THE LINEAR BOLTZMANN EQUATION FOR
LONG-RANGE FORCES: A DERIVATION FROM
PARTICLE SYSTEMS

L. DESVILLETTES AND M. PULVIRENTI

ABSTRACT. In this paper we consider a particle moving in a ran-
dom distribution of obstacles. Each obstacle generates an inverse
power law potential I;T’ where ¢ is a small parameter and s > 2.

Such a rescaled potential is truncated at distance ¢?~! where
v €]0, 1] is suitably large. We assume also that the scatterer den-

sity is diverging as e~9t! where d is the dimension of the physical

space.

We prove that, as € = 0 (the Boltzmann-Grad limit), the prob-
ability density of a test particle converges to a solution of the linear
(uncutoffed) Boltzmann equation with the cross section relative to
the potential V(z) = |#|~*.

1. INTRODUCTION

It is well known how interesting and challenging is the problem of
obtaining a complete and rigorous derivation of the kinetic transport
equations starting from the basic Hamiltonian particle dynamics.

The first result in this direction was obtained many years ago by G.
Gallavotti who showed how to derive the linear Boltzmann equation
(with hard—sphere cross section) starting from the dynamics of a single
particle in a random distribution of fixed hard scatterers in the so-
called Boltzmann—Grad limit. This paper (Cf. [G]), unfortunately
unpublished and not widely known, is technically simple but has a
deep content. In particular it is proved there for the first time that
it 1s perfectly consistent to obtain an irreversible stochastic behavior
as a limit of a sequence of deterministic Hamiltonian systems (in a
random medium). Later on this result was improved (see [S1], [S2] and
[BBuS]). More recently, the Boltzmann—Grad limit in the case when the
distribution of scatterers is periodic (and not random) has also been
considered in [BoGoW] (see also the references therein). Note that in
this case, the result is totally different.

It is worthwile to mention also the well known Lanford’s result for

short times (see [L]) for the fully nonlinear Boltzmann equation, derived
1
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from a system of hard spheres. The reader will find in [CIP] (Ch. 4)
additional results, references and further comments on the matter.

The Boltzmann equation for long-range potentials is more singular
because of the presence of grazing collisions making meaningless the
gain and loss terms of the collision operator taken separately. Indeed
the collision term makes sense only by compensation (see e.g. [Gr], [A],
[Del, [Gou]).

In this paper we address the problem of a rigorous derivation of the
linear Boltzmann equation for a long-range, inverse power law inter-
action along the following lines. We consider the behavior of a test
particle under the action of a random distribution of obstacles. Given
¢ > 0 a small positive parameter, we assume that the density of dis-
tribution of scatterers is suitably diverging as well as the range of the
interaction. More precisely a given scatterer localized in ¢(€ R?) gen-
erates a potential of the form:

v r —C

Ve(@ —¢) = Ve(

) (1.1)

where the unrescaled potential V; is given by:

Vi(z) = ﬁ when |z] <& ',
and
Vi(z) =079 when |z| > 717, (1.2)
where v €]0, 1] is a parameter to be fixed. This is an inverse power law
potential, cutoffed at large distances.

The distribution of scatterers is a Poisson law of intensity p. =
e~ 1y, where > 0 is fixed and d is the dimension of the physical
space.

What we are considering here is nothing else than the usual Boltzmann-
Grad limit for the Lorentz model (see e.g. [G], [BBS]..), with in addi-
tion a simultaneous divergence of the range of the potential allowing to
recover the grazing collisions in the limit. In this framework we prove
that the probability density associated to the test particle converges,
in the limit ¢ — 0, to a solution of the uncutoffed linear Boltzmann
equation with a cross section given by the inverse power law potential

|z~
We remark that one would really like to prove the same result di-
rectly for an uncutoffed potential V(z) = |2|~*, giving, in this way, a

complete derivation of the linear Boltzmann equation in terms of the
basic Hamiltonian system. This problem however, presents deep addi-
tional difficulties which will be discussed in some details later on. Thus
the present result can be viewed as a first step in this direction.
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The proof we give here is very direct and is in the same spirit as that
in [G]. Roughly speaking we basically show that a typical trajectory
of the test particle is going to perform a random flight with infinitely
many collisions. However, for a fixed angle o« > 0, only a finite number
of collisions have a scattering angle larger that «. In other words, most
of the collisions are grazing.

The plan of the paper is the following. In Section 2 we introduce
the model, the scaling and establish the result. In Section 3 we give
its proof. Comparing this proof with that of [G], we find an additional
difficulty. Due to the fact that the range of the potential is infinite
in the limit, the test particle interacts typically with infinitely many
obstacles, so that the set of bad configurations of scatterers, preventing
the Markov property of the limit (such as the set of configurations
yielding recollisions) must be estimated explicitely, while for a short-
range potential a simple dimensional argument is sufficient.

Finally, some useful estimates on the cross section are given in the
Appendix.

2. NOTATION, RESULTS AND COMMENTS

Consider a Poisson distribution of fixed particles (obstacles or scat-
terers) in R? (d = 2 or 3 is the dimension of the physical space), of
parameter pu. = ==Yy where y > 0 is fixed and ¢ €]0,1]. More
explicitely, the probability distribution of finding exactly N obstacles
in a bounded measurable set A C R?is given by:

N
P(dey) = e—ﬂslAl%dcl .. de, (2.1)

where ¢; ...cy = ¢y are the positions of the scatterers and |A| denotes
the Lebesgue measure of A.

The expectation with respect to the Poisson repartition of parameter
e will be denoted by E°.

Consider a fixed v €]0, 1] and the cutoffed (rescaled) potential (1.1).
Let T¢ .  be the Hamiltonian flow generated by the distribution of ob-

stacles ¢ associated with this potential. Namely, T¢ . _(2,v) = (zc(1), ve(1))
is the solution of the problem:

Te(t) = ve(t),

ve(t) = Fo(ze(t);c), (2.2)
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with ) )
Fe(wie) ==Y VVi(zr—c). (2.3)

The rescaled cutoffed potential V. explicitely reads as

. e’

Vi(z) = BE when |x| <&,

and

Vi(x) =079 when || > . (2.4)
We shall also denote this flow by 7! when no confusion can occur. No-
tice that the sum (2.3) is almost surely finite since the Poisson distribu-
tion gives probability one to the locally finite sets. Due to the discon-
tinuity of F.(x;c), the solution of Eq. (2.2) might not be defined if the
trajectory became tangent to the union of spheres U.cc {2/ |[x—c| = £7}.
However it is easy to show that this event happens for a zero-Poisson
measure set of obstacles, and it can therefore be disregarded. Finally,
the quantity T} (x,v) is defined for all ¢ € R.

C767’y

From now on we shall consider in detail only the two-dimensional

case (d = 2).

For a given initial datum fo € L* N L N C(R? x R?), we can define
the quantity

fs(tvxvv) =FE [fO(Tc_,st(xvv))]' (2'5)

In this paper we are interested in the asymptotic behavior of f. when
e — 0 (and |v] =1 for the sake of simplicity). In this analysis, we are
led to consider the following initial value problem, associated to the
linear cutoffed Boltzmann kernel,

O hsltseo) = [ B0 { st Bo(o) s t,0) .
0=—m

hfﬁ(ovxvv) = fO(xvv)' (26)
Here, Ry denotes the rotation of angle 6 and B., is the cross section
associated to a relative velocity of modulus one and to the unrescaled
cutoffed potential V. given by (1.2).

Kis

Our main result is the following:

Theorem 2.1: Assume that s > 2 and v €]12,1[. Let the initial

datum fo belong to L' N WH>2(R? x R?). Then, for any T > 0, the
quantity f. defined in (2.5) satisfies

11_1;% | felfo,mxr2xst — hen||noo (o, 1700 25 51)) = 0. (2.7)
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The proof of this theorem is presented in section 3.

The proof of the transition from the particle system we are consider-
ing to the uncutoffed Boltzmann equation is thus reduced to a partial
differential equation problem, namely that of the convergence when
e — 0 of the solution of the cutoffed linear Boltzmann equation (2.6)
towards the solution of the uncutoffed linear Boltzmann equation. In-
deed, we prove in Appendix A (proposition A.2) that h., — f (in
L>=([0,T] x R* x S') weak *, up to extraction of subsequences), where
f is a solution (in the weak sense precised in proposition A.2) of

(Or+v-Vo)f(t,z,v) = M/ B(@){f(t,x, Ry(v)) — f(t,x,v)}d@,

0=—m

f(O,J?,U) :fO(wvv)v (28)
and B is the (singular) cross section corresponding to a relative velocity
of modulus one and to the potential V(z) = |z|~*.

Kis

Remark 2.1: The limit we are considering here can be seen in a
different way, namely in terms of microscopic variables. Consider a
Poisson distribution of scatterers of parameter v. in R? and a light
particle under the action of the unrescaled potential > . Vi(x — ¢).
Consider ¢°(t,z,v) = fo(S:l(x,v)), where S is the flow generated
by the obstacles ¢. Scale hyperbolically space and time as for the
hydrodynamical limit:

Yz, v). (2.9)

Considering also the density v. = %1 (for a given fixed positive u),
and taking the expectation (denoted by E,_ ), we get

St v) = e g (e, e

g = Eusgg = Je»

so that g. also converges to f.

Remark 2.2: It would be more appropriate, from a physical point
of view, to consider more general distributions of obstacles than the
Poisson distribution, for instance the Gibbs distribution at a given
temperature. We note however that this distribution is asymptotically
equivalent to the Poisson distribution in the limit we are considering
and that our approach works for other non—equilibrium distributions,
not singular with respect to the free gas case we have considered ex-
plicitely.

Remark 2.3: On the basis of the present result one could hope to
give a complete derivation of the linear Boltzmann equation for long-
range forces by proving that the motion of the test particle under the
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action of (a random distribution of) obstacles generating uncutoffed
long-range forces is asymptotic to that investigated here. Unfortu-
nately, even though the long-range tails add a very small contribution
to the total force for each typical scatterer distribution, the non-grazing
collisions generate an exponential instability making the two trajecto-
ries very different. Thus the completion of the proof requires new ideas
and techniques.

Remark 2.4: The assumption s > 2 is used in appendix A (more
precisely just after formula (A.13)). We think it is probably possible
to relax this assumption, but we shall not try to do so.

3. PROOFS

This section is devoted to the proof of Theorem 2.1. In the following
we shall denote by B(z, R) = {y € R*/ |z — y| < R} the disk of radius
R. We fix an arbitrary time 7' > 0 and consider our dynamical problem
for times ¢ such that |t| < T'. We shall also use the simplified notation
B(z) = B(«,T). Finally we shall denote by C' any positive constant
(possibly depending on the fixed parameters, but independent of ¢),
anf by ¢ = p(e) any positive function vanishing with e.

We start by giving a straightforward probability estimate:

Lemma 3.1: Assume that v €]3,1[, and for a given fived v € R?,
consider the indicator

X1(CN):X({CNEB(:1;)N, Vi=1...N, |ci—:1;|>5w}), (3.1)
Then,
E (x1) > 1 —e(e). (3.2)

Proof of lemma 3.1: We compute

N

> — e x Ius

B (1= xi(en)) = »_ erel® )'m
N>0

/ X({Elie [1, V], CZ'EB(:I:,e”)})ch
B(z)V

Z B e

ey ety [
N>0 N! c1€B(z,eY) Jca,..,cnEB(x)

N
< N e B@I_He 2y gV
NEZ:I (N 1)
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<peme’. (3.3)

OWe now come back to the proof of theorem 2.1. Given a configuration
c of scatterers such that yi(c) = 1, the energy of a light particle of
coordinates (x,v) in the phase space satisfies the following identity
(recall that |v] = 1),

1 - 1
H(x,U,C)E§|U|2—|-z€;‘/E($—C):5, (34)
where \N/s(:zj —c) = \76(1; —c)— g=s(r=1)
Therefore for a configuration ¢ such that xi(c) = 1, and any time
[t| < T, we know that |ve(t)] < 1 and x.(t) € B(x), so that the only

obstacles acting on the flow are those in B(x) (at least when &7 < T').

Then, one can give for f. the following explicit formula,

N

it = BN ST R [ denen ol Tt ) + o)

N’ B(x)N N
N>0

(3.5)

From now on, we shall replace the flow 77! by the flow T{ . The result

will be the same thanks to the reversibility of this (Hamiltonian) flow.

The rescaled cutoffed potential V. has &7 as range (more precisely
it is constant on B(0,£7)¢ and therefore the corresponding force is 0
on this set). It means that the scatterer ¢; has no influence on the
flow whenever the light particle is outside its protection disk B(¢;,e™).
Therefore, among the obstacles ¢ € ¢ N B(x), we distinguish between
those influencing the motion of the light particle and the others. Indeed
we call “external”(up to time ) the obstacles ¢ € ¢ N B(x) such that

: 2
013225 |ze(s) —¢| > &7, (3.6)
and “internal” all the others. Then we decompose a given configuration
cy of B(z)N in the following way,

Cny = ap U bQ, (37)

where ap is the set of all external obstacles and bg is the set of all
internal ones.

Realizing then that
TéN = T}iQa xi(ew) = xi(bg) (3.8)
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(in fact xp is the characteristic function of those configurations for
which no obstacle is internal at time 0), we get

folt,m,v) = e HelBl IZ /

Q>0

P
X Z M—E/ dap y(q the ap are external and the bg are internal ¢)
P’ B(x P

P>0

xx1(ap Ubg) fo(Ty, Ubg (75 0)) + ¢(e)
= Z Be / dbger=IT(Pol Xl(bQ)X({ the bg are internal})
Q! Jpw)e

(T, (20)) + (). (3.9
The factor e=#<I7(®@)l where T (bg) is the tube (at time ¢) defined by
Ttbo) = {y e Bla), 350l - amy(ell <=7 (10)

arises from the integration over dap which has been performed ex-
plicitely.

Note that
X({ the by are internal}) = X({bQ C T(bQ)}). (3.11)

Note also that when yx;(bg) = 1, the length of the curve (zp,(5))sef0,1
is not larger than ¢ (since the velocity of the particle is bounded by 1),
and therefore one has

[T (bg)| <2te”. (3.12)

We now set
wlbo)=x({ba e Bl Vii<izQ B-yl=2ef)
(3.13)

Note that x9 is the characteristic function of the set of configurations
¢ for which there is no overlapping of the protection disks of any pair
of internal scatterers of B(x).

Then, we can prove the

Lemma 3.2: [fv €]z, 1], one has

2
37

/ —Ma|7~ bg)| ({bQ C T(bQ)})X1X2(bQ)de > 1 — 99(5)
(3.14)

Q>0
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Note however that yz(cy) = 0 with a large probability (when we
consider all the scatterers in the ball B(x) and not only the internal
ones).

Proof of Lemma 3.2: We consider 4/ <~ and compute

Q
[5 — Z e He |B (=) 'u_s/ X({EIZ,] € [17Q]7 bzvb] € T(bQ)

5 Q! Jwye

and  |b; — b;| < w’}db@. (3.15)

Then: 20 © )
—1
< S erelB@ e X\ 70

<2, IR

></ X({bl,bz € T(bg) and |by — by| < 25wl})de. (3.16)
B(x)?

Noting that

V(b1,ba € T(bg)) < x(by € Tlbs...bg)) + x(ba € T(bs .. bg)) (3.17)
since

by ¢ T(bs...bg),ba & T(bs...bg) = T(bg)="T(bs...bg),

we can write

1 I
< LS ol 1 / / /
2 Z (Q =2)! Jp@e—=2JeeBw) JereB(a)

Q>2

(X(61 €T (bs...bg))+x(by € T(b3...bQ))> X({|bl—62| < 25”’})de

Q '
<Y emrelBO (Q’“‘_f 2 /B( . [T (bs...bn)|dbs . ..dbg |B(0,2")).
Q>2 P/ B(@)e

Then, if we restrict the integration over the set for which yi(bg) = 1,
we bound the above integral by:

I < C(T)e' =2, (3.18)

The lemma is then a consequence of this estimate when v = ~. O

For a given configuration bg € B(z)? such that y;ya2(bg) = 1 and
such that the b;’s are internal for = 1...Q), we define

xs(bg) = X({bQ, Vi=1...0, xgé(B(bi,ew)) is connected in [0, 7] })
(3.19)
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In other words, x3 is the characteristic function of the set of config-
urations for which there is no recollisions (up to time t) of the light
particle with a given obstacle.

According to the previous analysis (and in particular Lemma 3.1

and 3.2), we can replace in (2.7) the quantity f. by f.. defined in the
following way,

f(t:z;v

T ({ by © T(bo) )

Q>0

x m(bQ)fo(TgQ)(x,v)de. (3.20)

However, instead of considering fs we shall analyze, for the moment,

the behavior of f. defined by

f. (t,x,0) = e 2tHes’ Z / {bQ C T(bQ)})
Q>0
X x1x2X3(bg) fO(TéQ)(x,v)de. (3.21)
Note that
f <t (3.22)
A typical trajectory for a configuration of scatterers which is such

that x1v2xs = 1 (and such that the b; are internal for : = 1...@Q) can
be visualized in fig. 1.

Fig. 1
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We say that the light particle performs a collision with the scatterer
b; when it enters into its protection disk B(b;,¢7). Note that for a well
behaving configuration described here, the light particle moves freely
between two separated collisions. During the collision with the obstacle
b; (i-e. for the times ¢ such that |zp,(t) — b;| < &7), the dynamics is
that of a particle moving in the potential \75( —b;) and can be computed
“almost” exactly (see for instance [C]).

For such a trajectory, one can define, for each obstacle b; € bg
(1 = 1...Q), the time ¢; of the first (and unique because x5 = 1)
entrance in the protection disk B(b;,c"), and the (unique) time ¢! > ¢,
when the light particle gets out of this protection disk. We also define
the impact parameter p;, which is the (algebraic) distance between b;
and the straight line containing the straight trajectory followed by the
light particle immediately before ¢; (see fig. 1).

We now are in a position to perform the change of variables which
is the crucial part of this section. We first note that, because of the
symmetry with respect to by ...bg of the expression inside the integral

(3.21), one has

fs(t,:z:,v) — 6—275#557 ZM?/

(o) de X1X2X3(bQ)
Q>0 v

xx({bQ C T(bQ)})X({tl <l < < tQ})fO(Tgé(x,v)). (3.23)
We now use the change of variables (which depends of ¢, x,v,e and )
Z :bg = {pi i}, (bg). (3.24)

This mapping is indeed well-defined on the set I' C B(z)% of “well-
ordered” configurations by constituted of (internal) scatterers satisfy-

ing the property x1x2x3(bg) = 1.

The variables {p;, ti}?zl satisfy then the constraints
0§t1<t2<"'<t@§t, (325)
and
Vi=1,..,0, lpi| < &7. (3.26)
We now give the explicit way of finding the inverse mapping Z~!. Let
a sequence {pi,ti}?zl satisfying (3.25) and (3.26) be given. We build
a corresponding sequence of obstacles g = (31.. 89 and a trajectory

(£(s),v(s)) inductively. Suppose that one has been able to define the
obstacles ;.. ;-1 and a trajectory (£(s),v(s)) up to the time ¢,_;.
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We then define the trajectory between times t;_; and ¢; as that of the
evolution of a particle moving in the potential \75( — B;—1) with initial
datum at time ¢;_; given by (£(¢;—1),v(t;—1)). Then, 7/_; > t,_4 is
defined to be the first time of exit of the trajectory from the protection
disk of ;_;. Finally 3, is defined to be the only point at distance " of
£(t;) and (algebraic) distance p; from the straight line which is tengent
to the trajectory at the point £(¢;).

Note that for a given sequence {p;, ti}?:p the sequence of obstacles
fq and the trajectory (£(s),v(s)) can always be constructed, but the
result of this construction sometimes gives rise to an unphysical tra-
jectory, which means that the sequence (3q is not in the range I' of the
mapping Z. For instance the trajectory described in fig. 2 delivers var-
ious inconsistencies leading to such a sequence (g, namely &£(s) enters
into the protection disk of 4 for 73 < s < t4 (i.—e. there is recollision),
B2 overlaps (5 (13 > t3), and s belongs to the tube spanned by £(s)
for s € [{,12] (we call that interferences).

Fig. 2

It is however clear that Z is a diffeomorphism between I' and the
sequences {pi,ti}?zl satisfying (3.25), (3.26), and such that for all i =
2...Q, (with the convention ¢, = 0),

Bi ¢ Blx,e")U B(B1,27) U~ U B(Bi_1,28Y), (3.27)
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note that the condition 7/_; < ¢; is consequence of (3.27
1—1 q

i i inf — B> e 2
T L S R (3.28)
min  min inf  |&(s) — B;] > &7. (3.29)

=0...Q—1 j=i+2,.,Q 7/ <5<tig1

Note that condition (3.29) expresses the fact that the ¢ — th obstacle
cannot be inserted in the tube generated by the light particle before
the time of the first (and unique) entrance in the protection disk of
B; (what we call interference), while condition (3.28) eliminates the
possibility of recollisions. Conditions (3.27-29) are indeed satisfied by
the image of Z and ensure the admissibilty of the configurations (q
and the trajectory (£(s),v(s)).

Reminding that the modulus of the initial velocity of our light par-
ticle is 1, the Jacobian of the previous change of variables is also 1.

We now can write

t t t
fs(tvxvv): e 2 tnes ZM?/ dtl/ dt?'”/ dtQ
0 t1 to_

Q>0

[onf o
Wizt sea izt @iz 15-o)> 20
X X({ min  min inf  [£(s) — 5| > 5”})

i=1...Q j=14+2,...,Q TJISSSt]+1

o{ iy min it 66— 3512 7)) (€00

1=0...Q -1 j=1+2,...,Q TiISSStl‘+1
(3.30)

The main point in the above representation is that the unphysical tra-
jectories eliminated by the characteristic functions in the right hand
side of eq. (3.30) are indeed negligible in the limit ¢ — 0 (at least for
suitable values of v). More precisely, we can prove the

Proposition 3.1: For v €]12,1[, one has

t t t
fs(tvxvv): 6—275#557 ZM?/ dtl/ dt?'”/ dtQ
0 t1 to_

Q>0

/_ﬂ o /_ dp--- /_ dpq Jo(E(1),v(1)) + ¢(e). (3.31)

Y
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Before proving Proposition 3.1, which is the central part of our proof,
we conclude the proof of Theorem 2.1.
We make the change of variables

{piti=1,..0 = {0i}i=1,..0, (3.32)

where 6; is the angle of the scattering produced by the i—th obstacle
(see fig. 1). The Jacobian determinant of this change of variables is

given by HZ LB (0:) = HZ ) 22’ respectively. Here B. ., is the cross

section associated to the rescaled cutoffed potential V.. Introducing
the cross section B., of the unrescaled cutoffed potential V. (see def.

(1.2)), we have BEW = ¢ B., and therefore,

fe(t,z,v) = e 2tnee Z/,L/dtl/dtQ /

Q>0

T T - Q
/_ 0, / by / chHBs,wwi)fo(f(t),v(t))+so<e>. (3.33)

We denote by ¢; the angle > /_, 0; (with the convention ¢, = 0), and
use the convention tg = 0, {g4y1 = t. Then, the following estimate

holds:

—(z+ Z Ry, (v) (tigr — 1)) < Q7. (3.34)

Note also that Ry, (v) = v(t) except when t €]tg, 75][.

A tedious exercice of classical mechanics based on the energy con-
servation shows that [t; — 7/| < Ce.

Using this estimate and the fact that fo lies in W, we obtain:

Jelt,av) — e2tmest Ny "R /dt1 / dtQ/ df; - - /deQ

Q>0

Q

HBE,W( i) fo(x ZRM( v) (tigr — 1), Ry (v ))‘

=1

_ . 21 e £7)9
e Y Q! o !
Q>0 )

_275#«557 ZQQ/ dtl/ dtz / dtQ(Qlusg’V)Q

Q>0 up t 567tQ 1

<o)yt et (3.35)
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Finally, we get

f(t z, U = 7 2tue" 1ZM / dty-- / dtQ/ db- - / d@Q

Q>0

HBM ) fo x+ZR¢l (tigr — i), Ryg(v)) + ¢(e).  (3.36)
Notmg that

5/ d@Bm(H):/ dp=2¢, (3.37)

™ —e
we see that the series expansion in the right hand side of (3.36) (which
is obviously converging) is nothing else than h. , in the form of the serie
solution (obtained by perturbing around the loss term) to eq.(2.6).

On the other hand %.,. > 0 and according to the conservation of

mass,
/hEW drdv = /fo drdv.

Then, according to (3.22), f., f- and he~ have the same asymptotic
behavior in L*(L}. ) as ¢ — 0, so that (2.7) is proven. O

Proof of Proposition 3.1: We put t, = 0, 0y = 0, + = [y and
begin by estimating the probability of overlapping of two successive
scatterers (3;, B;41 (including the beginning of the trajectory ¢ = 0).

We have
A.=e€ —2tu557 Z/“LE / dtl/ dty- - /

Q>1

/ d,01/ dpa- - / d/JQZX {W 52+1|<25W})
< 50 [ dtl/ . /

Q>1

ey ey ey Q-1
/ dﬂl/ dﬂz"'/ dPQZX({tHl_tiSC@W})
—e7 —e7 —e7 =0

21 A
< (e 2tme 7 e 4e-t Qe
2@

<O (3.38)
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Then , we prove that other types of overlappings as well as interferences
have small probability. We estimate the quantity

D= ety p? / dtl/ dty- - /

Q>1

/_ dpy /_ d,oz---/_ﬂ d,oQZ Z {ﬁj € Uselr, tl+1[B(§(s),25”)}).

1=0 j=142
(3.39)
It is clear that if we show that D, is vanishing with ¢, we also have
proven that conditions (3.27) and (3.29) can be removed in (3.30).
We have D, = D; + Dz, where

MEE”ZME/dtI/dtQ / dtQ/ d,ol/ dpy- - / dpo

Q>1

Q-1 Q
Z X({ﬁj € USE]ti,ti+1[B(§(S)72€W)})X({d(0i+1+‘ ATl 2 55})’
1=0 j=142
(3.40)
and
e~ 2tuee’ Z/% / dtl/ dty- - / dtQ/ d,01/ dpy- - / dpg
Q>1
Q-1 Q
Z X({ﬁj S USE]ti,ti+1[B(§(S)72€W)})X({d(0i+1+‘ A ) < 55})7
1=0 j=u42
(3.41)
where
d(l’,Z*) — inf |$ _ k|7 (342)

kEZ,k#£0

and 6; are the scattering angles introduced in (3.32). We first estimate
D!
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|

Fig. 3

QO

a>egd

According to fig. 3, we see that the integral on ¢; can be restricted
to a set A of measure at most 167° (for £ small enough).

Then, we can write

Dl < 3 (2,572 Q2

Q>1
t t t t
><165”‘5/ dty- / dtj_l/ dtjpq-- / dto
0 tji—2 i+l tg-1
< e 16770 (20, 27)0 Q e < C(T)e™ =379, (3.43)
- et (@—-Dt~
Furthermore:
D? < g7 2tnest (e 1)° 7ral(9 7rd(9--- 7ral(9 B (01) B (00)
e —= Q’ 1 2 Q Dey\V1) ... DeAyVUQ
Q-1 Q
DI X({d(9i+1‘|‘""|‘91—177TZ*)§55})
1=0 j=142
XX({WHZ% for some k:i—l—l...j—l}). (3.44)

Note that the last characteristic function can be introduced because if
for k=141,..,7—1 we had [0;] < 30> then we would have |0;01 +
RTINS 3
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Introducing the set:

Zg:{—Q,—Q+1,.. 1,1,2 Q} (3.45)

we can write

S Qt . Y\Q ™ ™
D? < em?thes Z MQB sup sup / dfiiq-- / df;_4
QJ- -

! . ..
Q>1 Q 1=0,..,Q—1 j=i+2,.., T P

BEW(QH—I) Bew(‘gj—l)

27 T 2
{052 <P 2 51 a0
Using estimate (A.1) of the appendix :
B..(0) < C|g)~(1+1/9) (3.47)
we get )
32 (f) < CetTr|gm e (3.48)

Using the change of variable @ = 0,41 +---40;_;, and keeping in mind
that s > 2, we get

21 1. Y@
D < gT2ines 27( e <) Q' sup sup

Q>1 Q! i=0,..,Q—1 j=i4+2,..,Q
[r+ed -
X SUP/ dO C &t (=)~ (141/s)
1€zl Jin—ed 20
_ . 2t pe e ~
<2e 2t pe Y Z %Qn/z S5+
Q>1
< O(T) 0, (3.49)

Combining estimate (3.49) with (3.43), and optimizing ¢, we finally
obtain:

D. < O(T)T=19/4, (3.50)

Thus it remains to prove that the set of configurations of scatterers

yielding recollisions (namely satisfying (3.28)) is also negligible in the

limit. To this purpose, we introduce the quantity I. = I! + I?, where

e 303 3 / dtl/ iy /

Q>0 =1 j=142

[ o[ e | dﬂ@X({ inf |§<s>—@»|sw}
_eY _eY —eY TiS85t+1
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X({sinozjkg% ‘v’k:i...j—l}, (3.51)

Q@ t t t
152 — o 2tpee” ZM§Z Z / dtl/ dtz“‘/ dtg
0 t tg_1

Q>0 i=1 j=i+2

/ dﬂl/ dﬂz'"/ dPQX({ ,inf [E(s) — B Sﬂ}
—eY P P T]SSSt]+1

X({sinozjkz%for some k:i...j—l}, (3.52)

and v €]0,1[ will be chosen later on. Here ;. denote the absolute
values of the angles between the outgoing velocities u; = v(7}) and
ur = v(7]) after the j—th and the k—th collisions respectively. Note
that sin oy is small when the collision is grazing (i.—e. when ajy is

close to 0), but also when the angle o is close to .

In order to evaluate I! we first observe that if sin oy, < % for all
kE=1i...5—1 (and if there is a recollision), then |0, — 7| < &” for some
r=1...7. Indeed the light particle must escape from the cone C (see
fig.4) to return (when looking bacwards in time) in the protection disk
of 3;. This is clearly not possible if aj; < % Vk=1...7—1 (see
fig.4).

o

Fig. 4
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Therefore,

/_sv dpy /_6” dpy- - - /_f” dpo ({10 — 7] < &}, (3.53)

But

Kis

/d,okx({wk C <)) = 25/ 40 B.,(0) < O, (3.54)

T—e¥
since away from 6 = 0, the cross section B, is bounded uniformly in

e (Cf. Appendix).
Then,

Q
[51 S 6—27,‘#5 Y C Z %QS@I{—U—W S C€2W+(1+U)—3‘ (355)
Q>1 ’

We now evaluate /2. We have

Q Q Jj-1 . t t
152 < e 2tpe e’ ZM§Z Z Z/ dtl/ dtz“‘/ dtQ
0 t to_1

/ dp1/ dﬂz'"/ dPQX({ ,_inf [&(s) — B Sﬂ}
—eY P P T]SSSt]+1

X X({ sin oy > %} (3.56)

To estimate the above integrals, we fix all the variables {tl}lel and

{p}%,, except tp41. Thus, everything is fixed but the length of the
interval I described by the particle during its free flight between the
k—th and (k + 1)-th collision (see fig. 5).
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Fig. 5

By a simple geometrical argument, we argue that the integral over
tr+1 is restricted over an interval of measure at most 8 (¢77"). Then,

Q
[62 S e_zt“5 g7 Z MQ?’ t(Q—l) R YV S C(T) 6w—u—4(1—w)
(3.57)
Optimizing v in (3.55), (3.57) we finally obtain
L<Ce™F, (3.58)

which concludes the proof. 0

Remark 3.1: Note that if f; is only essentially bounded we can
integrate against a test function and use Liouville’s Theorem to get an
estimate like eq. (2.7), but in the sense of L' weak only.

Remark 3.2: Note that only velocities of modulus 1 appear in eq.
(2.6) so that h.. a well as fy can be considered as an L' function on
R? x S1. On the contrary, for the approximated problems, f. and fo
must be considered as functions defined on R? x R2

Remark 3.3: We observe that eq. (2.8) is an evolution equation
for the probability density associated to a particle performing random
jumps in the velocity variable at random Markov times. On the con-
trary, the original system is Hamiltonian, the only stochasticity being
that of the positions of the scatterers (and the initial state distributed
according to fy). The change of variables (3.24) outlines explicitely
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that the Poisson distribution of the scatterers induces a distribution of
the instants and angles of collisions which, due to the recollisions, is
neither independent nor Markov. The long tail memory is however lost
in the limit. Notice, in addition, that the intensity of the process asso-
ciated to eq. (2.6) (namely p.), is diverging in the limit. This is indeed
the effect of the grazing collisions. We control this from the point of
view of the equation, asserting that the sequence h., . converges to f in
a suitable weak sense. It would be interesting to get a more detailed
control from the point of view of the stochastic processes.

Remark 3.4: Comparing our proof with that in [G] we underline
that, in our case, the range of the interaction is diverging in the limit.
This forces us to give an explicit bound on the sets defined by (3.27),
(3.28) and (3.29).

Remark 3.5: We underline that also in the linear case a notion
of propagation of chaos can be established. Consider k independent
test particles evolving in our random medium. Suppose also that the
k particles are, at time zero, independently distributed according to
the probability density f¥(z1,vi...25,05) = Hle fo(zi,v;). Then the
probability density at time ¢ is defined by:

fEt xy, 00 ap, o) = EF [fé“(Tc_’;’L(xl, U1 2, k)], (3.59)

where T! is the Hamiltonian flow for the k-particle system. Even
though the particles do not interact for a fixed ¢, the quantity f*(¢)
does not factorize any longer because two particles can interact with
the same obstacle. However in the limit ¢ — 0, such a factorization
property (propagation of chaos) is recovered, thanks to our analysis.
Indeed the same argument proving that recollisions are negligible also
shows that the probability for a given particle to hit an obstacle visited
by another particle is vanishing.

Appendix

Proposition A.1: We denote by B.., and B the cross sections
relative to the potentials V. (see (1.2)) and V(x) = |x|™* respectively.
Then, the following estimates hold for all v €]0,1].

VO €] —m, [, sup Bs,(0) < OO (A1)
5<1

VO €] —mom[,  B(O) <O (A.2)
Finally, B. converges towards B when 6 — 0 for a.e. 0 €] — 7, 7[.
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Proof of proposition A.1: We recall the formula giving the scat-
tering angle # in term of the impact parameter p for a particle moving
in the potential V(r) =r—7°,

+oo d
)= -2 [ L (4.3)
Y
where )
p 2
E-I-E:l, (A4)

and the corresponding formula when V' is replaced by the cutoffed
potential Vj:

A A
d d
0(p) =2 -2 Al L (AB)
P 1-2 S 1o (22
where ,

p 2 2
P e G A.6
2 + (ri As) ’ (A.6)

and A=46"1(A>1).
Putting u = £ in (A.3) and v = 2 in (A.5), we get

z sin ¢
=2 l———)d A.
/0 ( u—l— %u5_1> qb? ( 7)

after the following change of variables

u? Estimz . A.
+2(p) ¢ (A.8)

0 = 2/ (1 . %) do, (A.9)
arcsin(%) v+ e i

o2 42 ((%)s - (%)5> _ sin? ¢, (A.10)

Analogously:

[ME]

where:

Then, we compute
s—2

% . s—1 L ‘|‘3ue
dg_ 2 / (smqbsu {(S_l)s—liusg_g}dgb, (A.11)
0 s

%_ps—l—l u_l_p_ssus—l)Q 1—|—S ;
and (for |p| < A),

dy’ 2 sin ¢ s vt sil + s U;j)
d_: s+1 . S5 .5—1)\2 (S_l)ﬁ_s dqb
P P arcsin(4) (U + e v ) 1 + 5 —

L
A p

[ME]
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so that

| do’

L. DESVILLETTES AND M. PULVIRENTI

—2{1— H;W} (A.12)

s—2
2[5 i s=1 5+ 5
- / %{S_(S_l)%}dqﬁ
ps—l— arcsin(;%) (U + v?® ) 1 + s Ups

i_s(%) -

It is clear (using for example Lebesgue s theorem of dominated conver-

gence) that & - converges (for any p) towards 2 When A — 400 (note

that p < A When A is large enough).

Note now that if p > 1 A, then

do’ 255 1 1
— > (Cp . A14
| z- G gy 2 0p (A.14)
On the other hand, if p<i 3 A, then
do’ 2 z sin ¢ s v
—————— do. A5
Tz L e (A.15)
Using the estimates
2
v—l——vs 1<—S (A.16)
p° v
and
v > inf(1/2,87Y% p), (A17)
we get
do’ 1,1 1
|—| > inf(—(=—)+!, —87171/s), (A.18)
dp 4s 2p 4s
Finally, we have for all p < A,
d@’ o
A9
and the same estimate holds for % by passage to the limit.
Moreover, observing that v < sin ¢, we see that
s—1
p< S —_d¢
p? arcsin( &) v+ rFe Chen
C
< (A.20)

1—|—,05'
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Combining (A.19) and (A.20), we get

d
By (0') = 200 < C 1071, (A.21)
and the same estimate holds for B(9).
We also know that Bs., tends towards B everywhere because its

inverse mapping converges everywhere. [J

Proposition A.2: Let s > 2, v €]0,1], and fo € L=(R2 x S!).
Then the solution hs. of eq. (2.9) converges (up to extraction of a
subsequence) in L™ weak * towards a solution f of eq. (2.12) in the
Jollowing weak sense: for any ¢ € D([0, T[xR2 x S1),

T
—/ / f(t,x,v) {8tqb—|—v-vxqb}dvdxdt—/ fo(z,v) @(0, x,v)dvdx
0 R2 J St R2 Js1

:/0 /R PRAGEER) /W(qb(tvvaé’(U))—Qb(taw,v))B(H)devdxdt.
B (A.22)

Proof of proposition A.2: According to the maximum princi-
ple, the sequence hs., converges (up to extraction of a subsequence) in
L>=([0,T] x R* x S') weak * towards a function f, so that the left—hand
side of eq. (2.6) (integrated against the test function @) converges to
the left-hand side of eq. (A.22).

Using estimates (A.1), (A.2) and the convergence a.e. of Bs., towards
B, we get the convergence in L'([0,7] x R* x S') (strong) of

as(t,x,v) = /_7r (p(t, x, Ro(v)) — o(t,x,v)) Bs~(0) dO (A.23)

Kis

towards

a(t,z,v) = /_7r (p(t, x, Ro(v)) — o(t,x,v)) B(8) do. (A.24)

Kis

Finally, the right-hand side of eq. (2.6) (integrated against the test
function ¢) converges to the right-hand side of eq. (A.22). O
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