, grεM

r) dv

}

+∇xp = O(ε) .

(68)
At this point, let us recall that the distributions gsε take the form (12). We immediately

get
N
∑

s=1

ρs ms ∂t

∫

v(gsεM
s)(v) dv =

(

N
∑

s=1

ρsms

)

∂tu+O(ε) . (69)

Moreover,

N
∑

s=1

ρsmsθs∇x ·
∫

B(v)⊗ v(gsεM
s)(v) dv|ij

=

N
∑

s=1

ρsmsθs
∑

k

∂

∂xk

∫

vk Bij(v)(g
s
εM

s)(v) dv

=

N
∑

s=1

ρsmsθs
∑

k

∂

∂xk

∫
(

vivj −
1

3
v2 δij

)

vk
∑

h

ms vhuhM
s(v) dv +O(ε)
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(the other terms of gsε give vanishing contributions by parity arguments). Bearing in mind
that
∫

v4i M
s(v) dv =

1

5

∫

v4Ms(v) dv ,

∫

v2i v
2
j M

s(v) dv =
1

15

∫

v4Ms(v) dv (i 6= j) ,

and
∫

v4Ms(v) dv =
15

(ms)2
,

a careful algebra yields

N
∑

s=1

ρsmsθs
∑

k

∂

∂xk

∫

vk Bij(v)(g
s
εM

s)(v) dv

=

N
∑

s=1

ρsθs
[

∂ui

∂xj
+

∂uj

∂xi
− 2

3
∇x · u δij

]

+O(ε) =

(

N
∑

s=1

ρsθs

)

(

∂ui

∂xj
+

∂uj

∂xi

)

+O(ε)

(70)
(where we have taken into account that ∇x · u = 0).

Finally, as concerns the collision contribution appearing in (68), we get

N
∑

s,r=1

ρsρrmsθs
∫

B(v)Qsr(gsεM
s, grεM

r) dv

=

N
∑

s,r=1

ρsρr(µsr)2θs
(

2
ms −mr

msmr
κsr +

3

ms
νsr

)

B(u) +O(ε)

(71)

(see details of computation in the Appendix).
By inserting (69), (70), (71) into the momentum equation (68) and taking into account

again that u is divergence–free, we get
(

N
∑

s=1

ρsms

)

∂tu+
1

C

{(

N
∑

s=1

ρsθs

)

∆xu

−
[

N
∑

s,r=1

ρsρr(µsr)2θs
(

2
ms −mr

msmr
κsr +

3

ms
νsr

)

]

(

u · ∇xu− 1

3
∇x(u

2)

)

}

+∇xp = 0.

(72)
Now, bearing in mind that C takes the form (66), the momentum equation may be cast
as

∂tu+ u · ∇xu+∇xp̃ = d1 ∆xu, (73)

where

p̃ =
1

∑N
s=1 ρ

sms
p− 1

3
u2,

and the diffusion coefficient is

d1 = − 1

C

(

N
∑

s=1

ρs θs

)

/

(

N
∑

s=1

ρsms

)

.
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Lemma 5.3 The diffusion coefficient d1 is strictly positive.

Proof.- We recall that constants θs arise as solution of the linear system A · θ = b

given in (64), that can be written in the equivalent form

[

3

4
ρsνss +

∑

r 6=s

ρr
µsr

ms +mr

(

2κsr +
3

2

mr

ms
νsr

)

]

θs

+
∑

r 6=s

ρr
µsr

ms +mr

(

− 2κsr +
3

2
νsr

)

θr = −C , s = 1, . . . , N .

(74)

It is possible to prove that the coefficient matrix A is strictly diagonally dominant. De-
noting by asr the entry of the s–th row and the r–th column, we have

|ass| =
3

4
ρsνss +

∑

r 6=s

ρr
µsr

ms +mr

(

2κsr +
3

2

mr

ms
νsr

)

,

|asr| = ρr
µsr

ms +mr

∣

∣

∣

∣

− 2κsr +
3

2
νsr

∣

∣

∣

∣

, r 6= s .

Unfortunately − 2κsr + 3
2
νsr has not a definite sign. If we set

D+ =
{

r = 1, . . . , N, r 6= s : − 2κsr +
3

2
νsr ≥ 0

}

,

D− =
{

r = 1, . . . , N, r 6= s : − 2κsr +
3

2
νsr < 0

}

,

then

|ass| −
∑

r 6=s

|asr| =
3

4
ρsνss +

∑

r∈D+

ρr
µsr

ms +mr

(

4κsr +
3

2

mr −ms

ms
νsr

)

+
3

2

∑

r∈D
−

ρr
µsr

ms +mr

(

mr

ms
+ 1

)

νsr .

(75)

Recalling now the definitions of κsr and νsr given in (11), we get

4κsr +
3

2

mr −ms

ms
νsr

=
2π

ms

∫ π

0

ϑsr(χ)(1− cosχ)

[

4ms +
3

2
(mr −ms) +

3

2
(mr −ms) cosχ

]

sinχ dχ

=
π

ms

∫ π

0

ϑsr(χ)(1− cosχ) [5ms + 3mr + 3(mr −ms) cosχ] sinχ dχ ≥ 0,

therefore
|ass| >

∑

r 6=s

|asr| , ∀s = 1, . . . , N .
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Since A is diagonally dominant, then it is invertible. Thus for any fixed C, there is a
unique solution θ1, . . . , θN to the linear system (74). If we multiply the s–th equation
(74) by ρs, we get the following linear system Ā · θ = b̄:

[

3

4
(ρs)2νss +

∑

r 6=s

ρsρr
µsr

ms +mr

(

2κsr +
3

2

mr

ms
νsr

)

]

θs

+
∑

r 6=s

ρsρr
µsr

ms +mr

(

− 2κsr +
3

2
νsr

)

θr = − ρsC , s = 1, . . . , N ,

(76)

which is equivalent to (74), in the sense that it admits the same unique solution θ1, θ2, . . .
θN . The matrix Ā is again diagonally dominant (|āss| >

∑

r 6=s |āsr|, ∀s = 1, . . . , N), has
strictly positive diagonal entries, and moreover is symmetric (unlike A). These properties
allow to infer that Ā is positive definite, i.e. θT · Ā · θ ≥ 0. This yields

N
∑

s,r=1

θs āsr θ
r =

N
∑

s=1

θs b̄s = −C

N
∑

s=1

ρsθs > 0 ∀θ 6= 0 ,

and this proves that d1 > 0.

The formula for the diffusion coefficient d1 appearing in Proposition 1 is obtained by

taking C = −
( N
∑

s=1

ρs ms

)−1

.

6 Temperature equation

Let us multiply the s–th Boltzmann equation (33) by 1
2
msv2 − 5

2
and then sum over s:

ε
N
∑

s=1

ρs∂t

∫
(

1

2
msv2 − 5

2

)

(gsεM
s)(v) dv+

N
∑

s=1

ρs∇x ·
∫

Ds(v)(gsεM
s)(v) dv = 0 , (77)

where

Ds(v) =

(

1

2
msv2 − 5

2

)

v . (78)

We multiply the s–th Boltzmann equation (33) by ε (ms)p ηsDs(v) (where constants
ηs and power p will be suitably determined later), we integrate in dv and then we sum
over s. We get

ε2
N
∑

s=1

ρs (ms)p ηs ∂t

∫

Ds(v)(gsεM
s)(v) dv+ ε

N
∑

s=1

ρs (ms)pηs∇x ·
∫

Ds(v)⊗ v(gsεM
s)(v) dv

=
N
∑

s,r=1

ρsρr(ms)pηs
∫

Ds(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

+ ε

N
∑

s,r=1

ρsρr(ms)p ηs
∫

Ds(v)Qsr(gsεM
s, grεM

r) dv .

(79)
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We can prove the following property (details of the proof are again postponed to the
Appendix):

Lemma 6.1 For any constant K 6= 0, it is possible to determine explicitly a family of
constants ηs and a power p > 0 (namely p = 1/2) in such a way that

N
∑

s,r=1

ρsρr(ms)p ηs
∫

Ds(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= K
N
∑

s=1

ρs
∫

Ds(v)(gsεM
s)(v) dv+ O(ε) .

(80)

For Maxwellian molecules, constants ηs, s = 1, . . . , N , are the unique solution of the
following linear system:

K =
N
∑

r=1

ρrµsr

{

1

(ms +mr)2

[

−(ms)p
(

3ms +
(mr)2

ms

)

ηs + 4ms(mr)p ηr
]

κsr

− 2(µsr)2

msmr

[

(ms)p−1ηs + (mr)p−1ηr
]

νsr

}

, s = 1, . . . , N .

(81)

Remark 6.2 With the choice p = 1/2, the constant K given in (81) becomes

K =

N
∑

r=1

ρrµsr

{

1

(ms +mr)2

[

−
√
ms

(

3ms +
(mr)2

ms

)

ηs + 4ms
√
mr ηr

]

κsr

− 2(µsr)2

msmr

[

ηs√
ms

+
ηr√
mr

]

νsr

}

, s = 1, . . . , N .

(82)

If we multiply the s–th equation of (82) by ρs, and then we sum over s, we get an equivalent
expression for the constant K:

K =

N
∑

s,r=1

ρsρrµsr

{

1

(ms +mr)2

[

−
√
ms

(

3ms +
(mr)2

ms

)

ηs + 4ms
√
mr ηr

]

κsr

− 2(µsr)2

msmr

[

ηs√
ms

+
ηr√
mr

]

νsr

}

= −
N
∑

s,r=1

ρsρr
µsr

√
ms

(ms +mr)2

[(

3ms +
(mr)2

ms
− 4mr

)

κsr + 4mrνsr

]

ηs .

(83)

Note that in case of equal masses we would have the much simpler result

K = − 1

2

√
m

N
∑

s,r=1

ρsρrνsrηs . (84)
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The right-hand side of (80) is the same contribution appearing in the temperature
equation (77), hence we can insert the equation (79) with p = 1/2 into (77):

N
∑

s=1

ρs ∂t

∫
(

1

2
msv2 − 5

2

)

(gsεM
s)(v) dv +

1

K
∇x ·

{

N
∑

s=1

ρs
√
ms ηs∇x ·

∫

Ds(v)⊗ v(gsεM
s)(v) dv

−
N
∑

s,r=1

ρsρr
√
ms ηs

∫

Ds(v)Qsr(gsεM
s, grεM

r) dv

}

= O(ε).

(85)
Recalling now that the distributions gsε take the form (12), we get

N
∑

s=1

ρs ∂t

∫
(

1

2
msv2 − 5

2

)

(gsεM
s)(v) dv =

N
∑

s=1

ρs∂t

[

3

2
(αs + T )− 5

2
αs

]

+O(ε)

=
3

2
∂tT − ∂t

(

N
∑

s=1

ρsαs

)

+O(ε) =
5

2
∂tT +O(ε),

(86)

where the last equality holds because of the constraint (45). Moreover, by parity argu-
ments,

N
∑

s=1

ρs
√
ms ηs

∑

k

∂

∂xk

∫

Ds
k(v)vi(g

s
εM

s)(v) dv

=
N
∑

s=1

ρs
√
ms ηs

∑

k

∂

∂xk

∫
(

1

2
msv2 − 5

2

)

vivk

[

αs +

(

1

2
msv2 − 3

2

)

T

]

Ms(v) dv +O(ε)

that, bearing in mind

ms

∫

v2Ms(v) dv = 3, (ms)2
∫

v4Ms(v) dv = 15, (ms)3
∫

v6Ms(v) dv = 105,

(87)
results in

N
∑

s=1

ρs
√
ms ηs

∑

k

∂

∂xk

∫

Ds
k(v)vi(g

s
εM

s)(v) dv =

(

N
∑

s=1

ρs√
ms

ηs

)

5

2

∂T

∂xi
. (88)

Finally,

N
∑

s,r=1

ρsρr
√
ms ηs

∫

Ds(v)Qsr(gsεM
s, grεM

r) dv =

=
5

2

N
∑

s,r=1

ρsρrηs
µsr

√
ms

(ms +mr)2

{(

3ms − 4mr +
(mr)2

ms

)

κsr + 4mrνsr

}

uT +O(ε)

(89)
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(see details in the Appendix). Putting all results (86), (88), (89) into equation (85), and
dividing all terms by 5/2, the temperature equation reads as

∂tT +
1

K
∇x ·

{(

N
∑

s=1

ρs√
ms

ηs

)

∇xT

−
N
∑

s,r=1

ρsρrηs
µsr

√
ms

(ms +mr)2

[(

3ms − 4mr +
(mr)2

ms

)

κsr + 4mrνsr

]

uT

}

= 0 .

Bearing in mind that K takes the form (83) and that u is divergence–free, this equation
may be recast as

∂tT + u · ∇xT = d2∆xT, (90)

where the diffusion coefficient is given by

d2 = − 1

K

(

N
∑

s=1

ρs√
ms

ηs

)

.

Lemma 6.3 The diffusion coefficient d2 is strictly positive.

Proof.- The proof is similar to the one of Lemma 5.3 of previous section. We recall that
constants ηs arise as the unique solution of the linear system (82). If we multiply the s–th
equation by ρs/

√
ms, we get an equivalent linear system Â · η = b̂ (it admits the same

unique solution η1, η2, . . . ηN). The coefficient matrix Â is diagonally dominant, has
strictly positive diagonal entries, and moreover is symmetric (see the proof of Lemma 7.3
in the Appendix, we skip details here). Therefore it is positive definite, i.e. ηT · Â ·η ≥ 0
and this yields

N
∑

s,r=1

ηs âsr η
r =

N
∑

s=1

ηs b̂s = −K

N
∑

s=1

ρs√
ms

ηs > 0 ∀η 6= 0 ,

and this proves that d2 > 0.

The formula for d2 appearing in Proposition 1 is obtained by specifying K = −1. This
concludes the Proof of Proposition 1.

7 Appendix

In this appendix we will include the detailed proof of technical Lemmas 5.1 and 6.1 and the

explicit evaluation of collision contributions

∫

B(v)Qsr(gsεM
s, grεM

r)dv and
∫

Ds(v)Qsr(gsεM
s, grεM

r)dv, useful to compute explicit diffusion coefficients in the Maxwell

molecule frame.
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Lemma 7.1 For any constant C 6= 0, it is possible to determine θs in such a way that

N
∑

s,r=1

ρsρrmsθs
∫

B(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= C

N
∑

s=1

ρsms

∫

B(v)(gsεM
s)(v) dv +O(ε) .

(91)

Proof.- To evaluate collision contributions, we resort to formula (31) and to the same
steps sketched in detail in [9] (see Sec. 4.3.1, some details will be omitted here). If we
set ϕs

ij(v) = Bij(v) = vivj − 1
3
v2 δij (δij denotes the Kronecker delta), it may be checked,

bearing in mind (3), that

ϕs
ij(v

′)− ϕs
ij(v) =

µsr

ms

[

(g′i − gi)vj + vi(g
′
j − gj)

]

+

(

µsr

ms

)2

(g′i − gi)(g
′
j − gj)

− 2

3

µsr

ms

∑

k

vk(g
′
k − gk)δij −

1

3

(

µsr

ms

)2

|g′ − g|2δij , (92)

hence under the usual Maxwell molecule assumption (10), owing to (49), we have

Υij(v,w) =

∫

g σsr(g, χ)
[

ϕs
ij(v

′)− ϕs
ij(v)

]

dΩ̂′ = κsr Υκ
ij(v,w) + νsr Υν

ij(v,w) , (93)

where the averaged collision frequencies κsr and νsr are given in (11), and

Υκ
ij(v,w) =

µsr

ms

[

− 2vivj + viwj + wivj +
2

3
v2 δij −

2

3

∑

k

vkwkδij

]

+

(

µsr

ms

)2
[

2vivj − 2viwj − 2wivj + 2wiwj −
2

3
v2 δij +

4

3

∑

k

vkwkδij −
2

3
w2 δij

]

,

Υν
ij(v,w) =

1

2

(

µsr

ms

)2
[

v2 δij + w2 δij − 2
∑

k

vkwkδij − 3vivj + 3viwj + 3wivj − 3wiwj

]

.

(94)
Let us first consider

Φij :=

∫∫

Υκ
ij(v,w)

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw .
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Using a parity argument (actually two parity arguments, v 7→ −v, and w 7→ −w), we
see that

Φij =

[

(

µsr

ms

)2

− µsr

ms

]

∫∫
[

2vivj −
2

3
v2δij

]

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw

+

(

µsr

ms

)2 ∫∫ [

2wiwj −
2

3
w2δij

]

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw +O(ε)

= − 2

(

µsr

ms

)2
ms

mr

∫
[

vivj −
1

3
v2δij

]

[

gsε(v) + αr
]

Ms(v) dv

+2

(

µsr

ms

)2 ∫ [

wiwj −
1

3
w2δij

]

[

αs + grε(w)
]

M r(w) dw+O(ε)

= 2

(

µsr

ms

)2{

− ms

mr

∫

Bij(v) g
s
ε(v)M

s(v) dv+

∫

Bij(w) grε(w)M r(w) dw

}

+O(ε).

We now turn to

Ψij :=

∫∫

Υν
ij(v,w)

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw .

Owing to the usual parity arguments, it’s easy to see that

Ψij :=
1

2

(

µsr

ms

)2 ∫∫
[

v2 δij + w2 δij − 3vivj − 3wiwj

]

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw +O(ε)

=
1

2

(

µsr

ms

)2{∫
[

v2 δij − 3vivj
][

gsε(v) + αr
]

Ms(v) dv

+

∫

[

w2 δij − 3wiwj

][

αs + grε(w)
]

M r(w) dw

}

+O(ε)

= − 3

2

(

µsr

ms

)2{∫

Bij(v) g
s
ε(v)M

s(v) dv +

∫

Bij(w) grε(w)M r(w) dw

}

+O(ε).

In conclusion,

N
∑

s,r=1

ρsρrmsθs
∫

B(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= 2
N
∑

s,r=1

ρsρrmsθs
(

µsr

ms

)2

κsr

{

− ms

mr

∫

B(v) gsε(v)M
s(v) dv +

∫

B(w) grε(w)M r(w) dw

}

− 3

2

N
∑

s,r=1

ρsρrmsθs
(

µsr

ms

)2

νsr

{
∫

B(v) gsε(v)M
s(v) dv +

∫

B(w) grε(w)M r(w) dw

}

+O(ε)

=

N
∑

s,r=1

ρsρr
µsr

ms +mr

[

2ms
(

− θs + θr
)

κsr − 3

2

(

mrθs +msθr
)

νsr

]
∫

B(v) gsε(v)M
s(v) dv +O(ε) .
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The sought relation (63) is satisfied if we may choose θs, s = 1, . . . , N , such that

C =

N
∑

r=1

ρr
µsr

ms +mr

[

2
(

− θs + θr
)

κsr − 3

2

(

mr

ms
θs + θr

)

νsr

]

, s = 1, . . . , N . (95)

This is a linear system of the kind A · θ = b for the N unknowns θs, where coefficients
matrixA has already been proved to be diagonally dominant (see the proof of Lemma 5.3),
then it is non–singular (the determinant is different from zero). Thus for any fixed C,
there is a unique solution θ1, . . . , θN to the linear system (74).

Lemma 7.2 As concerns the collision contribution appearing in (68), we have

N
∑

s,r=1

ρsρrmsθs
∫

B(v)Qsr(gsεM
s, grεM

r) dv

=

N
∑

s,r=1

ρsρr(µsr)2θs
(

2
ms −mr

msmr
κsr +

3

ms
νsr

)

B(u) +O(ε) .

(96)

Proof.- Notice that

∫

Bij(v)Q
sr(gsεM

s, grεM
r)dv

=

∫∫

[

κsr Υκ
ij(v,w) + νsr Υν

ij(v,w)
]

(gsεM
s)(v) (grεM

r)(w) dv dw ,

(97)

where Υκ
ij and Υν

ij are given in (94). Bearing in mind the properties of the distributions gsε,
and in particular that

∫

vi (g
s
εM

s)(v) dv = ui +O(ε) ,

∫
(

vi vj −
1

3
v2 δij

)

(gsεM
s)(v) dv = O(ε) ,

we get

∫∫

Υκ
ij(v,w)(gsεM

s)(v) (grεM
r)(w) dv dw

= 2
µsr

ms
Bij(u)− 4

(

µsr

ms

)2

Bij(u) +O(ε) = 2

(

µsr

ms

)2
ms −mr

mr
Bij(u) +O(ε)

(98)

(of course this term would vanish in case of equal masses), and

∫∫

Υν
ij(v,w)(gsεM

s)(v) (grεM
r)(w) dv dw = 3

(

µsr

ms

)2

Bij(u) +O(ε). (99)
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Lemma 7.3 For any constant K 6= 0, it is possible to determine explicitly a family of
constants ηs and a power p > 0 (namely p = 1/2) in such a way that

N
∑

s,r=1

ρsρr(ms)p ηs
∫

Ds(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

= K
N
∑

s=1

ρs
∫

Ds(v)(gsεM
s)(v) dv+ O(ε) .

(100)

Proof.- The strategy of proof is similar to the one of Lemma 7.1, but for readers’
convenience we report the details of computation. If we set ϕs

i (v) = Ds
i (v) =

1
2
(msv2 −

5) vi, from (3), we get

ϕs
i (v

′)− ϕs
i (v) =

=
1

2
µsrv2(g′i − gi) +

1

2
ms

(

µsr

ms

)2

vi|g′ − g|2 + 1

2
ms

(

µsr

ms

)3

(g′i − gi)|g′ − g|2

+µsrvi
∑

j

vj(g
′
j − gj) +ms

(

µsr

ms

)2
∑

j

vj(g
′
i − gi)(g

′
j − gj)−

5

2

µsr

ms
(g′i − gi) ,

(101)

hence under the Maxwell molecules assumption (10), we get (see (49))

Θi(v,w) =

∫

g σsr(g, χ)
[

ϕs
i (v

′)− ϕs
i (v)

]

dΩ̂′ = κsr Θκ
i (v,w) + νsr Θν

i (v,w), (102)

where averaged collision frequencies κsr and νsr are given in (11), and

Θκ
i (v,w) = µsr

[

− 1

2
v2gi +

µsr

ms
vig

2 − 2

(

µsr

ms

)2

gig
2 − vi

∑

j

vjgj

+2
µsr

ms

∑

j

vjgigj +
5

2

1

ms
gi

]

,

Θν
i (v,w) =

(µsr)2

ms

[

µsr

ms
g2gi +

1

2
vig

2 − 3

2

∑

j

vjgigj

]

.

(103)

Taking into account that g = |v −w|, a careful algebra yields

Θκ
i (v,w) =

µsr

(ms +mr)2

[

−
(

3

2
(ms)2 +

1

2
(mr)2

)

viv
2 +mr(ms −mr)viw

2

+2mr(ms −mr)
∑

j

vjwiwj + 2(mr)2wiw
2 +

1

2
(ms −mr)2wiv

2

+ (ms −mr)2vi
∑

j

vjwj +
5

2

(ms +mr)2

ms
(vi − wi)

]

,

(104)
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Θν
i (v,w) =

(µsr)3

(ms)2mr

[

−msviv
2 +

(

1

2
ms +

3

2
mr

)

viw
2 +

(

− 3

2
ms +

1

2
mr

)

∑

j

vjwiwj

−mrwiw
2 +

(

3

2
ms +

1

2
mr

)

wiv
2 +

(

1

2
ms − 3

2
mr

)

vi
∑

j

vjwj

]

.

(105)
Let us first consider

Φ̃i :=

∫∫

Θκ
i (v,w)

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw .

Using parity arguments (v 7→ −v and w 7→ −w), we see that some integrals vanish, and
we have

Φ̃i =
µsr

(ms +mr)2

{
∫∫

[

−
(

3

2
(ms)2 +

1

2
(mr)2

)

viv
2 +mr(ms −mr)viw

2

+2mr(ms −mr)
∑

j

vjwiwj +
5

2

(ms +mr)2

ms
vi

]

gsε(v)M
s(v)M r(w) dv dw

+

∫∫
[

2(mr)2wiw
2 +

1

2
(ms −mr)2wiv

2 + (ms −mr)2vi
∑

j

vjwj

− 5

2

(ms +mr)2

ms
wi

]

grε(w)Ms(v)M r(w) dv dw

}

+O(ε).

(106)

Recalling (32), we finally get (skipping all intermediate details)

Φ̃i = − µsr

(ms +mr)2

(

3ms +
(mr)2

ms

)
∫

Ds
i (v)g

s
ε(v)M

s(v) dv

+
4µsrmr

(ms +mr)2

∫

Dr
i (w)grε(w)M r(w) dw+O(ε) .

(107)

We now turn to

Ψ̃i :=

∫∫

Θν
i (v,w)

[

gsε(v) + grε(w)
]

Ms(v)M r(w) dv dw .

By usual parity arguments, integrals providing non–vanishing contributions are

Ψ̃i =
(µsr)3

(ms)2mr

{
∫∫

[

−msviv
2 +

(

1

2
ms +

3

2
mr

)

viw
2

+

(

− 3

2
ms +

1

2
mr

)

∑

j

vjwiwj

]

gsε(v)M
s(v)M r(w) dv dw

+

∫∫
[

− mrwiw
2 +

(

3

2
ms +

1

2
mr

)

wiv
2

+

(

1

2
ms − 3

2
mr

)

vi
∑

j

vjwj

]

grε(w)Ms(v)M r(w) dv dw

}

+O(ε),

(108)
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from which we obtain

Ψ̃i = − 2(µsr)3

(ms)2mr

{
∫

Ds
i (v)g

s
ε(v)M

s(v) dv +

∫

Dr
i (w)grε(w)M r(w) dw

}

+O(ε). (109)

In conclusion,

N
∑

s,r=1

ρsρr(ms)p ηs
∫

Ds(v)
[

Qsr(gsεM
s,M r) +Qsr(Ms, grεM

r)
]

dv

=

N
∑

s,r=1

ρsρr(ms)p ηs κsr

{

− µsr

(ms +mr)2

(

3ms +
(mr)2

ms

)
∫

Ds(v)gsε(v)M
s(v) dv

+
4µsrmr

(ms +mr)2

∫

Dr(w)grε(w)M r(w) dw

}

−
N
∑

s,r=1

ρsρr(ms)p ηs νsr 2(µsr)3

(ms)2mr

{
∫

Ds(v) gsε(v)M
s(v) dv +

∫

Dr(w) grε(w)M r(w) dw

}

+O(ε)

=
N
∑

s,r=1

ρsρrµsr

{

1

(ms +mr)2

[

−(ms)p
(

3ms +
(mr)2

ms

)

ηs + 4ms(mr)p ηr
]

κsr

− 2(µsr)2

msmr

[

(ms)p−1ηs + (mr)p−1ηr
]

νsr

}
∫

Ds(v) gsε(v)M
s(v) dv+O(ε) .

The sought relation (80) is satisfied if we can choose p > 0 and ηs, s = 1, . . . , N , such
that

K =
N
∑

r=1

ρrµsr

{

1

(ms +mr)2

[

−(ms)p
(

3ms +
(mr)2

ms

)

ηs + 4ms(mr)p ηr
]

κsr

− 2(µsr)2

msmr

[

(ms)p−1ηs + (mr)p−1ηr
]

νsr

}

, s = 1, . . . , N .

(110)

This is a linear system Ã · η = b̃ for the N unknowns ηs, that may be rewritten as

{

1

2
ρs(ms)pνss +

∑

r 6=s

ρr
µsr

(ms +mr)2

[

(ms)p−1
(

3(ms)2 + (mr)2
)

κsr + 2(ms)pmrνsr
]

}

ηs

+
∑

r 6=s

ρr
µsr

(ms +mr)2
ms(mr)p

(

− 4κsr + 2 νsr
)

ηr = −K , s = 1, . . . , N .

(111)
If we are able to find a value for the power p such that the corresponding coefficient matrix
Ã is diagonally dominant, then the existence of a solution ηs, s = 1, . . . , N , is guaranteed.
Recalling now the definitions of κsr and νsr given in (11), we get

− 4κsr + 2νsr = − 4π

∫ π

0

ϑsr(χ)(1− cosχ)2 sinχ dχ ≤ 0 ,
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therefore

|ãss| −
∑

r 6=s

|ãsr| =
1

2
ρs(ms)pνss +

∑

r 6=s

ρr
µsr

(ms +mr)2

{

[

(ms)p−1
(

3(ms)2 + (mr)2
)

− 4ms(mr)p
]

κsr + 2
[

(ms)pmr +ms(mr)p
]

νsr

}

.

(112)
We can prove that if p = 1/2 the coefficient in the square brackets in front of κsr turns
out to be nonnegative for all values of ms, mr. In fact, it may be written as

(ms)3/2

[

(

mr

ms

)2

− 4

(

mr

ms

)1/2

+ 3

]

,

and it’s easy to check that the function

f(y) = y2 − 4y1/2 + 3

takes its minimum for y = 1 and f(1) = 0, hence f(y) ≥ 0 ∀y ≥ 0. In conclusion, for
p = 1/2

|ãss| >
∑

r 6=s

|ãsr| , ∀s = 1, . . . , N,

hence for any fixed K there is a unique solution η1, . . . , ηN to the linear system (111).

Lemma 7.4 As concerns the collision contribution appearing in (85), we have

N
∑

s,r=1

ρsρr
√
ms ηs

∫

Ds(v)Qsr(gsεM
s, grεM

r) dv =

=
5

2

N
∑

s,r=1

ρsρrηs
µsr

√
ms

(ms +mr)2

{(

3ms − 4mr +
(mr)2

ms

)

κsr + 4mrνsr

}

uT +O(ε).

(113)

Proof.- Notice that

∫

Ds
i (v)Q

sr(gsεM
s, grεM

r) dv

=

∫∫

[

κsr Θκ
i (v,w) + νsr Θν

i (v,w)
]

(gsεM
s)(v) (grεM

r)(w) dv dw ,

(114)

where Θκ
i and Θν

i are given in (104)-(105). Taking into account moments of the distribu-
tions gsε given in (38), and moreover the third order moment

∫

vi v
2(gsεM

s)(v) dv =
5

ms
ui +O(ε) ,
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we get
∫∫

Θκ
i (v,w)(gsεM

s)(v) (grεM
r)(w) dv dw =

5

2

µsr

ms(ms +mr)2

(

3(ms)2−4msmr+(mr)2
)

uiT+O(ε),

(115)
and

∫∫

Θν
i (v,w)(gsεM

s)(v) (grεM
r)(w) dv dw = 10

(µsr)3

(ms)2mr
uiT +O(ε). (116)
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[17] F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for
bounded collision kernels, Invent. Math., 155 (2004), 81–161.

[18] F. Golse, L. Saint-Raymond, The incompressible Navier-Stokes limit of the Boltz-
mann equation for hard cutoff potentials, J. Math. Pures Appl., 91 (2009), 508–552.

[19] H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids, 6 (1963),
147–181.

[20] H. Grad, Asymptotic theory of the Boltzmann equation. II, in “Rarefied Gas Dy-
namics” (Proc. 3rd Internat. Sympos., Paris, 1962) I, 26–59, Academic Press, New
York, (1963).

[21] D. Levermore, N. Masmoudi, ¿From the Boltzmann equation to an incompressible
Navier–Stokes–Fourier system, Arch. Rational Mech. Anal., 196 (2010), 753–809.

[22] P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid, J.
Math. Pures Appl., 77 (1998), 585–627.

[23] P.L. Lions, N. Masmoudi, ¿From the Boltzmann equations to the equations of in-
compressible fluid mechanics II, Arch. Rational Mech. Anal., 158 (2001), 195–211.

[24] J. Lowengrub, L, Truskinovsky, Quasi–incompressible Cahn–Hilliard fluids and topo-
logical transitions, Proc. R. Soc. A-Math. Phys. Eng. Sci., 454 (1998), 2617–2654.

[25] L. Saint-Raymond, Some recent results about the sixth problem of Hilbert. Analysis
and simulation of fluid dynamics, 183–199, Adv. Math. Fluid Mech., Birkhäuser,
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[28] E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible fluid,
Astrophysical Journal, 131, 442–447.

[29] A. Vorobev, Boussinesq approximation of the Cahn–Hilliard–Navier–Stokes equa-
tions, Phys. Rev. E, 85 (2010), 056312.

32


