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Abstract

We present in this work a rigorous passage to the limit (in dimen-
sion 1) in a system of three reaction-diffusion equations coming out
of population dynamics, towards a system of two reaction-diffusion
equations, one of which includes a cross diffusion term.
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1 Introduction

This paper is devoted to the mathematical study of the convergence of a
reaction-diffusion system (first introduced by Iida, Mimura and Ninomiya, cf.
[11]) consisting of three equations towards a reaction-cross diffusion system
consisting of two equations (introduced by Shigesada, Kawasaki and Ter-
amoto, cf. [19]), when a relaxation parameter tends to 0. We are concerned
here with systems appearing in problems of population dynamics, with popu-
lations evolving through diffusion and a logistic-type reaction kernel (that is,
the competition effects are assumed to be represented by quadratic terms).

One of the species appears in two different states, the corresponding pop-
ulations are described by the number densities uA := uA(t, x) ≥ 0 and uB :=
uB(t, x) ≥ 0. An individual can switch from one state to the other with a
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rate proportional to 1/ε and depending upon the density (at time t and point
x) of a second species (described by the number density v := v(t, x) ≥ 0).

When they are in the state B, the individuals of the first species have
a larger diffusion rate than in the state A [for example, uB represents the
individuals which are scared or stressed, and they switch from the quieter
state A when individuals of the second species compete with them for the
resources].

Finally, for the sake of simplicity, we assume that all the individuals are
confined in a domain Ω of RN ; that is, we impose homogeneous Neumann
boundary conditions.

The following set of equations summarizes the assumptions discussed
above:

∂tu
ε
A−du ∆xu

ε
A = (r1−a1 (uεA+uεB)−b1 vε) uεA+

1

ε
(k(vε) uεB−h(vε) uεA), (1)

∂tu
ε
B−(du+M α)∆xu

ε
B = (r1−a1 (uεA+uεB)−b1 vε) uεB−

1

ε
(k(vε) uεB−h(vε) uεA),

(2)
∂tv

ε − dv ∆xv
ε = (r2 − a2 (u

ε
A + uεB)− b2 v

ε) vε, (3)

(for t ≥ 0, x ∈ ∂Ω)

∇xu
ε
A(t, x) · n(x) = 0, ∇xu

ε
B(t, x) · n(x) = 0, ∇xv

ε(t, x) · n(x) = 0. (4)

We finally add the initial data (for x ∈ Ω)

uεA(0, x) = uA0(x), uεB(0, x) = uB0(x), vε(0, x) = v0(x). (5)

This system was introduced by Iida, Mimura and Ninomiya in [11] (cf.
also [12]) as a prototype of reaction-diffusion systems which, in some limit,
lead to a simple reaction-cross diffusion system (here, the cross diffusion
appears only in one of the equations of the limiting system).

The strictly positive parameters r1, a1, b1, r2, b2, a2 are related to the lo-
gistic competition between the individuals of various types, while the strictly
positive parameters du, du+M α, dv (withM α > 0) are the diffusion rates of
the individuals [the reason for considering a constantM α which is a product
of two terms will appear later]. Finally, h and k are nonnegative functions
describing the effect of the presence of individuals of the second species on
the possible switch between states A and B of individuals of the first species,
while ε > 0 is the typical time scale of this switch. In [11] and [12], the as-
sumptions proposed for h and k are the following: h is monotone increasing,
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k is monotone decreasing, and

v

M
=

h(v)

h(v) + k(v)
, (6)

where M ≥ max( r2
b2
, ||v(0, ·)||∞) is an upper bound for the number density of

the second species.

We shall in the sequel consider the somewhat more general

Assumption 1: The coefficients r1, r2, a1, b2, b1, a2, du, dv, α,M are strictly
positive constants. Moreover, the functions h, k are of class C2(R+;R+), and
satisfy

{h = 0} ⊂ {0}, {k = 0} ⊂ {0}. (7)

Note that the typical choices

h(v) =
v

M
, k(v) = 1− v

M
, (8)

with M > max( r2
b2
, ||v(0, ·)||∞) satisfy both Assumption 1 and the assump-

tions of [12]. In the case of k, this is obtained thanks to the maximum
principle applied to eq. (3), (cf. Proposition 2.1).

We also introduce the following hypothesis on the initial data:

Assumption 2: We assume that v0 ∈ H1(Ω),

0 < inf
Ω
v0 ≤ sup

Ω
v0 < +∞, (9)

and uA0 ≥ 0, uB0 ≥ 0, uA0 log uA0, uB0 log uB0 ∈ L1(Ω).

The following Proposition states the existence of weak solutions to system
(1) – (5), for a given ε > 0:

Proposition 1.1. We consider a smooth bounded subset Ω ⊂ R
N for N ∈

N
∗, a relaxation time ε > 0, and coefficients/initial data satisfying Assump-

tions 1 and 2. Then, there exists a weak solution to system (1) – (5), that
is uA, uB ∈ L2([0, T ] × Ω) and v ∈ L∞([0, T ] × Ω) for all T > 0, such that
for any ϕA, ϕB, ψ ∈ C2

c (R+ × Ω̄) satisfying ∇xϕA · n = 0, ∇xϕB · n = 0,
∇xψ · n = 0, the following identities hold

−
∫ ∞

0

∫

Ω

uεA∂tϕA dx dt−
∫

Ω

uA0ϕA(0, x) dx− du

∫ ∞

0

∫

Ω

uεA∆xϕA dx dt

=

∫ ∞

0

∫

Ω

(r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεA ϕA dx dt

+
1

ε

∫ ∞

0

∫

Ω

(k(vε) uεB − h(vε) uεA)ϕA dx dt, (10)
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−
∫ ∞

0

∫

Ω

uεB∂tϕB dx dt−
∫

Ω

uB0ϕB(0, x) dx− (du +M α)

∫ ∞

0

∫

Ω

uεB ∆xϕB dx dt

=

∫ ∞

0

∫

Ω

(r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεB ϕB dx dt

−1

ε

∫ ∞

0

∫

Ω

(k(vε) uεB − h(vε) uεA)ϕB dx dt, (11)

−
∫ ∞

0

∫

Ω

vε∂tψ dx dt−
∫

Ω

v0ψ(0, x) dx− dv

∫ ∞

0

∫

Ω

vε∆xψ dx dt

=

∫ ∞

0

∫

Ω

(r2 − a2 (u
ε
A + uεB)− b2 v

ε) vεψdx dt. (12)

This Proposition is a consequence of standard Theorems of existence for
reaction-diffusion equations. We refer for example to [7], [14].

It is believed (cf. [11] and [12]) that when ε→ 0, the solutions (uεA, u
ε
B, v

ε)
of system (1) – (5) converge towards (uA, uB, v), where

k(v) uB = h(v) uA, (13)

and (uA+uB, v) satisfies the cross diffusion-reaction system (of two equations)

∂t(uA + uB)−∆x

[(

du +M α
h(v)

k(v) + h(v)

)

(uA + uB)

]

= (r1 − a1 (uA + uB)− b1 v) (uA + uB), (14)

∂tv − dv∆xv = (r2 − a2 (uA + uB)− b2 v) v. (15)

This last system can be seen as a particular case of a class of systems
introduced in [19] in order to explain the coexistence of individuals of species
which, in absence of cross diffusion, would satisfy the competitive exclusion
principle (cf. [13]). More precisely, with respect to the general case of systems
introduced in [19], we are here concerned by the case in which no self diffusion
appears, and cross diffusion is present in only one of the equations (that is,
from the point of view of the diffusion, the system is triangular).

Our main result is that the convergence of the solutions of the system of
three reaction-diffusion equations towards the solutions of the system of two
reaction-cross diffusion equations indeed holds when the dimension is N = 1.
More precisely, we are able to prove the following:

4



Theorem 1.2. We consider a bounded interval Ω ⊂ R, and coefficients/initial
data satisfying Assumptions 1 and 2.

Then, a weak solution (uεA, u
ε
B, v

ε) to system (1) – (5) given by Propo-
sition 1.1 [for ε > 0] converges (up to extraction) when ε → 0 towards
(uA, uB, v) for a.e. (t, x) ∈ R+ ×Ω, and in L2([0, T ]×Ω)× L2([0, T ]×Ω)×
Lp([0, T ] × Ω) strong for all p ∈ [1,∞[ and all T > 0. Moreover, eq. (13)
holds and (uA+uB, v) is a weak solution of eq. (14), (15) with homogeneous
Neumann boundary condition (for t ≥ 0, x ∈ ∂Ω)

∇x(uA + uB)(t, x) · n(x) = 0, ∇xv(t, x) · n(x) = 0,

and initial data (for x ∈ Ω)

uA(0, x) + uB(0, x) = uA0(x) + uB0(x), v(0, x) = v0(x).

More precisely, for any ϕ, ψ ∈ C2
c (R+×Ω̄) satisfying ∇xϕ·n = 0, ∇xψ·n = 0,

we have

−
∫ ∞

0

∫

Ω

(uA + uB) ∂tϕdx dt−
∫

Ω

(uA0 + uB0)ϕ(0, x) dx

−
∫ ∞

0

∫

Ω

(

du +M α
h(v)

h(v) + k(v)

)

(uA + uB)∆xϕdx dt

=

∫ ∞

0

∫

Ω

(r1 − a1 (uA + uB)− b1 v) (uA + uB)ϕdx dt (16)

−
∫ ∞

0

∫

Ω

v∂tψ dx dt−
∫

Ω

v0 ψ(0, x) dx− dv

∫ ∞

0

∫

Ω

v∆xψ dx dt

=

∫ ∞

0

∫

Ω

(r2 − a2 (uA + uB)− b2 v) v ψ dx dt. (17)

Finally, the following regularity result holds: the functions uA, uB belong to
L2(logL)([0, T ]× Ω) for all T > 0.

Note that this result is known (in any dimension of space) under the extra
assumption that (uεA, u

ε
B, v

ε) is bounded (uniformly w.r.t ε) in L∞([0, T ]×Ω)
(cf. [11]). To obtain such a property is however still an open problem (at
least for global weak solutions).

Note also that the convergence of the steady solutions to (1) – (4) towards
the steady solutions to (13) – (15) has been thoroughly investigated in [12],
both from the numerical and analytical point of view.

Our result is also directly related to a recent and important paper by
H. Murakawa (cf. [17]), which deals with much more general systems (in
any dimensions) by using energy methods. We briefly explain what are the
differences between our result and the theorems proven in [17].
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• First, the reaction term in [17] is supposed to be Lipschitz-continuous,
whereas ours has a quadratic growth. Note however that the use of the
negative sign in (uεA + uεB) u

ε
A in eq. (1) [and the same for eq. (2) and

eq. (3)] would make it possible to use the approach of [17].

• Secondly, in the system (9) p.151 of [17], the reaction-diffusion system
which is introduced is somewhat different from (1)-(3), because the
reaction term fi(u+v) is present only in the eq. for ui (and not for vi)
whereas the reaction term appears in both eq. (1) and eq. (2) of the
present work. It doesn’t seem obvious to extend the estimate (16) p.
154 of [17] to the case when the eq. for vi also contains a (quadratically
growing) reaction term.

• Thirdly, and maybe most importantly, in [17], the functions φi (or
φij) are supposed to have bounded derivatives (assumption H2 p. 151
of [17]), and this assumption looks unavoidable in the estimates for
| < ∇zε2j ,∇φij(z

ε) > | and | < ∇uε2j,∇φij(z
ε) > | at the end of p.156.

However, in our case, the function φ2 would correspond to an expression
growing like z1 z2, whose derivative w.r.t. z1 is not bounded.

Our result uses techniques involving weak solutions which are typically useful
when maximum principles cannot be proven (as it is the case for uεA, u

ε
B here).

Those techniques are based on Lyapounov functionals or duality lemmas for
solutions of reaction-diffusion equations (such a lemma was first proven by M.
Pierre and D. Schmitt, cf. [16] and [18]). Those techniques are particularly
helpful (when dealing with quadratic reaction terms) when they can be used
for the equations satisfied by quantities like u log u instead of u. This is the
case in [10] or, in the context of the quasi-steady state approximation, in [2]
or [3]. They also have been successfully applied in the study of general cross
diffusion-reaction equations with small initial data (cf. [1]).

The difficulty in the present paper is that the reaction term is indeed
quadratic, but no superlinear Lyapounov functional can easily be exhibited.
We shall actually replace it by a functional which does not decrease along
the flow of equations (1) – (4), but whose derivative can nevertheless be
uniformly controlled w.r.t. ε. As a trade-off, this construction will only hold
in dimension 1. We refer to [5] and [6] for the use of entropy-like functionals
in the context of equations with cross diffusion and self diffusion.

Let us briefly explain how our result is related to works dealing with the
mathematical theory of the limiting system. This system belongs to a general
class of equations possibly including cross diffusions and self diffusions, first
introduced in [19], and studied by many authors since that time: we refer for
example to [20], [6] and [4] for recent papers in which many references are
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presented. In our case, the system has a special triangular structure (as far as
cross diffusion is concerned) which leads to a possible partial use of the maxi-
mum principle (that is, for v). Moreover, no self diffusion appears. This case
is treated in [15], where the method which is used (presented in dimension
2) also enables to get existence of (strong, global) solutions in dimension 1
(with initial data in a slightly smaller space than what is considered in the
present work).

We finally provide some remarks about the initial data. Note first that in
the limiting process, part of the initial datum is lost, that is, an initial layer
will appear if (13) is not satisfied initially. Note also that in Assumption 2, the
somewhat unnatural condition that v0 is bounded from below (by a strictly
positive constant) is imposed. This hypothesis seems to be very difficult to
eliminate in our proof. Making the weaker hypothesis log v0 ∈ L1(Ω), it is
possible to show that vε(t, ·) is bounded from below (by a strictly positive
constant) for any t > 0 (but with bounds which may blow up when t → 0).
Consequently, most of our analysis still holds when t > 0, and one can
show that (14) and (15) is still satisfied by the limit of (uεA + uεB, v

ε). We
were however not able to show that the initial datum (specifically, the one
corresponding to uA+uB) is still satisfied in the limit. Of course, if v 7→ h(v)
and v 7→ k(v) are both strictly positive, no assumption on the lower bound of
v0 is required. This case however does not include the most standard choice
of h and k, that is (8).

The rest of the paper is devoted to the Proof of Theorem 1.2. We begin in
section 2 with preliminary estimates which hold in any dimension. We turn
then in section 3 to estimates which are valid only in dimension 1 (Sobolev
estimates in dimension 1 are required there). In section 4 is presented the
Lyapounov-like functional which enables to prove the main estimates of this
paper. Then, section 5 is devoted to the proof of strong compactness results
for the family (uεA, u

ε
B, v

ε)ε>0. Estimates are finally presented in section 6,
which prevent this family to concentrate (in L2). Thanks to the results of
the two last sections, convergence in L2 strong is obtained for (uεA, u

ε
B, v

ε)ε>0,
and this is exactly what is needed to pass to the limit in system (1) – (5).

2 Proof of Theorem 1.2: preliminaries

We begin with a (uniform w.r.t. ε) estimate of (uεA, u
ε
B, v

ε), which is valid in
all dimensions of space:

Proposition 2.1. We consider a smooth bounded subset Ω ⊂ R
N for N ∈

N
∗, and coefficients/initial data satisfying Assumptions 1 and 2. Then, a
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weak solution uεA, u
ε
B, v

ε to system (1) – (5) given by Proposition 1.1 satisfies
for all T > 0 (and i, j ∈ {1, .., N}):

sup
ε>0

||uεA||L2([0,T ]×Ω) < +∞, sup
ε>0

||uεB||L2([0,T ]×Ω) < +∞, (18)

sup
ε>0

||vε||L∞([0,T ]×Ω) < +∞, (19)

sup
ε>0

∣

∣

∣

∣

∣

∣

∣

∣

∂vε

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2([0,T ]×Ω)

< +∞, sup
ε>0

∣

∣

∣

∣

∣

∣

∣

∣

∂2vε

∂xi xj

∣

∣

∣

∣

∣

∣

∣

∣

L2([0,T ]×Ω)

< +∞, (20)

sup
ε>0

sup
t∈[0,T ]

∫

Ω

|∇xv
ε(t, x)|2 dx < +∞. (21)

Proof of Proposition 2.1: Adding (1) and (2), one gets the equation

∂t(u
ε
A + uεB)−∆x

(

du u
ε
A + (du +M α) uεB

)

= (r1 − a1 (u
ε
A + uεB)− b1 v

ε) (uεA + uεB). (22)

At this point, it is possible to directly obtain (18) by integrating the above
equation w.r.t. x, and by using the fact that a1 > 0 (that is, the quadractic
term has the right sign).

We also propose an alternative, more complicated proof, which still holds
when the reaction term is not quadratic, but which requires an extra assump-
tion on the initial datum. We can indeed write

∂t(u
ε
A + uεB)−∆x(K

ε (uεA + uεB)) ≤
r21
4 a1

, (23)

with

0 < du ≤ Kε :=
du u

ε
A + (du +M α) uεB

uεA + uεB
≤ du +M α. (24)

We can then use the following Lemma, due to M. Pierre and D. Schmitt (cf.
[16] and [18]):

Lemma 2.2. We consider a smooth bounded subset Ω ⊂ R
N for N ∈ N

∗,
and assume that ρ : [0, T ]× Ω → [0,+∞[ satisfies

∂tρ−∆x(Zρ) ≤ 0 on Ω, (25)

∇x(ρZ) · n = 0 on ∂Ω,

where Z : [0, T ]× Ω → R is a function such that d1 ≥ Z ≥ d0 > 0 for some
numbers d1, d0. Then, for all T > 0,

‖ρ‖L2([0,T ]×Ω) ≤
(

1 +
d1
d0

)

T ‖ρ(0, ·)‖L2(Ω) .
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Lemma 2.2 then yields (18), provided that the initial datum for uεA and
uεB lies in L2 (and do not depend upon ε).

We now turn to the estimates satisfied by vε. We observe that according
to (3),

∂tv
ε − dv ∆xv

ε ≤ (r2 − b2 v
ε) vε

≤ r22
4 b2

. (26)

Using (9) in Assumption 2, we deduce from (26) and the maximum principle
that estimate (19) holds.

Denoting now

θε := (r2 − a2 (u
ε
A + uεB)− b2 v

ε) vε,

we know that thanks to (18) and (19), for all T > 0,

sup
ε>0

||θε||L2([0,T ]×Ω) < +∞. (27)

Taking (3) into account, we see that (for all T > 0)

sup
ε>0

∣

∣

∣

∣

∣

∣

∣

∣

∂vε

∂t
− dv ∆xv

ε

∣

∣

∣

∣

∣

∣

∣

∣

L2([0,T ]×Ω)

< +∞. (28)

Using standard theorems of parabolic regularization (cf. [14] for example),
estimate (28) implies estimate (20).

Multiplying (3) by ∆xv
ε, we see that

∆xv
ε ∂tv

ε − dv (∆xv
ε)2 = θε ∆xv

ε,

so that (for all t > 0)

1

2

∫

Ω

|∇xv
ε(t, x)|2 dx+ dv

∫ t

0

∫

Ω

|∆xv
ε(s, x)|2 dx ds

= −
∫ t

0

∫

Ω

∆xv
ε(s, x) θε(s, x) dx ds+

1

2

∫

Ω

|∇xv
ε(0, x)|2 dx

≤ 1

2
dv

∫ t

0

∫

Ω

|∆xv
ε(s, x)|2 dx ds+ 1

2 dv

∫ t

0

∫

Ω

|θε(s, x)|2 dx ds+1

2

∫

Ω

|∇xv
ε(0, x)|2.

Using (27) and Assumption 2, we get estimate (21).

This ends the Proof of Proposition 2.1 �
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3 Proof of Theorem 1.2: dimension-dependent

estimates

We now turn to estimates which do not necessarily hold in higher dimension.
We begin with the proof of the following Proposition:

Proposition 3.1. We consider a bounded interval Ω ⊂ R and coefficients/initial
data satisfying Assumptions 1 and 2. Then, a weak solution (uεA, u

ε
B, v

ε) to
system (1) – (5) given by Proposition 1.1 satisfies for all T > 0:

sup
ε>0

||∂xvε||L4([0,T ]×Ω) < +∞. (29)

Proof of Proposition 3.1: This result is a direct consequence of em-
bedding Theorems proven in [14], and can in fact be improved (the space L4

can be replaced by L6). We nevertheless propose an elementary proof below.
Using the Sobolev inequality H1(Ω) ⊂ L∞(Ω), we get the estimate

sup
x∈Ω

|∂xvε(t, x)|2 ≤ C(Ω)

{
∫

Ω

|∂xvε(t, x)|2 dx+
∫

Ω

|∂2xxvε(t, x)|2 dx
}

, (30)

where C(Ω) is the constant in the Sobolev inequality.
Using estimates (20) and (21), and integrating with respect to t ∈ [0, T ],

we end up with

sup
ε>0

∫ T

0

sup
x∈Ω

|∂xvε(t, x)|2 dt < +∞. (31)

Interpolating between estimates (21) and (31), we get
∫ T

0

∫

Ω

|∂xvε(t, x)|4 dxdt ≤
(

sup
s∈[0,T ]

∫

Ω

|∂xvε(s, x)|2dx
)

×
(
∫ T

0

sup
y∈Ω

|∂xvε(t, y)|2 dt
)

,

which yields estimate (29).

This ends the Proof of Proposition 3.1. �

We now prove bounds from below for vε.

Proposition 3.2. We consider a bounded interval Ω ⊂ R and coefficients/initial
data satisfying Assumptions 1 and 2. Then, a weak solution (uεA, u

ε
B, v

ε) to
system (1) – (5) given by Proposition 1.1 satisfies for all T > 0:

inf
ε>0

inf
(t,x)∈[0,T ]×Ω

h(vε(t, x)) > 0, inf
ε>0

inf
(t,x)∈[0,T ]×Ω

k(vε(t, x)) > 0. (32)
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Proof of Proposition 3.2: We first observe that (3) implies that

(∂t − dv ∂xx)(log v
ε) = dv

|∂xvε|2
(vε)2

+ r2 − a2 (u
ε
A + uεB)− b2 v

ε

≥ −a2 (uεA + uεB)− b2 v
ε. (33)

As a consequence, for any t ∈ [0, T ], x ∈ Ω,

log vε(t, x) ≥ wε(t, x),

where wε is the solution of

(∂t − dv ∂xx)w
ε = −a2 (uεA + uεB)− b2 v

ε,

with homogeneous Neumann boundary conditions

∇xw
ε(t, x) · n(x) = 0,

and the initial condition

wε(0, x) = log vε(0, x).

Moreover
sup
ε>0

||(∂t − dv ∂xx)w
ε||L2([0,T ]×Ω) < +∞

(thanks to estimates (18), (19)) and supx∈Ω[−wε(0, x)] < +∞ (thanks to
hypothesis (9) in Assumption 2), so that (see for example the appendix in
[9])

inf
ε>0

inf
(t,x)∈[0,T ]×Ω

wε(t, x) > 0,

and finally
inf
ε>0

inf
(t,x)∈[0,T ]×Ω

vε(t, x) > 0. (34)

This estimate, together with (7) in Assumption 1, yields estimate (32).

This ends the Proof of Proposition 3.2. �
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4 Proof of Theorem 1.2: entropy estimates

In this section, we introduce a functional which is close to the entropies
used in reaction-diffusion systems coming out of reversible chemistry (cf. for
example [8], [9]), and which is close to being a Lyapounov functional. Note
that it is also reminiscent of functionals used in [6]. As a consequence, we end
up with new estimates for the solution to system (1) – (5). More precisely,
we prove the following Proposition:

Proposition 4.1. We consider a bounded interval Ω ⊂ R and coefficients/initial
data satisfying Assumptions 1 and 2. Then, a weak solution (uεA, u

ε
B, v

ε) to
system (1) – (5) given by Proposition 1.1 satisfies for all T > 0:

sup
ε>0

sup
t∈[0,T ]

∫

Ω

uεA(t, x) | loguεA(t, x)| dx < +∞, (35)

sup
ε>0

sup
t∈[0,T ]

∫

Ω

uεB(t, x) | loguεB(t, x)| dx < +∞, (36)

sup
ε>0

∫ T

0

∫

Ω

|∂x
√

uεA|2 dx dt < +∞, (37)

sup
ε>0

∫ T

0

∫

Ω

|∂x
√

uεB|2 dx dt < +∞, (38)

sup
ε>0

1

ε

∫ T

0

∫

Ω

∣

∣

∣

∣

√

k(vε) uεB −
√

h(vε) uεA

∣

∣

∣

∣

2

dx dt < +∞. (39)

Proof of Proposition 4.1: We introduce the quantity

Hε = uεA log[h(vε)] + uεB log[k(vε)] + uεA log uεA + uεB log uεB − uεA − uεB.

The integral of this quantity will be close to a Lyapounov functional. The
computation is performed in any dimension. We first observe that

∂Hε

∂t
=
h′(vε)

h(vε)

∂vε

∂t
uεA +

k′(vε)

k(vε)

∂vε

∂t
uεB + log[h(vε)]

∂uεA
∂t

+ log[k(vε)]
∂uεB
∂t

+ log uεA
∂uεA
∂t

+ log uεB
∂uεB
∂t

. (40)

Then, we compute

∆x

{

uεA log[h(vε)] + uεA log uεA − uεA

}

= 2
h′(vε)

h(vε)
∇xu

ε
A · ∇xv

ε

12



+ log[h(vε)]∆xu
ε
A +

h′(vε)

h(vε)
uεA ∆xv

ε

+

(

h′

h

)′

(vε) uεA |∇xv
ε|2 + log uεA∆xu

ε
A +

|∇xu
ε
A|2

uεA
, (41)

and

∆x

{

uεB log[k(vε)] + uεB log uεB − uεB

}

= 2
k′(vε)

k(vε)
∇xu

ε
B · ∇xv

ε

+ log[k(vε)]∆xu
ε
B +

k′(vε)

k(vε)
uεB ∆xv

ε

+

(

k′

k

)′

(vε) uεB |∇xv
ε|2 + log uεB ∆xu

ε
B +

|∇xu
ε
B|2

uεB
. (42)

As a consequence, if we denote

Jε = du

(

uεA log[h(vε)] + uεA log uεA − uεA

)

+(du +M α)

(

uεB log[k(vε)] + uεB log uεB − uεB

)

,

we see that

∂Hε

∂t
−∆xJ

ε = (43)

log[h(vε) uεA] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεA (44)

+ log[k(vε) uεB] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεB (45)

− 1

ε

[

k(vε) uεB − h(vε) uεA

](

log[k(vε) uεB]− log[h(vε) uεA]

)

(46)

+

{

h′(vε)

h(vε)
uεA +

k′(vε)

k(vε)
uεB

}

∂vε

∂t
(47)

−
{

du
h′(vε)

h(vε)
uεA + (du +M α)

k′(vε)

k(vε)
uεB

}

∆xv
ε (48)

− 2

{

du
h′(vε)

h(vε)
∇xu

ε
A + (du +M α)

k′(vε)

k(vε)
∇xu

ε
B

}

· ∇xv
ε (49)

−
{

du

(

h′

h

)′

(vε) uεA + (du +M α)

(

k′

k

)′

(vε) uεB

}

|∇xv
ε|2 (50)

− du
|∇xu

ε
A|2

uεA
− (du +M α)

|∇xu
ε
B|2

uεB
. (51)

13



The estimates are now done in dimension 1 only.
We observe that thanks to estimates (19), (32) and Assumption 1,

|(47)| ≤ Cst (uεA + uεB)

∣

∣

∣

∣

∂vε

∂t

∣

∣

∣

∣

, (52)

|(48)| ≤ Cst (uεA + uεB) |∂xxvε|, (53)

|(49)| ≤ Cst

(

|∂xuεA|+ |∂xuεB|
)

|∂xvε|

≤
[

du
2

|∂xuεA|2
uεA

+
du +M α

2

|∂xuεB|2
uεB

]

+ Cst |∂xvε|2 (uεA + uεB), (54)

|(50)| ≤ Cst (uεA + uεB) |∂xvε|2, (55)

so that
∂Hε

∂t
−∆xJ

ε +
du
2

|∂xuεA|2
uεA

+
du +M α

2

|∂xuεB|2
uεB

+
1

ε

[

k(vε) uεB − h(vε) uεA

](

log[k(vε) uεB]− log[h(vε) uεA]

)

≤ log[h(vε) uεA] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεA

+ log[k(vε) uεB] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεB

+Cst (uεA + uεB)

[∣

∣

∣

∣

∂vε

∂t

∣

∣

∣

∣

+ |∂xxvε|+ |∂xvε|+ |∂xvε|2
]

. (56)

Then, we use the elementary inequalities (for x > 0)

x log x− x+ 1 ≥ 0, x log x− x+ 1 ≤ Cst (1 + x | log x|),

in order to estimate (using (19) and (32))

log[h(vε) uεA] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεA

=

{

(h(vε) uεA) log[h(v
ε) uεA]− h(vε) uεA + 1

}

1

h(vε)
(r1 − a1 (u

ε
A + uεB)− b1 v

ε)

+(h(vε) uεA − 1)
1

h(vε)
(r1 − a1 (u

ε
A + uεB)− b1 v

ε)

≤ Cst

(

1 + (h(vε) uεA)| log[h(vε) uεA]|
)

r1
h(vε)

+ r1 u
ε
A

+
a1

h(vε)
(uεA + uεB) +

b1
h(vε)

vε

14



≤ Cst (1 + (uεA)
2 + (uεB)

2). (57)

A similar computation leads to

log[k(vε) uεB] (r1 − a1 (u
ε
A + uεB)− b1 v

ε) uεB

≤ Cst (1 + (uεA)
2 + (uεB)

2). (58)

Integrating (56) on [0, T ]× Ω and using (57), (58), we end up with

∫

Ω

Hε(T, x) dx+
du
2

∫ T

0

∫

Ω

|∂xuεA|2
uεA

dxdt+
du +M α

2

∫ T

0

∫

Ω

|∂xuεB|2
uεB

dxdt

+
1

ε

∫ T

0

∫

Ω

[

k(vε) uεB − h(vε) uεA

](

log[k(vε) uεB]− log[h(vε) uεA]

)

dxdt

≤
∫

Ω

Hε(0, x) dx+ Cst

∫ T

0

∫

Ω

(1 + (uεA)
2 + (uεB)

2) dxdt

+Cst

∫ T

0

∫

Ω

(
∣

∣

∣

∣

∂vε

∂t

∣

∣

∣

∣

2

+ |∂xvε|2 + |∂xxvε|2 + |∂xvε|4
)

dxdt. (59)

We now use estimates (18), (20), (21), (29) (and Assumptions 1, 2) in order
to get the estimate

∫

Ω

Hε(T, x) dx+
du
2

∫ T

0

∫

Ω

|∂xuεA|2
uεA

dxdt+
du +M α

2

∫ T

0

∫

Ω

|∂xuεB|2
uεB

dxdt

+
1

ε

∫ T

0

∫

Ω

[

k(vε) uεB−h(vε) uεA
](

log[k(vε) uεB]− log[h(vε) uεA]

)

dxdt ≤ Cst.

(60)
Using now (19), (32), we know that (for some K > 0),

|| log(h(vε))||L∞([0,T ]×Ω) ≤ K, || log(k(vε))||L∞([0,T ]×Ω) ≤ K.

So thanks to the elementary inequality (which holds for all K > 0)

1

2
y log y − (K + 1) y ≥ −1

2
e2K+1, (61)

we see that
∫

Ω

Hε(T, x) dx ≥ 1

2

∫

uεA log uεA(T, x) dx+
1

2

∫

uεB log uεB(T, x) dx

+

[

1

2

∫

uεA log uεA(T, x) dx+
1

2

∫

uεB log uεB(T, x) dx

15



−
∫

uεA(T, x) dx−
∫

uεB(T, x) dx

−
∫

uεA| log h(vε))|(T, x) dx−
∫

uεB| log k(vε))|(T, x) dx
]

≥ 1

2

∫

uεA| log uεA|(T, x) dx+
1

2

∫

uεB | log uεB|(T, x) dx

+

∫

uε

A
≤1

uεA log uεA(T, x) dx+

∫

uε

B
≤1

uεB log uεB(T, x) dx−
1

2
e2K+1

≥ 1

2

∫

uεA| log uεA|(T, x) dx+
1

2

∫

uεB| log uεB|(T, x) dx− 2 e−1 |Ω| − 1

2
e2K+1.

This immediately ensures that estimates (35) – (38) hold. Finally, estimate
(39) is a consequence of (60) and the elementary inequality (for any x, y > 0)

(x− y) (logx− log y) ≥ Cst (
√
x−√

y)2.

This ends the Proof of Proposition 4.1. �

5 Proof of Theorem 1.2: Strong compactness

We show in this section that any sequence (indexed by ε) of solutions to
system (1) – (5) converges a.e. More precisely, we prove the following Propo-
sition:

Proposition 5.1. We consider a bounded interval Ω ⊂ R, and coefficients/initial
data satisfying Assumptions 1 and 2. Then, a weak solution (uεA, u

ε
B, v

ε) to
system (1) – (5) given by Proposition 1.1 satisfies (up to extraction) for a.e.
(t, x) ∈ R+ × Ω,

uεA(t, x) → uA(t, x), uεB(t, x) → uB(t, x), vε(t, x) → v(t, x), (62)

where v ∈ L∞
loc(R+ × Ω), uA, uB ∈ L2

loc(R+ × Ω), and (equivalently to (13))

uA =
k(v)

k(v) + h(v)
(uA + uB), (63)

uB =
h(v)

k(v) + h(v)
(uA + uB). (64)

Moreover, (uA, uB, v) satisfies identity (17) in the weak formulation.
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Proof of Proposition 5.1: According to (19) and (20), it is clear that
(vε)ε>0 belongs to a strongly compact set of L1([0, T ] × Ω) (for all T > 0).
As a consequence, we can extract from (vε)ε>0 a subsequence (still denoted
by (vε)ε>0) such that

vε(t, x) → v(t, x) for a.e (t, x) ∈ R+ × Ω.

Using now (37) and (38) [and (18)], we see that

sup
ε>0

∫ T

0

∫

Ω

|∂xuεA| dxdt < +∞; sup
ε>0

∫ T

0

∫

Ω

|∂xuεB| dxdt < +∞, (65)

thanks to the estimate:

∫ T

0

∫

Ω

|∂xu| dxdt ≤
(
∫ T

0

∫

Ω

|∂xu|2
u

dxdt

)1/2 (∫ T

0

∫

Ω

|u| dxdt
)1/2

. (66)

According to (18), we can extract from the sequences (uεA)ε>0 and (uεB)ε>0

subsequences (still denoted by (uεA)ε>0 and (uεB)ε>0) such that

uεA ⇀ uA, uεB ⇀ uB in L2([0, T ]× Ω) weak, for all T > 0, (67)

where uA and uB both belong to L2([0, T ]× Ω) for all T > 0.

Thanks to (22) (and (18), (19)), we know that ∂
∂t
(uεA + uεB) is bounded

in L1([0, T ];W−2,1(Ω)). Interpolating this bound with (65) [that is, apply-
ing Aubin’s lemma], we obtain the strong compactness of (uεA + uεB)ε>0 in
L1([0, T ]× Ω) (for all T > 0). Therefore, we can extract from (uεA + uεB)ε>0

a subsequence (still denoted by (uεA + uεB)ε>0) such that

(uεA + uεB)(t, x) → (uA + uB)(t, x) for a.e (t, x) ∈ R+ × Ω. (68)

At this level, we see that thanks to (18), (19), (62) and (68),

(uεA+u
ε
B) v

ε → (uA+uB) v, (vε)2 → v2 in L1([0, T ]×Ω) strong, for all T > 0.
(69)

We can therefore pass to the limit in (12) in order to get identity (17).

But

∫ T

0

∫

Ω

|k(vε) uεB−h(vε) uεA|2 dxdt ≤
(
∫ T

0

∫

Ω

|
√

k(vε) uεB−
√

h(vε) uεA|2 dxdt
)1/2

×
(
∫ T

0

∫

Ω

[

√

k(vε) uεB +
√

h(vε) uεA

]2

dxdt

)1/2
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≤ Cst ε1/2, (70)

thanks to (18), (19), (39) and Assumption 1.
Therefore, up to extraction of a subsequence,

k(vε(t, x)) uεB(t, x)− h(vε(t, x)) uεA(t, x) → 0 for a.e (t, x) ∈ R+ × Ω.
(71)

But

uεA =
k(vε) (uεA + uεB)− [k(vε) uεB − h(vε) uεA]

k(vε) + h(vε)
,

uεB =
h(vε) (uεA + uεB) + [k(vε) uεB − h(vε) uεA]

k(vε) + h(vε)
,

so that thanks to the convergences (68), (71) [and estimate (32)], formulas
(63) and (64) hold, together with the convergences in (62) for uεA and uεB.

This concludes the Proof of Proposition 5.1. �

In order to get the weak formulation (16), it remains to verify that (uεA+
uεB)

2 converges in L1 towards (uA+uB)
2 (that is, no L1 concentration occurs

in the sequence (uεA + uεB)
2). In order to do so, we shall provide an estimate

of uεA and uεB in a slightly better space than L2.

6 Proof of Theorem 1.2: non concentration

estimate for (uεA + uεB)
2 and conclusion

We begin with the following Proposition:

Proposition 6.1. We consider a bounded interval Ω ⊂ R and coefficients/initial
data satisfying Assumptions 1 and 2. Then, a weak solution (uεA, u

ε
B, v

ε) to
system (1) – (5) given by Proposition 1.1 satisfies for all T > 0:

sup
ε>0

∫ T

0

∫

Ω

|uεA|2 | log uεA| dxdt < +∞, (72)

sup
ε>0

∫ T

0

∫

Ω

|uεB|2 | log uεB| dxdt < +∞. (73)

Proof of Proposition 6.1: Using a Sobolev inequality (with constant
C(Ω)) in dimension 1, we get (for any t ≥ 0)

sup
x∈Ω

|uεA(t, x)| =
(

sup
x∈Ω

|
√

uεA(t, x)|
)2
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≤ Cst

∫

Ω

|∂x
√

uεA(t, x)|2 dx, (74)

so that according to estimate (37),

sup
ε>0

∫ T

0

(

sup
x∈Ω

|uεA(t, x)| dx
)

dt < +∞. (75)

Therefore,

sup
ε>0

∫ T

0

∫

Ω

|uεA|2 | log uεA| dxdt

≤ sup
ε>0

∫ T

0

sup
y∈Ω

|uεA(t, y)|
(
∫

Ω

uεA(t, x) | log uεA(t, x)| dx
)

dt

≤ sup
ε>0

(
∫ T

0

sup
y∈Ω

|uεA(t, y)|dt
)(

sup
s∈[0,T ]

∫

Ω

|uεA(s, x)| | loguεA(s, x)| dx
)

.

Using (35) and (75) [and doing the same proof for uεB] leads to the conclusion
of the Proof of Proposition 6.1. �

We can now provide the

Conclusion of the Proof of Theorem 1.2: Thanks to the convergence
(62) and estimates (19), (72), (73), we see that (uεA, u

ε
B, v

ε) converges (up to
extraction) towards (uA, uB, v) for a.e. (t, x) ∈ R+ × Ω and in L2([0, T ] ×
Ω)× L2([0, T ]× Ω)× Lp([0, T ]× Ω) for all p ∈ [1,∞[ and T > 0.

Moreover estimates (72), (73) ensure that uA, uB belong to L2(logL)([0, T ]×
Ω) for all T > 0.

According to Proposition 5.1, the weak formulation (17) is satisfied.
Adding (10) and (11) for ϕ := ϕA = ϕB, we end up with the weak

formulation

−
∫ ∞

0

∫

Ω

(uεA + uεB) ∂tϕdxdt−
∫

Ω

(uA0 + uB0)ϕ(0, x) dx

−
∫ ∞

0

∫

Ω

(du u
ε
A + (du +M α) uεB)∆xϕdxdt

=

∫ ∞

0

∫

Ω

(r1 − a1 (u
ε
A + uεB)− b1 v

ε) (uεA + uεB)ϕdxdt. (76)

The first term in this identity becomes −
∫∞

0

∫

Ω
(uA + uB)ϕ in the limit

ε → 0 while the second term does not depend upon ε.
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Using (63), (64), we see that
∫∞

0

∫

Ω
(du u

ε
A+(du+M α) uεB)∆xϕ converges

towards
∫∞

0

∫

Ω
(uA + uB)

(

du +M α h(v)
h(v)+k(v)

)

∆xϕ .

Recalling (69), we see that
∫∞

0

∫

Ω
vε (uεA+u

ε
B)ϕ converges to

∫∞

0

∫

Ω
v (uA+

uB)ϕ.
It is also clear that

∫∞

0

∫

Ω
(uεA + uεB)ϕ converges to

∫∞

0

∫

Ω
(uA + uB)ϕ.

Using (72), (73), we see that (uεA + uεB)
2 is equiintegrable for all T > 0,

so that uεA + uεB converges to uA + uB in L2([0, T ] × Ω) for all T > 0, and
∫∞

0

∫

Ω
(uεA + uεB)

2 ϕ converges to
∫∞

0

∫

Ω
(uA + uB)

2 ϕ.
All those convergences lead to the weak formulation (16), which concludes

the Proof of Theorem 1.2. �
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[6] Chen, Li; Jüngel, Ansgar; Analysis of a parabolic cross-diffusion popula-

tion model without self-diffusion. J. Differential Equations 224 (2006),
no. 1, 39–59.

[7] Desvillettes, Laurent; About entropy methods for reaction-diffusion

equations. Riv. Mat. Univ. Parma 7 (2007), no. 7, 81–123.

20



[8] Desvillettes, Laurent; Fellner, Klemens; Exponential Decay toward

Equilibrium via Entropy Methods for Reaction-Diffusion Equations. J.
Math. Anal. Appl. 319 (2006), 157-176.

[9] Desvillettes, Laurent; Fellner, Klemens; Entropy methods for Reaction-

Diffusion Equations: Degenerate Diffusion and Slowly Growing A-priori

bounds. Rev. Matem. Iber. 24, (2008), no. 2, 407–432.

[10] Desvillettes, Laurent; Fellner, Klemens; Pierre, Michel; Vovelle, Julien;
Global existence for quadratic systems of reaction-diffusion. Adv. Non-
linear Stud. 7 (2007), no. 3, 491–511.

[11] Iida, Masato; Mimura, Masayasu; Ninomiya, Hirokazu; Diffusion, cross-

diffusion and competitive interaction. J. Math. Biol. 53 (2006), no. 4,
617–641.

[12] Izuhara, Hirofumi; Mimura, Masayasu; Reaction-diffusion system ap-

proximation to the cross-diffusion competition system. Hiroshima Math.
J. 38 (2008), no. 2, 315–347.

[13] Kishimoto, Kazuo; Weinberger, Hans F.; The spatial homogeneity of

stable equilibria of some reaction-diffusion systems on convex domains.
J. Differential Equations 58 (1985), no. 1, 15–21.

[14] Ladyzhenskaya, Olga A.; Uraltseva, Nina N.; Linear and quasilinear
elliptic equations. Translated from the Russian by Scripta Technica, Inc.
Translation editor: Leon Ehrenpreis Academic Press, New York-London
1968 xviii+495 pp. 35.47

[15] Lou, Yuan; Ni, Wei-Ming; Wu, Yaping; On the global existence of a

cross-diffusion system. Discrete Contin. Dynam. Systems 4 (1998), no.
2, 193–203.

[16] Martin, R.H.; Pierre, Michel; Nonlinear reaction-diffusion systems.
Mathematics in science and engineering, 185 (1992), 363-398.

[17] Murakawa, H.; A relation between cross-diffusion and reaction-diffusion.
Discrete Contin. Dynam. Systems 5 (2012), 147-158.

[18] Pierre, Michel; Schmitt, Didier; Blowup in reaction-diffusion systems

with dissipation of mass. SIAM Rev. 42 (2000), 93–106 (electronic).

[19] Shigesada, Nanako; Kawasaki, Kohkichi; Teramoto, Ei; Spatial segrega-
tion of interacting species. J. Theoret. Biol. 79 (1979), no. 1, 83–99.

21



[20] Wang, Yi; The global existence of solutions for a cross-diffusion system.
Acta Math. Appl. Sin. Engl. Ser. 21 (2005), no. 3, 519–528.

22


