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Abstract

The diffusion limit of the Boltzmann equation of semiconductors is analyzed. The
dominant collisions are the elastic collisions on one hand and the electron-electron
collisions with the Pauli exclusion terms on the other hand. Under a non degeneracy
hypothesis on the distribution function, a lower bound of the entropy dissipation rate of
the leading term of the Boltzmann kernel for semiconductors in terms of a distance to
the space of Fermi—Dirac functions is proved. This estimate and a mean compactness
lemma are used to prove the convergence of the solution of the Boltzmann equation
to a solution of the Energy Transport model.

1 Introduction

This paper is devoted to the proof of the convergence of the solution of the Boltzmann
equation, for a degenerate semiconductor and with an arbitrary band structure, towards
the solution of the Energy Transport model derived in [4].

The Energy Transport model (ET model) consists of a system of diffusion equations
for the electronic density and energy. It improves the drift-diffusion model (DD model)
in order to take into account the dependence of the mobility on the temperature and the
thermal diffusion. It was first derived by Stratton [25] from the Boltzmann equation, by
using phenomenologic closure relations. Stratton’s model is valid for a non-degenerate
semiconductor (i.e. for which Pauli exclusion principle can be neglected) with a parabolic
band structure. It has been widely used in numerical simulations [1, 8, 13, 23, 24], but
not much investigated from a mathematical point of view.

In [4] an ET model is derived from the Boltzmann equation, by a Hilbert expansion,
for a degenerate semiconductor with an arbitrary band structure. To this aim, the energy
gain or loss of the electrons by the phonon collisions is assumed to be small, which yields
that the phonon collision operator is the sum of an elastic operator and a small inelastic
collision. Then, a diffusion limit of the Boltzmann equation is carried over, retaining as
leading order terms the electron-electron and elastic collisions.



In the present paper is proved the convergence of the solutions of the Boltzmann
equation, to those of the ET model, in the framework of [4].

Let us mention that in [3] is performed the derivation of the ET model under a different
assumption on the dominant collisions, which leads to the same model with different
expressions of the diffusion coefficients.

The approach used here has been developed by Golse and Poupaud [21] for the DD
model and is based on an entropy estimate and a mean compactness lemma. The mean
compactness lemma used in the present study is proved in [21] and is an adaptation of the
result of Golse, Lions, Perthame and Sentis, [20]. Here it is also necessary to study the
link between the conservative and entropic variables, which was immediate in [21].

The entropy estimate stated in the present paper is similar to the one established by
Desvillettes in [15]. However, in the framework of [15] (the theory of rarefied gazes) the
energy is a parabolic function of the kinetic variable, which is not true in the present
study. Due to this non parabolic structure, the proof presented here is different.

Similarly as in the work of [15], the entropy estimate presented here is stated in L? and
relies on the assumption that the solution of the scaled Boltzmann equation is bounded
from below and above, uniformly with respect to the time, position, kinetic variable and
to the small parameter of the asymptotic development, see Theorem 1 and Remark 2.2.
This assumption is very strong. Indeed, it seems possible to establish it for a fixed value
of the small parameter, in a time interval near zero, but the measure of this interval might
tend to zero as the small parameter tends to zero. This assumption is also used, in this
paper, in the study of the link between the conservative and entropic variables. It is also
very close to the assumption of non-degeneracy of the diffusion matrix in the ET model,
used in [11, 12] to prove the existence of solutions of the latter. One way to avoid it could
be to look for an estimate in a weighted L? space.

This paper is organized as follows:
In section 2 are given the setting of the problem, the assumptions and the result. In
section 3 is stated the entropy estimate and section 4 is devoted to the mean compactness
lemma and to the link between the conservative and entropic variables. The proof of the
convergence is finished is section 5.

2 Setting of the problem and main result

In this paper is considered the Boltzmann equation for a degenerate semiconductor (i.e.
Pauli exclusion principle is taken into account) with an arbitrary band structure. Electron-
electron collisions as well as impurity and phonon collisions are incorporated:

Ve V4 IV = T Q) @)
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In this picture, the electrons are described by their distribution function f(t, z, k), where
t is the time variable, z is the position variable lying in a bounded domain  of IR and
k is the wave vector lying in the first Brillouin zone B. (The first Brillouin zone is the
elementary cell of the dual lattice L* and is identified to the torus IR*/L*). The dynamics
of electrons is described by the equations

dx 1 dhk
% = U(k) = ﬁVk{f(k), W = quV,



where ¢(k) is the energy band, V' is the electrostatic potential, / is the reduced Planck con-
stant and ¢ the elementary charge. The electrostatic potential is in general deduced from
the distribution function through the Coulomb interaction, but for the sake of simplicity,
we shall assume here that it is given and does not depend on time.

In [4] is derived an ET model from equation (2.1) under an assumption on the collision
operators and after a rescaling of the equation. It is assumed that the typical energy of
a phonon is small compared with the typical kinetic energy of an electron. The latter is
used as energy unit to rescale equation (2.1). The phonon collision operator ), is then
the sum of an elastic operator and a small inelastic correction. This elastic operator as
well as the impurity collision operator ; (which is also elastic) and the electron-electron
collision operator (). are retained at leading order. A diffusion limit of the Boltzmann
equation is performed: the macroscopic time and length scale are related to the kinetic
ones according to t,, = &*ty and x,, = axg, (ty, ) being the macroscopic scale, (ty, x)
the kinetic one and « the rescaled mean free path. Then, the rescaled Boltzmann equation
in [4] reads

8@# + é (Vie(k) - Vo + VoV - Vi) 7 = % (Qe(f*) +Qo(f*)+QT(fY),  (2.2)

where Qg is the sum of the elastic part of the phonon collision operator and the impurity
collision operator (i.e. Qg models all the elastic collisions) and Qf is the inelastic correction
of the phonon collision operator.

The electron-electron collision operator reads

QW= [ {rra-na-m-raa-na-n}

X6 8, Be(ky K\ by, k) dky dE dF), (2.3)

where 6. stands for 6(e (k) +¢ (k1) —e (k') —e(k})), 8, stands for Y~ 6(k+ki —k'— ki +g),
geL”
and ®. is the cross section. Finally, in formula (2.3) and from now on, f, f1, f’, f{ stand

respectively for f(k), f(ki), f(k'), f(k]) when no confusion can occur. The terms (1 — f),
(1 - f1)...express the Pauli exclusion principle and lead to the natural bound 0 < f < 1.
The elastic collisions operator reads

Qu(N)K) = [ (F'= P BEW) = =(k) Balk, ) di (24)

where @ is the corresponding cross section.

The inelastic part of the phonon collision operator, ), is not retained at leading
order in the diffusion limit and does not play a major role for the convergence. It gives
the energy relaxation term in the ET model. However a uniform bound of this operator
is required in the present study, see assumption 4. This assumption seems natural for the
phonon collision operator used in [4], see also [3].

The rescaled Boltzmann equation is supplemented with the initial condition

VeeQkeB,  fY0,x2,k) = fi(x,k), (2.5)

where the rescaled mean free path a belongs to ]0, 1] and tends to 0.



The boundary conditions are described by a scattering operator relating the incoming
and outgoing part of f, as in [14]:
Vi€ IRy, x € 090,k € B_(z),

Pt k) = /BW) R(K — k) 8(z(k) — e(K')) f2(t, 2, K)dI, (2.6)

where By (z) = {k € B, +£Vie(k)- -v(z) > 0}, v(z) is the outward unit normal at

x € 09, and R(kK' — k) is a given cross section. The delta function in equation (2.6)
expresses that the underlying microscopic dynamics is elastic. Therefore, reflections occur
with conservation of the total (kinetic) energy and mass.

2.1 Assumptions

We shall in this subsection precise the assumptions that will be needed in the sequel.

Assumption 1 : The energy band

e The function ¢ : B — IRy belongs to C*(B), has at most a finite number of critical
points and is even (with respect to k). Denoting k = (k' k?, k%) we assume that
the functions 1, ds/0k', 0c/0k?, 0e/0k> are linearly independent. Moreover, we

assume that € satisfies:
(Y <Mz en

‘ denotes (and will denote from now on) the Lebesque measure on B.

3C, 6> 0, VYwe S?y>0, erB,

where

o Let us define for (k,k1,g9) € B x B X L* the function
E(k k1, g)(K)=c(kY+elk+ k1 +g—FK)—e(k) — (k). (2.8)
Its domain of definition is the set

Bigg =1k €B, k+ki+g-keB} (2.9)

We assume that for any (k,k1,9) € B x B X L*, the function é(k, k1, g) has at most
a finite number of critical points.

Assumption 1 expresses the non degeneracy of the band diagram. It has a real three
dimensional structure. This is the case for band diagrams of real materials.

Assumption 2: Cross sections, microreversibility

We assume that ®. and g satisfy the following identities
V(k k' ki k) € BY, @ (kK ki, k) = O (K ke Ky y) = @ (g, kY kL K.
Bo(k, k') = Do (K k). (2.10)

With these assumptions, formulas (2.3) and (2.4) can be understood thanks to the Co-
area formula (see [18]). Indeed, for e € £(B), the manifold e7!(e) = {k € B, =(k) =€}



has at most a finite number of singularities thanks to assumption 1. Denote by dS.(k) its
Euclidean surface element and by N(e) the density of states of energy e:

dS.(k)
N(e) = dN.(k), dN (k) = . .
©= [, V) ) = S 2.1)
The elastic collision operator (¢ reads
QY= [ @l k) (= S ANy (8). (212

In the same way, we consider for all (k,k1,¢9) € B x B x L* the manifold
N k) (0) = (K € B, kb tg—KeB, k() =0},  (213)

where ¢ is defined in (2.8). This manifold has also at most a finite number of singularities
thanks to assumption 1. We denote by dS(k, k1, g)(k') its Euclidian surface element and
by N(k,k1,g) the following density of states:

; ; ; dS(k, k1, q) (k)
N (k. :/ ANy iy (K), AN o (K) = 224 (214
(ks 1, 9) Ve (kkg)(0) o(F) g (V) Ve (k, ki, g) (K)] (2.14)

Let
Prg =19 € L*, ' (k k1, 9)(0) # 0}

which is finite since B is bounded. Then, (). can be written thanks to the Co-area formula
under the form

k) = /MB

X(f’f(k+k1+g— YL == f) = fAA= A= flk+ki+g - k’)))- (2.15)

We shall also use the notation

N(k k)= > Nk ki g). (2.16)

9€Pk K,

3 dkl/deklg B, (kK ey, e+ b1+ g — )

9EPE 1, Kee=l(k k1 ,g)

Assumption 3: Amplitude of cross sections

o There exist two constants cg,Coy > 0 such that for a.e k, k' € B? verifying (k) =
e(K),
co < Po(k, k') N(=(k)) < Cy. (2.17)

e There exist two constants c.,C. > 0 such that when k,k; € B?, and
ke UgEPk7k1 é_l(kv khg) (0);

ce < Dok, k' Ky, ke + ky — K'Y N(k, ky, 0), (2.18)
N(k,kl){ S @e(k,k’,kl,k+k1+g—k’)} < C.. (2.19)
9€Pk K,



Assumption 4: Inelastic operators

We shall not give an explicit form for the inelastic operator (J7. We assume however
that QY (f) = QY(f) + « Q1 (f) and both QY and QS | are bounded operators of L*(B)
(uniformly in o for the second one) such that for any centered Fermi-Dirac function

F(k) =expla+ce(k))/(1+exp(a+ ce(k))) (where a and ¢ are real numbers),

/ QYV(F) dk = 0. (2.20)
B

Assumption 5: Natural bounds for the initial condition
The function f5, lies in L* (2 x B) and satisfies for a.e. (z,v) € Q X B:

0< fi(x,v) <1 (2.21)

Assumption 5 is natural for densities constrained to verify Pauli’s exclusion principle,
which is the case in a degenerate semiconductor.

Assumption 6: Regularity of the electric field
The function V belongs to C*(%2).

Assumption 7: Reflection operator on the boundary

The open set Q of IR® is reqular (C?) and connected. The cross section R(k' — k) is
a nonnegative measure satisfying the following identities.

For all (z,k) € 0Q X B such that k € By (z),

Vi (k) - v(a)| = /B , Ve (k') - v(z)| R(k — k') 6(e(k) — =(k)) dI, (2.22)

and for all (z,k, k') € 0Q X B X B such that k € By (z) and k' € B_(z),

IViae(k') - v(2)| R(k — k') = |Vie(—k) - v(@)| R(=K — —k). (2.23)

Equation (2.22) means that the boundary restitutes all the impinging electrons without
altering their energy. Indeed a simple computation proves that (2.22) leads to

/B ( )G(e(k)) |Vie(k) -v(z)| f(t,z, k) dk = /B ( )G(e(k)) |Vie(k) -v(z)| f(t,z, k) dk
—\x +\Z

(2.24)
for all f satisfying (2.6) and all functions G. Equation (2.23) is a reciprocity relation result-

ing from the time reversibility of the microscopic dynamics, see [14] or [6] and references
therein.

We refer to [4] for a detailed physical interpretation of this framework, as well as for a
discussion of the relevant bibliography.



2.2 The result

Let us first introduce the following definition.

Definition 1: We say that f* is a weak solution of (2.2) — (2.6) under assumptions
1to 7if fo € C[0,T], L*(2 x B)), f* admits a trace f¢ on the set {(t,x,k) € (0,77 x

INVx B, ke Bi(x)}, and for all test function 6§ € D([0, T[xQ x B), the following weak

formulation is verified,

T 20 1
/ < (2, k) (0, 2, k) dacdk—/ / Iz [— b= (Vee(k) - Vol 4+ VoV - vke)] dedkdt =
QxB 0 JQOxB ot «

= [T et [ @)+ Qo) + Q1| dedka - BU0), (229

where the boundary term is (thanks to (2.6) together with (2.22))

T
o= [ [ | - / [V @ 2D
X R(k — k') 8(e(k) — (k) [0(x, k. t) — 0(x, k', 1)] dk dE' do(x) dt. (2.26)

The aim of this paper is to prove the following result:
Theorem 1: Let f* be a weak solution to the rescaled problem (2.2) — (2.6) under

assumptions 1 to 7 in the sense of definition 1. Assume that there exists § > 0 such that
for almost every (a,t,z, k) €]0,1] x [0,T] x Q x B,

B< fo(ta k)< 1 4. (2.27)

Then, up to extraction of a subsequence, f(t,x,k) converges in L([0,T] x Q x B) strong
when « tends to 0 to a centered Fermi—Dirac equilibrium FO(t,z, k). Its moments are

po(t,x):/BFO(t,x,k) dk, Wo(t,x):/BFo(t,x,k)e(k) dk. (2.28)

They solve in the the weak sense the following Energy Transport model,

0
8@% +V, -0 =0, (2.29)
oWo
ot

with the homogeneous boundary conditions

VLI VLV g0 = / QO(FO) 2(k) dk, (2.30)
B

J?v(z)=Jy -v(z) =0 Yz coQ. (2.31)

The current density and the energy current density are given by the formulae

J? = /B rO Ve (k) dk (2.32)

J% = /B PO e (k) Ve (k) dk (2.33)



where r% € L2([0,T] x Q x B) satisfies the following equation:

(Vke(k) Ve + V. V- Vk)FO = (DlQe(FO) + Qo)(ro). (2.34)
The initial condition for p° and W° are the limit as « tends to zero of /fff1 dk and

/floégdk‘

Remark 2.1 The limit equations listed in the above theorem are identical to the Energy
Transport model derived in [4]. The formulation of Theorem 1 is more tractable for the
present study. In order to introduce the diffusion ceefficients of [4], we first notice that in
the above equations we can replace r¥ by

filt,z, k) = ro(t, k) +a(t,z) +b(t, z)e(k),

since the last two terms give a zero contribution when they are multiplied by eVe or Ve
and integrated over the whole Brillouin zone B. Now we can choose a(t,z) and b(t, z)
in such a way that the integrals of f; and f; € over the Brillouin zone vanish. Then, we
recover the situation of [4] since f; satisfies

(w(k) Ve + VoV vk) FO = (D1Q6<F0> + Qo> (f)-
Indeed, writing
1

) —
1—|—exp(5}“)

leads to S
— P Ve
f1($7k7t)—[vx T T

where ¥, and ¥y are the unique solutions of

1
W+ V() - W,

(DlQe(FO) + Q0> (W) = Ve FO(1 — F),

(DlQe(FO) + Qo) (\112) = €Vk€FO(1 — FO)7
such that
/ \Ilidk:/ (k)W (k) dk =0 i=1,2.
B B

After some computations we end up with the following formulae

o_ uwo ViV V,T
J_DH[Vx-T— T ]‘|’D12 T27
0 wo V.V V,T
JW—D21[Vx'T— T ]+D22W7

where the matrices D;; are given by

Dlj:/BVes(k)QQ\Ilj(k) dk, ng:/Be(k)Ve(k)QQ\Ilj(k) dk.



Remark 2.2 We do not prove here rigorously the existence of the weak solutions f¢ of
the Boltzmann equation. We explain however briefly how this can be done.

Notice first that the estimate 0 < f¢ < 1 remains valid for all times if it is satisfied at
time ¢ = 0 (maximum principle [17, 21]..). It is then possible to prove that the map

[ Qu() = YLIEG 4 ey

is continuous from the set {0 < f < 1} endowed with the L*(B) norm, on L*(B).

A fixed point argument then shows the existence for our weak problem. For the
treatment of the boundary term, we refer to [22, 7].

Finally, the bound 0 < f* < 1 implies that f* € C°(IRT, LP(Q x B)) for all p < +o0.

The assumption g < f < 1 — 3 is very strong and difficult to prove, especially when
one is looking for global (in time) solutions. Indeed, it should not be difficult to prove
by continuity arguments that if the initial data satisfy this bound (and are sufficiently
regular), then the solution of the Boltzmann equation satisfies the same bound with 3
replaced by /2 in a time interval near zero. The problem is that the measure of this
interval might tend to zero as a goes to zero.

On the other hand, Degond, Génieys and Jiingel have shown the existence of solutions
of the Energy Transport model [9, 10, 11, 12] under the hypothesis that the diffusion
matrices do not degenerate. This hypothesis is not fulfilled for example if the temperature
approaches zero.

Note that under this non—degeneracy assumption, one could hope to prove the assump-
tion < f* < 1— 3 on a (small) time interval independent of «.

The proof of theorem 1 will be done in several steps. In Section 3, we prove that the
distance in L? of f® towards the set of centered Fermi-Dirac distribution functions tends
to zero. The main tool here is an entropy dissipation estimate, in the spirit of the works
of [15] and [27]. Then, averaging lemmas are used in section 4 in order to prove the strong
convergence of the moments of f¢. The strong convergence of f¢ itself towards a centered
Fermi-Dirac function is then obtained as a corollary. Finally, the passage to the limit
leading to eq. (2.29) — (2.34) is performed in section 5, following the moment approach of
the previous works [2, 21].

Remark: In the sequel, the following properties of symmetry deduced from the co-area
formula (see [18]), will be used systematically:
i) For any measurable f: B?* — IR such that the integrals below converge,

/ / S, K1) AN g ()l = / / PR k) AN (K k. (2.35)
keB Jk'ee—1(e(k)) keB Jk'es—1(e(k))

ii) For any measurable f : B? — IR such that the integrals below converge,

/ diedky S | ANy oK) F (kK Ry k4 k4 g — &)
B2

9EPk k, © K €E7L(k k1,9)(0)

:/ dkdky S [ AN, (K) PR b b+ by + g — K Ry)
B2

9EPk &y ~ K €T (kk1,9)(0)



:/ dkdky S [ ANy oK) f(kr k4 by + g — K R K. (2.36)
B2

9EPk &y ~ K EET(kK1,9)(0)

iii) For any k, k', kq, K} € B such that (k) +e(k1) = (k') +<(k}) and b4k — k' — k] €
L*, one has

N(k ki) = N(K k). (2.37)
3 Entropy dissipation rate and departure from the equilib-
rium

Let us denote by F and F. the respective sets of Fermi—Dirac and centered Fermi-Dirac
functions:

_f expla+b-k+ce(k))
F= {1—I—exp(a—l—I)-k—l—CeS(k))7
[ expla+ce(k))
fc_{l—l—exp(a—l—ce(k))’ a,cEIR}. (3.2)

We also introduce the entropy dissipations relative to the collision operators (Jo and @),

a,c€ IR, be IR?’} , (3.1)

Eo.(N) = [ QuUIH(dk, Eay(1) = [ Qolr) H(F)dk, (33
and the global entropy dissipation

Ey(f) = Eq.(f) + Eq, (f)- (3.4)
Here, H is the function defined by

H(y):ln(lgy), for 0<y< 1. (3.5)

The main result of this section is the following estimate:

Proposition 3.1:  For any 3 > 0, there exists a constant Cg > 0 such that for all
measurable functions f: B — IR satisfying < f <1 -7 a.e.,

—Ey(f) 2 Cp jnf IS - Fllf2p)- (3.6)

The proof is done in the spirit of [15] and is decomposed into several lemmas.
Lemma 3.2: Forany 3 > 0, there exists a constant C'y g > 0 such that for all measurable

SJunction f: B — IR satisfying < [ <1- 7 a.e.,

~Eo(f) 2 Crp inf L)) = Ule(k) a. (37)

Proof of lemma 3.2: From now on, we shall use the notation ¢ = ¢(k), ¢’ = (k).
Thanks to the properties of symmetry of @ (see assumption 2), we can write

_EQo(f) = % - (I)o(k,k/) 5(5/—8) (f_f/) (H(f) . H(f/)) dkdl'
= % - @0(16716’) 5(5/_5) f’(l _ f) A (H(f) . H(f/)) dkdk’7 (3.8)

10



where

Az) =z (e = 1). (3.9)
Recalling that 8 < f < 1— (3, there exists a constant Kz > 0 such that for all (k, %) € B2,

2

ANH) = H(f) =z Kg (H(f) - H(f")"

Hence, using the Co-area formula, we obtain

(3.10)

—Eq,(f) = lﬁ‘(l—ﬁ)Kﬁ/ Do (k, k') 5(c" — ) (H(f) — H(f"))? dkdk’
> GO0 K, [k k) (10— B N ) 1)
)

2 kce—1(e(k)

Using assumption 2 and Jensen’s inequality, we get

b 2 gst-pkae [ [[ - niy T
n Ny (K) 12
> Cw/ () - k,&-wﬂ” "Feeawy |
> gy int /|H Ule(k))|? dk. (3.12)

Lemma 3.3: Forany 3 > 0, there exists a constant Cy g > 0 such that for all measurable
SJunction f: B — IR satisfying < [ <1- 7 a.e.,

~E.(f) 2 Cap, int /B [H(f) + H(f1) = T(k+ kr (k) +e(ke))* dkdky. (3.13)

Proof of lemma 3.3: Thanks to the symmetry properties of ®. (see assumption 2), we
can write (using the notation d*k = dkdk,dk'dk}):

~Fo.(f) = g [ @88, (FR0- 0= )= FR0- D0 - )
X (H(f)+ H(f1) — H(f) — H(f])) d*k
= i/B D58, f'fi(1L= YL = fONH(f)+ H(fr) — H(f') = H(f])) d*k

Ci [, @80, (H () + H(f0) = H(F) = HF)* '

Cy / Cdkdky Y ANy o (KO K ey, b+ oy + g — )
B GE Py * 2k k1,9)~L(0)
X (H(F)+H(H) - H(f) = H(f(k+k+g9- k)" (3.14)

The right hand side of the above identity is a sum of nonnegative terms. Therefore, using
only one term (¢ = 0), assumption 3 and Jensen’s inequality yields

v

v

AN, 0 (k') |2

- dkdkq
N(k7 klv 0)

—Eq. (f) =2 Cz,ﬁ/

B2

[ ) = B = HG G b= F))

2

W) [ g,

N(k, k1, 0)

> Cop [ 1D+ 1) - [ B+ HGE b -

é(k,ky 70)_1 (0)

11



H(F)+ H(f1) — Tk + by, e(k) + (k1)) " dkdie. (3.15)

> Chp inf /

- z’ﬁTeLOO(BxR) B2
Lemma 3.4: There exists a constant C's > 0 such that for all measurable function
f: B —]0, 1] satisfying

H(f) € L3(B), (3.16)

the following estimate holds:
inf H H(fi) = T(k+ ki, e(k k) |? dkdk 3.17
ren it )+ ) = Tk + ko) + (k) Pkt (347
> C 'f/ H(f) — m|? dk. 3.18
> %EMB' (f) —m| (3.18)

where M 1is the set

M={a+b-k+ce(k), a,c€ R, be IR} (3.19)

Proof of lemma 3.4: Let B be the set of functions of L?(B?) depending only on k + k;
and (k) + (k) and introduce the following linear operator:
L: L*(B)y/M — L*(B%/B

tk)y w— Ltk k) =t(k)+t(k). (3.20)

Inequality (3.18) is satisfied if and only if the map L is open. Consequently, we shall prove

that L is continuous, one to one and has a closed range and then apply the open mapping
theorem.

I) L is continuous

Since m(k) 4+ m(ky) is in B whenever m is in M, and since B is bounded, there exists
a positive constant C' such that

it [t(k) + t(ky) = T(k, k) Pdkdky < inf . t(k) — m(k) + t(k1) — m(ky)|*dkdk;
< (C inf t(k) — m(k)|%dk. 3.21
< C it | (k) = m(h) (3.21)

II) The range of L is closed

Let t, be a sequence in L*(B)/M and u in L*(B?)/B such that Lt, tends to u in
L%(B?)/B. Let us prove that u is in the range of L. First, there exists a sequence s,
in L%(B), a sequence T, (k + k1,2(k) + (k1)) in L?(B?) (as a function of k and k1) and
g in L*(B?) such that ¢, is the natural projection of s, on L?(B)/M, u is the natural
projection of g on L*(B?)/B and

Sn(k) 4 sn(k1) + Tk + k1,e(k) + (k1)) — gk, k1) (3.22)

in L?(B%). Writing k = (k', k% k%) and k1 = (k{,k%,k}), we introduce the differential
operators, for (7,7) € {1,2,3}%

wu= (55 - () ) (s3]
(oG (-ag) e
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which enjoy the following property:
For (i, ) € {1, 2,3}

@ij<Tn(k+k17g(k) —|—5(k1))> =0. (3.24)
Therefore, for (i,7) € {1,2,3}2

Vii (8 (k) + 80 (k1)) — Vijg(k, k) in H™'(B?). (3.25)

So far the proof is a rewriting of the previous proof [15] for the Boltzmann equation. The
only difference is that the energy band is not parabolic. In [15], the proof goes on by
applying a certain differential operator to (3.25) and for which many terms (involving the
third derivative of the band diagram) vanish. This cannot be done in our case because
the band diagram is not parabolic and consequently its third derivative does not vanish.

We propose an alternative proof relying on the use of test functions. According to
assumption 1, for all (¢,7) € {1,2,3}? such that ¢ # j there exists a test function ¢ €
H}(B) such that

(1,04 (k)) =0, (3.26)
<<88k€) (kl)’¢ij(k1)> =1 (3.27)
<<%) (k). ¢”(’€1)> =0, (3.28)

where (,) is the H™1 H} duality product (Cf. for example [5], p. 41, lemma 3.2). Taking
the duality product of (3.25) with ¢/ (k') (for ¢ # j), we obtain the convergence in H~'(B)
of

;i ds . Oe e .
i) = 2on ij i YE (k) U
where 9 9
i = ((G) o) o = (G ) kool 330)
and
i3 85 8Sn 85 8Sn i3
= {((55) ) (G2) k) - () o) (52) otk 331
Replacing in (3.25) 881; (k) by the value deduced from (3.29), we get the convergence in
J
H-'(B x B) of
G i [ 02 0= 0= 0= 0= 0= 0= 0=
i _ pi Ay AU k- e - e
y 0= 0= 0= 0=
1] _ 2 e (T2
bl { = (G0 + 2 50 (0) 5 ) = (50 )}

e e e e } (3.32)

balf { (G0 =2 ) 5 (k) + ()0

13



Then, testing this convergence against the functions ¢**(k) ¢°¢(k,), with ab, cd = ij or ji,

we get the convergence of (b — b3%), a¥ and al'. Therefore, b = b, 4+ b/ where bi/ is

bounded. Consequently, after the extraction of a subsequence, (3.29) can be rewritten

Ds., 0=

where A% (k) converges in H~'(B). Hence, there exists a sequence of real numbers d,
such that
sp(k) — bpe(k) —cp -k +d, (3.34)

converges in L?(B) (where ¢, = ((cn)1, (€4)2, (¢n)3)). Therefore, the range of L is closed.
III) L is one to one

The previous arguments are still valid here. Let s € L?(B), and assume that there
exists a function T' (in L?(B?) as function of k, k1) such that

s(k) + s(ky) = T(k+ ky, 2(k) + 2(k1)). (3.35)

Then, using again for (i, j) € {1,2,3}? the operators @ij defined in equation (3.23), it can
be proved that there exists a,d € IR and ¢ € IR® such that

s(k)y=—-d+c-k+be(k)e M, (3.36)

The proof is a rewriting the proof of closedness of L in which the subscript » is removed
and the expressions “bounded” or “converges in H~!” replaced by “equal to zero”.

We now come to the

Proof of proposition 3.1: We denote by A the space of functions of L%*(B) which
depend only on (k). Note that A is closed in L%(B). According to lemmas 3.2 to 3.4, the
following estimate holds for any f such that g < f(k) <1— 3 a.e.:

_Eg (f) > 0302,5 d’ (H(f)7 M) + Cl,ﬁ d? (H(f)7 -’4) ) (3'37)

where d denotes the distance associated to L?(B).

Note now that since M is finite-dimensional and since A is closed (in L?(B)), A+ M is
also closed (in L?(B)). Then, according to the open mapping theorem (see [5] for example),
we get a constant C'z > 0 such that for any f verifying the estimate 5 < f(k) < 1—j a.e.:

—Ey(f) > Cp d* (H(f),MNA). (3.38)
Since M N A is the space of functions spanned by 1 and £, then, according to the
estimate
exp x expy
— < — .
T R e E L] (339
we get
—F,(f) > CﬁafglefR/B \H(f) —a—ce(k)?dk > Cp Fiélﬁc/B |f — F|*dk. (3.40)
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We now prove a corollary of proposition 3.1 which concerns the scaling described in
the introduction. We can prove that the scaled quantity f is at a distance of order a of
the space of centered Fermi—Dirac functions:

Corollary 3.5: Suppose that f is a solution to the rescaled problem (2.2) — (2.6) under
assumptions 1 to 7. Suppose moreover that it satisfies the bound (2.27). Then there exists
a family of centered Fermi-Dirac functions (F) 10,1] and a constant C't > 0 such that

1S
[f=F'4ar?, (3.41)
with
171720, 11x258) < O (3.42)

Proof of corollary 3.5: Multiplying equation (2.2) by o?H(f“) and integrating with
respect to (£, 2, k) on [0,7] X Q x B, we get:

042</QS°Y(T,$) dw—/QSa(O,x) dac)—l—oe/OT/QQGa(t,x)-l/(w) dA(z)dt
—/OT/QEg(fa)dxdt—042/0T/Q/BQ?(fa)H(fa) dkdedt =0.  (3.43)

In equation (3.43) A denotes the superficial measure on 92, S¢ is the entropy defined by
SOt 2) = /B 8(f> (¢, 2, k))dk, (3.44)

and G¢ is the entropy flux defined by
Gty 2) = /B Vie(k) 0(f° (¢, @, k))dk. (3.45)
In equations (3.44) and (3.45), # denotes the strictly convex function defined on [0, 1] by
6(z) = zloga + (1 — z)log(l — ). (3.46)

The proof of (3.43) can be made more rigorous by first noticing that, since § < f <
1 — 3, the function #(f) is Lipschitz continuous with respect to f. Therefore, we can
choose it to renormalize the Boltzmann equation [16] and get
a0(f*) H(f)

U L (et Vo4 Vv v 607) = T Q.0 + Qoo+ @5 (),

and we obtain (3.43) thanks to an integration over all variables (the continuity with respect
to time is important).

Inserting equation (2.22) into equation (2.23) and using the evenness of £ (assumption
1), we get:

1= /B o RO = ) B(e() = () (3.47)

Equation (3.47) means that the constant function equal to 1 satisfies the boundary con-
dition (2.6). Hence, Jensen’s inequality yields, V¢ € R4, V(z,k) € 0Q x B such that
k€ B_(xz),

O(f2(t,z, k) < /B+(x) Rk — k) 6((k) — e(K") O(f(t, 2, k') di'. (3.48)
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Multiplying by |Vie(k) - v(z)], integrating with respect to k € B_(z) and using equation
(2.22) gives:

/ |Vk5(k)-y(ac)|0(fa(t,x,k))dk§/ Ve (k) - (@) 8(f2 (L, 2, k) dk.  (3.49)
B_(x) By (x)

+(=
This implies that V(¢,2) € IRy X 04,
GY(t,z)-v(z)>0. (3.50)

Now, according to proposition 3.1, there exists a constant C's > 0 and a Fermi-Dirac
function F® (¢, z, k) such that:

~E,(°) 2 Gy (11 = Fllgagm) - @), 351

Since  — 2 logz + (1 —2) log(1 — ) is a bounded function on [0,1], we deduce from (3.43)
and (3.51) that

T
177 = Pl ompensy < Cad o [ [ [ QuuroyH(fydbdadr. 3.52)

Corollary 2.5 is then a straightforward consequence of assumption 4.

4 Mean compactness property

This section is aimed at proving the following result:

Proposition 4.1: Let f* be a solution to the rescaled problem (2.2) — (2.6) under
assumptions 1 to 7 satisfying the bound (2.27). Then f* converges up to a subsequence
when « tends to 0 towards a centered Fermi-Dirac function FO in LF([0,T] x Q x B)
(strong) for 1 < p < 4o0.

Moreover, the concentration p®(t,z) = / [tz k) dk and the energy W°(t,z) =
B

/ fot, z, k) e(k) dk converge (also up to extraction) strongly in LP([0,T]x Q) for 1 < p <
B

+00, when « tends to 0, respectively to p°(t, ) and WO(t, x), which are the concentration
and energy relative to F°.

In order to prove proposition 4.1, we use an averaging lemma stating that p® and W<
are strongly compact locally in L%([0,7]x Q). Then one has to prove that the limits p® and
WP of these quantities are indeed the concentration and energies relative to a Fermi-Dirac
function FY. Once this result is obtained, the convergence of f® towards FV is a simple
consequence of corollary 3.5. The outline of the proof follows closely the previous work by
Golse and Poupaud [21]. Many details are however quite different.

Lemma 4.2: Let f*, H® be uniformly bounded in LY(IR x IR® x B) and §* be uniformly
bounded in (L*(IR x IR® x B))3. Suppose moreover that

9 - y B
a%fa—l—v(k)-vxfazvk-ga—l—lfa, (4.1)
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where k — v(k) is a function of (W1°°(B))?) satisfying the following property:

3C, (>0, VYwe S, ~v>0, HkEB7 (U(lk))-w‘g'y}‘gC'yc. (4.2)

Then, for any ¢ € W1>°(B), the averages fg(t,x) = / fa(t,w,k) (k) dk are uniformly
B
bounded in L?(IR;; HS/*(IR2)).

For the proof of this lemma, we refer to [21] where only the case ¢ = 1 is treated. The
extension to any ¢ € W1 °°(B) is straightforward.

Lemma 4.3: Let f* be a solution to the rescaled problem (2.2) — (2.6) under assumptions
1 to 7 satisfying the bound (2.27). Then the concentration p®(t, ) and the energy W (t, z)

are uniformly bounded in L% _(]0,T7; H£/4(Q)) (€ is defined in assumption 1).

loc loc

Proof of lemma 4.3: Plugging decomposition (3.41) of corollary 3.5 in eq. (2.2) and
multiplying by «, we get:
ar”
ot

[a%

+ (Vke(k) Vo + VoV vk>f°“ = (DlQe(F“) +Qo> (r)

+ 04(DQQ6(F°Y)(7‘OY7 r) + Q?(fa)> + oezD?’Qe(Fa)(ra7 re ey, (4.3)

where D'Q.(F®) for i = 1,..,4 denote respectively the i*" derivative of Q. with respect
to . (Note that since Q. is cubic, its fourth derivative satisfies D*Q.(F*) = 0). Let us
now define on IR x IR> x B the function f* = 5 f*, where 5(t, ) € D(IR x IR®) has its
support in ]0, T[xQ and will be chosen later. The function f defined on IR x IR®, is a
solution of the following equation:

df
ot

[a%

+ Vie(k) - Vo f* =V g%+ H°, (4.4)

where

~ o o 7o o d o o
§ =0V O B = [ S Ve (k) Va4 0, (4.5)

and h® denotes the right-hand side of eq. (4.3).

Note first that since 0 < f@ < 1, and thanks to assumption 6, the sequences f and
|G| are uniformly bounded in L?(IR x IR® x B). Moreover assumption 1 also implies that
Ve satisfies the requirements of lemma 4.2 on v with { = &.

It remains to prove that H® is uniformly bounded in L*(IR x IR® x B). It is clearly
enough to prove that A is uniformly bounded in L?([0,7] x Q x B). We shall therefore
prove that all the terms appearing in the right-hand side of eq. (4.3) are uniformly
bounded in L2,

I) The term Qo(r®)
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Using assumption 3 and Cauchy—Schwarz inequality, we can prove that Jg is bounded
in L2([0,T] x Q x B). Namely,

QoD euransy < B[ [ [ = P drdea
QCg/oT/Q/B//es-lsk (177 +'f'2) (e(zii)d’“dm

_ 403/:/9/3//65—1 |f|QTg))dkd dt

= 4C3 I 20,1yxxB) (4.6)

Then, corollary 3.5 implies that Qo(r®) is uniformly bounded in L%([0,7] x Q x B).

IN

IT) The term D*Q.(F*)(r*)

Note first that this term can be written under the form
DQ(F“ “) / (I>55p<raPa(k’1,kk)—|—r1aPa(k’kk)

— % P*(kq, K, k’l) —r{ P(k, K, ki)) dkydk'dk], (4.7)
where
Pa(kl,k’ k’)— F(l=FY (1= Y4+ FYR> (1= D). (4.8)

The function P¢ is always nonnegative and bounded by 2.
We first consider the term involving r®. According to assumption 3 and using Cauchy—
Schwarz inequality, we get

N

<02/ //"“a|2/ > / | P2 ( k17k’k+k1+g k)|2d k(kl’g())dkldkdxdt

9€PK K, “ETL(REL,9)

2
e P, 5. 6, P (k1K' KY) dkrdE'dky| dkdzdt

<4C?|B| ||ra||%2([0,T]><Q><B)' (4.9)

According to formula (2.36), the term involving r{ can be treated exactly in the same
way. Then, the terms involving #'® and r;* are treated with the help of formulas (2.36)
and (2.37) and give rise to the same estimate (4.9).

IIT) The term D*Q.(F*)(r*,r*)
We first write this term under the form
D*Q.(F*)(r,r”) = / 6.8, (17 (B = Fy™) 40 (B = F'9)
B3

] (F = (L= ) o (L= F) = )
O (B = F') 4 g ' (F = FL®) ) dky i/ dR]. (4.10)
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Using the estimate |ar®| < 2, we can find a constant C'; > 0 such that:

||O‘D2Q6(Fa)(rav ra)H%?([O,T]xQxB) <

T !
SCl/ // > / R A e T )Mdkldkdxdt.
0 JLIB yepyy, He (k) 0) N (k, ki)

(4.11)

Using the same symmetry properties as for D'()., we get the existence of a constant

(5 > 0 such that:

||O‘D2Q6(Fa)(rav ra)H%?([O,T]xQxB) <Oy ||ra||%2([0,T]><Q><B)' (4'12)

IV) The term D*Q.(F)(r,r*,r<)
Since we have
D?*Q.(F*) (r®, re, / o656, rarf P 4o rlrl
=" Pre = ey ) dkydk Ry (4.13)
then using once again the estimate |ar®| < 2, we can find C'5 > 0 such that

o DPQe (F) (r™, 2, 1) 12210 1y x0x B) <

T ANy g, o (k)
<C/ // / 2 K K —— I dky dkdzdt
SCa ) fofye 2 [ U P AP+ 4 1) =g 5 dhadhde

9E€EPE x, k'ee—1(k,ky,9)(0)

Therefore, there exists a nonnegative constant C'y such that

o D2Qc(F*)(r®,r, 1) 1120 mxax By < Callr®lZz (o 11x0xB)- (4.14)

Note finally that because of assumption 4, there exists a constant Kt > 0 such that
for a € [0, 1],

1@ QS (F )22 om0 axm) < K- (4.15)

Then we can use lemma 4.2 in order to prove that np® and n W are uniformly bounded

in L2(IR; HE/4(IR®)). Finally, p* and W are uniformly bounded in L7 (]0,77; H£/4(Q))

loc

Lemma 4.4: Assume that Xo, X and Xy are Hilbert spaces which satisfy Xo C X C Xy,
with continuous inclusions. Suppose moreover that the first inclusion is compact. We
denote, for any bounded set K C IR,

Hi (Xo, X1) = {u € L*(IR, Xo), Dwuc L*(IR,X;) and SuppuC K},  (4.16)

where Dyu denotes the derivative of u with respect to t in the sense of distributions. Then,
the injection of Hy (Xo, X1) into L*(IR, X) is compact.

For the proof of this lemma, we refer to [26].
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Lemma 4.5: Let f* be a solution to the rescaled problem (2.2) — (2.6) under assumptions
1 to 7 satisfying the bound (2.27). Then the concentration p™(t, x) and the energy W (t, z)
belong to a compact set of L? _(]0,T[xQ).

loc

Proof of lemma 4.5: The proof is an application of lemma 4.4.

Multiplying equation (2.2) by 8(116) ) and integrating with respect to k, we get:

J P 1 o o 1

1 N 1 o 1
- J/B(Qe—l-Qo)(f ) ( (k) )dk+/BQ1(f ) ( (k) )dk. (4.17)

Since 1 and (k) are collisional invariants of Q). + (¢ and since F'“ and ¢ are even with
respect to k, this identity can be rewritten under the following form:

o [ p° . 1
5 ( R )—I—Vx-/Br Ve (k) ( (k) ) dk—

o 0 o o ro 1
—vxv-/Br (W(k) )dk_/BQl(f ) ( " )dk. (4.18)

Therefore, the quantities p® and W< are uniformly bounded in the space H([0,T]; H1(Q)).
Introducing once again the cutoff function 7 (as in lemma 4.3), and using lemma 4.4 with
u=1p, (and then v = n W), Xo = HY/*(IR?), X = L?(IR%) and X; = H~'(IR®), we get

lemma 4.5.

Before turning to the proof of proposition 4.1, we give a last lemma which specifies the
link between the conservative variables (p, W) and the entropic variables («, ¢) relative to
a Fermi-Dirac function F.

Lemma 4.6: Let F be a centered Fermi—Dirac function:

Fk) = exp(a+e(k) ¢)

1+explate(k)e) (4.19)

and let p = [5 F(k)dk, W = [ge(k) F(k) dk denote its conservative variables. Then the
Sfunction T defined by

T(a,c):/Blog(l—l—exp(a—l—e(k) ¢)) dk (4.20)

belongs to C*(IR?), is strictly convex and its derivatives are

oT oT
So=p o= (4.21)

Moreover the function E : (a,c) — (p, W) is a C'—diffeomorphism from IR* to F(IR*).
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Proof of lemma 4.6: It is obvious that T € C?(IR*). The computation of its derivatives
is also simple. In order to prove that T is strictly convex, we compute its Hessian matrix

/ exp(a + 5(k)c) m / eXp(a + €(k)0) e k)dk
b (texplate(kje) o (1+exp(ate(k)e)’ (122

/ exp(a + £(k)c) (k) dk / exp(a+ <(k)c) 2 () dk
B (14 exp(a + g(k)c))? B (14 exp(a +e(k)c))?

According to Cauchy—Schwarz inequality and using the linear independence of 1 and ¢, it
becomes clear that 7' is strictly convex. We note that the Jacobian matrix of F is nothing
but the Hessian matrix of 7. Then the properties of E are a straightforward application
of the inverse function theorem.

We now can prove proposition 4.1.

Proof of proposition 4.1: According to lemma 4.5, the sequences p® and W admit
a subsequence p°1 and W1 converging for a.e. (t,2) € [0,T] x Q towards a limit p® and
wo.

Note also that because of corollary 3.5, we can find a subsequence a” of a} such
that for a.e. (¢,z,k) in [0,T] x Q x B, f*"(t,z,k) — F°"(¢,z,k) tends to 0. Then the
conservative variables p%n and W]?n, which are related to the Fermi-Dirac functions F°",
also converge, for a.e. (t,z) € [0,T] x Q towards p® and W°.

Let us prove that for a.e.(to,z0) € [0,7T] x Q the entropic variables a®" and c®"
related to the Fermi-Dirac function F" are bounded. To this aim, we introduce for
(to, 7o) € [0,T] x Q the set L4y, = {k € B, [ (to, 0, k) — F*" (to, v0,k) = 0 and § <
7" (to, w0, k) < 1 — B}, and the set M = {(to,z0) € [0,T] x Q, |L . | =0}. Then, M
is a set of full measure of [0, 7] x Q.

&
to,z0

Assume that a®” (tg, z¢) is unbounded, then there exists a subsequence a} such that

lim  [a®? (to, 20)| = +00. (4.23)

n——+oo

Then, for all k£ € Ly, 5, such that (k) # 0 and

. o5 1
nll}r_lr_loo ng(t(), $0) 7£ —% (424)
(when this limit exists), the sequence
a®? (to, $0) + 8(16) 2 (t07 $0) = q™2 (to7 $0) (1 + 8(16) ng(to, $0)) (425)

is unbounded, and therefore H(F°% (ty, zo, k)) and H (% (to, zo, k)) are also unbounded.
But this is impossible since for a.e. k € B, 8 < f" (to, 0, k) < 1 — 3. Hence a®" (to, xo)
is bounded. The same argument shows that ccyn(to7 zg) is bounded. Consequently , there
exists Ry, », > 0 such that Vn € IN,

a®” ~
( o ) (to, z0) € B(0, Ry ). (4.26)
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It means that

( V’I’/%;n ) (to,z0) € £ (B(0, R)), (4.27)
and therefore,
( V’?/O ) (to,z0) € E(B(0,R)). (4.28)

Then, since =1 is continuous on E(IR?) (see lemma 4.6), we have:

( Zz: ) (to, x0) — ( Zg ) (to, z0) = B! (( V’?/OO ) (tmxo)) . (4.29)

This in turn implies that for a.e. k € B,

exp(aan(to7 zo) + (k) " (to, z0)) .
(

1+ exp(a®” (to, xo) + (k) " (to, z0))

exp(a®(to, 7o) + £(k) °(to, o))
1+ exp(a®(to, xo) + (k) (to, 20))
Then, f°" also converges a.e. towards the Fermi-Dirac function F°. The convergence

in LP (strong) for all 1 < p < 400 of f*" and its moments is then a consequence of its
uniform boundedness.

Fan (to7 Zo, k) =

FO(tg, w0, k) = (4.30)

5 Convergence to the Energy Transport model
We conclude in this section the proof of theorem 1.

Proof of theorem 1: According to propositions 3.1 and 4.1, the sequence f¢ gives rise
to a subsequence f°" converging in LP (for 1 < p < 400) towards a centered Fermi-Dirac
function F°. Moreover, according to corollary 3.5 one can extract another subsequence
(simply denoted by « in the sequel) such that r® converges weakly in L? towards a limit
0. Let us now prove prove that formulae (2.29), (2.30) and (2.34) hold.

Multiplying equation (2.2) by ( ) and integrating with respect to k, we get (see

1
e(k)

the proof of lemma 4.5),

% ( V?/O; ) —I-Vx-/JgraVke(k) ( 8(116) )dk—
v [l )dkz/BQ?(f“) ( " )dk- (5.1)

Passing to the limit in the sense of distributions in eq. (5.1), we get

%( V’OVOO ) —I—Vl,-/BrOVke(k) ( 8(116) )dk—
0
_vv/ (vkg )dk:(/BQ?(FO)g(k)dk), (5.2)
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which proves (2.29) and (2.30).

Besides, eq. (2.2) can be put under the form

afe
‘ot

+ (Vie(k) - Vi + V.V -V Y = (D'Q(F*) + Qo) (r) + a D*Q.(F*)(r®, r?)

+a? DIQ(F) (r*, v, r®) + aQT (f*).  (5.3)
To pass to the limit o« — 0, we first notice that

afo
ot

+ (Vie(k) -V + Vo,V -V Y = (Vie(k) - Vo + VoV - Vi) F° (5.4)

in the sense of distributions. We now pass to the limit in the right hand side of eq. (5.3)
(also in the sense of distributions). It is clear that Qo(r®) tends to Qo(r") because Qg is
a linear bounded operator of L%([0,7] x © x B) (see the proof of lemma 4.3). Besides,
D2Q.(F*)(r®,r*) is bounded in L*([0,T] x Q x B). Indeed, since
DAQUUE) 1) = [ @e8d, (s (B~ E) ooy (B F)
Frr (B = (1= F) tr (1= P = B
(B = F') 4 (P = F{) b dkydi ], (5.5)
the estimate 0 < F'* < 1 implies the existence of a constant C'y > 0 such that:
||D2Q6(Fa)(ravra)HLl([O,T]xQxB) <
ANk, o (K
<€) // L+ P+ 1 ) Weis M) gy idear. (5.6)
- N (K, k1)
9€Pk K kee—1(kky,9)

Using the symmetry properties (2.35), (2.36)7 we get the existence of a constant Cy > 0
such that:

||D2Q6(Fa)(ra7 ra)H%l([O,T]xQxB) < CQHraH?D?([O,T]xQxB)' (5'7)

It is also clear (because |ar®| < 2) that the term
D2Q (F*)(r®, r, / O 5. 9,( rarfr ¥+ rarfrlla - r/arllar —r arlarf)dkldk'dkll
satisfies the estimate

o D3Qc (F*) (r, %, ) Lo ixex ) < Callr 1220, 11x0x B) (5.8)
for some constant Cs > 0.
It remains to prove that D'Q.(F)(r®) converges weakly in L ([0, 7] x 2 x B) towards

D'Q.(F°)(r°). We remark that D'Q.(F°) is a bounded linear operator of L!([0,7] x € x
B). Namely, using the notations of the proof of lemma 4.3,

T
||D1Q6(FO)(ra)||L1([0,T]><Q><B):/ //dkdxdtx
0 QJB
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‘/dklz/N o {F Pk by g — Kk ) 407 (kg — K) POR k)

9€PL 5k, k1 g)( )

dN %
_rapo(kl7k/7k+k1‘|‘g—k/)—T‘?Po(k7k/7k_|_k1_|_g_k/) %()‘

N (k, k1)
a ol o de,k, (k")
< [, Z/ (P 10 4 D T et
gEP (k,k1,9)
Therefore, we have the following estimate
10" Qe(F) (r )l o112y < 8ClBI 1|zt oy (5.9)

which implies that D'Q.(F°)(r*) converges towards D'Q.(F°)(r°) in L'([0,7] x Q x B)
weak. It remains to prove that

D'Q.(F*)(r*) = D'Q(F*)(r") = 0 (5.10)
in L1([0, 7] x Q x B) (strong). With the notations of lemma 4.3, we have

1D'Qe(F*)(r") = D'Qe(F°) (r*)||11(jo,11x0x B) <

< [ fyasa [, 52 [ N0 (b = 0 k)

—1(k,k1,9)
i (PR e k) = Po(k’, k) — (P“(kl, KK — Pk, K R

AN g, o (k')

o le3 [ 0 [
- (P (kvkvkl)_P (kvkvkl)) N(k,kl)

dkq| .

(5.11)
Using the boundedness of ® N, the right hand side of this inequality can be estimated by

VIVIIT where
1—/ /// Z / |ra|2—|—|r 124 g2+ | 1|)de(k1’g())dk1dkdxdt (5.12)

L(k,k1,9)(

=/ Zt/km (1P (45 k) = PO(KE BB

9EPL &
PR by ket) — POOK ey k)2 | P2 (ks B, KL) = POk, B KD) 2
ANk g, g (K)

and

P (kK k) — PO (kKK 2) — dkydkdadt. 5.13
+| ( LA 1) ( LA 1)| N(k‘7k‘1) 1 z ( )
In view of (2.36), it is easy to show that
I <4|Bl[lrallizo 1< 0xB) (5.14)
whereas
dNg g, o (K
11 </ / / / 3 / P2 ( k’ k k) — PO e k)2 ke D) g dear (5.15)
—1¢ N(kvkl)
9€Pk K, (kk1,9)
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From (4.8), we get

T ' '
m< [ ]S andided | L B0 P I — PP
0o JQJBJB E=1(k,k1,9)(0)

9P,
HFOPFY = B+ | FP P = B2+ RO — )
ANy 5 (K)
N(k, k1)
< TIBIIF* = FOll 2o, r1x0xB), (5.16)

HE [ [F* = P+ |[FOP P - O

Therefore, in view of all the above estimates, we can to the limit in (5.3) and prove (2.34).
The only thing left to show is that J° - v and JJ}, - v vanish on the boundary 9. This is
a direct consequence of mass and energy conservation of the reflection operator. Indeed,
for a distribution function satisfying the boundary condition (2.6), we have

/B Ve(k) - v(2)G(e(k) fdk =0 Ve € 09

Consequently since f¢ = F* 4+ ar® where I’* is a centered Fermi-Dirac distribution, and
therefore even with respect to k, we have for all 2 € 99,

/Br%(k)w(k) () dk = /Bravqk) v(2) dk = 0,

which in the limit & — 0 gives J°-v = J}, - v = 0. This proof can be made more rigorous
by taking test functions and passing to the limit in the weak formulation of the Boltzmann
equation (2.25). Indeed, the test functions 6(z, p,t) = ¥ (z,t) and 0(z, k,t) = (k) (z,t)
are such that B(f,6) =0 (see (2.26)). We can then pass to the weak limit in (2.25) and
get

/QW’O)/B]%” ( 5(1k) ) dk d ‘/R+ /Q % ( vpvoo ) dudt
_/R+/va./Bro Ve (k) ( 8(116) )dkdmdt
_/R+/§2¢($,t)vxv-/]3ro ( ng(k) )dkdwdt

= f 00 ( /. @?(Fo%e(k)dk ) dedt

which is exactly the weak formulation of the Energy transport model with the boundary
and initial conditions announced in theorem 1.
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