
THE LINEAR BOLTZMANN EQUATION FORLONG-RANGE FORCES: A DERIVATION FROMPARTICLE SYSTEMSL. DESVILLETTES AND M. PULVIRENTIAbstract. In this paper we consider a particle moving in a ran-dom distribution of obstacles. Each obstacle generates an inversepower law potential "sjxjs , where " is a small parameter and s > 2.Such a rescaled potential is truncated at distance "
�1, where
 2]0; 1[ is suitably large. We assume also that the scatterer den-sity is diverging as "�d+1, where d is the dimension of the physicalspace.We prove that, as "! 0 (the Boltzmann-Grad limit), the prob-ability density of a test particle converges to a solution of the linear(uncuto�ed) Boltzmann equation with the cross section relative tothe potential V (x) = jxj�s.1. IntroductionIt is well known how interesting and challenging is the problem ofobtaining a complete and rigorous derivation of the kinetic transportequations starting from the basic Hamiltonian particle dynamics.The �rst result in this direction was obtained many years ago by G.Gallavotti who showed how to derive the linear Boltzmann equation(with hard{sphere cross section) starting from the dynamics of a singleparticle in a random distribution of �xed hard scatterers in the so{called Boltzmann{Grad limit. This paper (Cf. [G]), unfortunatelyunpublished and not widely known, is technically simple but has adeep content. In particular it is proved there for the �rst time thatit is perfectly consistent to obtain an irreversible stochastic behavioras a limit of a sequence of deterministic Hamiltonian systems (in arandom medium). Later on this result was improved (see [S1], [S2] and[BBuS]).More recently, the Boltzmann{Grad limit in the case when thedistribution of scatterers is periodic (and not random) has also beenconsidered in [BoGoW] (see also the references therein). Note that inthis case, the result is totally di�erent.It is worthwile to mention also the well known Lanford's result forshort times (see [L]) for the fully nonlinear Boltzmann equation, derived1



2 L. DESVILLETTES AND M. PULVIRENTIfrom a system of hard spheres. The reader will �nd in [CIP] (Ch. 4)additional results, references and further comments on the matter.The Boltzmann equation for long-range potentials is more singularbecause of the presence of grazing collisions making meaningless thegain and loss terms of the collision operator taken separately. Indeedthe collision term makes sense only by compensation (see e.g. [Gr], [A],[De], [Gou]).In this paper we address the problem of a rigorous derivation of thelinear Boltzmann equation for a long-range, inverse power law inter-action along the following lines. We consider the behavior of a testparticle under the action of a random distribution of obstacles. Given" > 0 a small positive parameter, we assume that the density of dis-tribution of scatterers is suitably diverging as well as the range of theinteraction. More precisely a given scatterer localized in c(2 Rd) gen-erates a potential of the form:�V"(x� c) = V"(x� c" ); (1:1)where the unrescaled potential V" is given by:V"(x) = 1jxjs when jxj < "�1+
 ;and V"(x) = "�s(
�1) when jxj � "�1+
; (1:2)where 
 2]0; 1[ is a parameter to be �xed. This is an inverse power lawpotential, cuto�ed at large distances.The distribution of scatterers is a Poisson law of intensity �" ="�d+1�, where � > 0 is �xed and d is the dimension of the physicalspace.What we are considering here is nothing else than the usual Boltzmann-Grad limit for the Lorentz model (see e.g. [G], [BBS]..), with in addi-tion a simultaneous divergence of the range of the potential allowing torecover the grazing collisions in the limit. In this framework we provethat the probability density associated to the test particle converges,in the limit " ! 0, to a solution of the uncuto�ed linear Boltzmannequation with a cross section given by the inverse power law potentialjxj�s.We remark that one would really like to prove the same result di-rectly for an uncuto�ed potential V (x) = jxj�s, giving, in this way, acomplete derivation of the linear Boltzmann equation in terms of thebasic Hamiltonian system. This problem however, presents deep addi-tional di�culties which will be discussed in some details later on. Thusthe present result can be viewed as a �rst step in this direction.



LINEAR BOLTZMANN EQUATION 3The proof we give here is very direct and is in the same spirit as thatin [G]. Roughly speaking we basically show that a typical trajectoryof the test particle is going to perform a random 
ight with in�nitelymany collisions. However, for a �xed angle � > 0, only a �nite numberof collisions have a scattering angle larger that �. In other words, mostof the collisions are grazing.The plan of the paper is the following. In Section 2 we introducethe model, the scaling and establish the result. In Section 3 we giveits proof. Comparing this proof with that of [G], we �nd an additionaldi�culty. Due to the fact that the range of the potential is in�nitein the limit, the test particle interacts typically with in�nitely manyobstacles, so that the set of bad con�gurations of scatterers, preventingthe Markov property of the limit (such as the set of con�gurationsyielding recollisions) must be estimated explicitely, while for a short-range potential a simple dimensional argument is su�cient.Finally, some useful estimates on the cross section are given in theAppendix. 2. Notation, results and commentsConsider a Poisson distribution of �xed particles (obstacles or scat-terers) in Rd (d = 2 or 3 is the dimension of the physical space), ofparameter �" = "�(d�1)�, where � > 0 is �xed and " 2]0; 1]. Moreexplicitely, the probability distribution of �nding exactly N obstaclesin a bounded measurable set � � Rd is given by:P (dcN ) = e��"j�j�N"N !dc1 : : : dcN ; (2:1)where c1 : : : cN = cN are the positions of the scatterers and j�j denotesthe Lebesgue measure of �.The expectation with respect to the Poisson repartition of parameter�" will be denoted by E " .Consider a �xed 
 2]0; 1[ and the cuto�ed (rescaled) potential (1.1).Let T tc;";
 be the Hamiltonian 
ow generated by the distribution of ob-stacles c associated with this potential. Namely, T tc;";
(x; v) = (xc(t); vc(t))is the solution of the problem:_xc(t) = vc(t);_vc(t) = �F"(xc(t); c); (2:2)xc(0) = x; vc(0) = v;



4 L. DESVILLETTES AND M. PULVIRENTIwith �F"(x; c) = �Xc2c r�V"(x� c): (2:3)The rescaled cuto�ed potential �V" explicitely reads as�V"(x) = "sjxjs when jxj < "
;and �V"(x) = "�s(
�1) when jxj � "
: (2:4)We shall also denote this 
ow by T tc when no confusion can occur. No-tice that the sum (2.3) is almost surely �nite since the Poisson distribu-tion gives probability one to the locally �nite sets. Due to the discon-tinuity of �F"(x; c), the solution of Eq. (2.2) might not be de�ned if thetrajectory became tangent to the union of spheres [c2c fx= jx�cj = "
g.However it is easy to show that this event happens for a zero-Poissonmeasure set of obstacles, and it can therefore be disregarded. Finally,the quantity T tc;";
(x; v) is de�ned for all t 2 R.From now on we shall consider in detail only the two{dimensionalcase (d = 2).For a given initial datum f0 2 L1 \ L1 \C(Rd�Rd), we can de�nethe quantity f"(t; x; v) = E" [f0(T�tc;"(x; v))]: (2:5)In this paper we are interested in the asymptotic behavior of f" when"! 0 (and jvj = 1 for the sake of simplicity). In this analysis, we areled to consider the following initial value problem, associated to thelinear cuto�ed Boltzmann kernel,(@t+v�rx)h";
(t; x; v) = �Z ��=�� B";
(�)�h";
(t; x;R�(v))�h";
(t; x; v)�d�;h";
(0; x; v) = f0(x; v): (2:6)Here, R� denotes the rotation of angle � and B";
 is the cross sectionassociated to a relative velocity of modulus one and to the unrescaledcuto�ed potential V" given by (1.2).Our main result is the following:Theorem 2.1: Assume that s > 2 and 
 2]1517; 1[. Let the initialdatum f0 belong to L1 \ W 1;1(R2 � R2). Then, for any T > 0, thequantity f" de�ned in (2.5) satis�eslim"!0 jjf"j[0;T ]�R2�S1 � h";
jjL1([0;T ];L1(R2�S1)) = 0: (2:7)



LINEAR BOLTZMANN EQUATION 5The proof of this theorem is presented in section 3.The proof of the transition from the particle system we are consider-ing to the uncuto�ed Boltzmann equation is thus reduced to a partialdi�erential equation problem, namely that of the convergence when" ! 0 of the solution of the cuto�ed linear Boltzmann equation (2.6)towards the solution of the uncuto�ed linear Boltzmann equation. In-deed, we prove in Appendix A (proposition A.2) that h";
 ! f (inL1([0; T ]�R2�S1) weak �, up to extraction of subsequences), wheref is a solution (in the weak sense precised in proposition A.2) of(@t + v � rx)f(t; x; v) = �Z ��=�� B(�)�f(t; x;R�(v))� f(t; x; v)�d�;f(0; x; v) = f0(x; v); (2:8)and B is the (singular) cross section corresponding to a relative velocityof modulus one and to the potential V (x) = jxj�s.Remark 2.1: The limit we are considering here can be seen in adi�erent way, namely in terms of microscopic variables. Consider aPoisson distribution of scatterers of parameter �" in Rd and a lightparticle under the action of the unrescaled potential Pc2c V"(x � c).Consider gc(t; x; v) = f0(S�tc;"(x; v)), where S�tc;" is the 
ow generatedby the obstacles c. Scale hyperbolically space and time as for thehydrodynamical limit:gc" (t; x; v) = "�dgc("�1t; "�1x; v): (2:9)Considering also the density �" = "d�1� (for a given �xed positive �),and taking the expectation (denoted by E�" ), we getg" � E�"gc" = f";so that g" also converges to f .Remark 2.2: It would be more appropriate, from a physical pointof view, to consider more general distributions of obstacles than thePoisson distribution, for instance the Gibbs distribution at a giventemperature. We note however that this distribution is asymptoticallyequivalent to the Poisson distribution in the limit we are consideringand that our approach works for other non{equilibrium distributions,not singular with respect to the free gas case we have considered ex-plicitely.Remark 2.3: On the basis of the present result one could hope togive a complete derivation of the linear Boltzmann equation for long-range forces by proving that the motion of the test particle under the



6 L. DESVILLETTES AND M. PULVIRENTIaction of (a random distribution of) obstacles generating uncuto�edlong-range forces is asymptotic to that investigated here. Unfortu-nately, even though the long-range tails add a very small contributionto the total force for each typical scatterer distribution, the non-grazingcollisions generate an exponential instability making the two trajecto-ries very di�erent. Thus the completion of the proof requires new ideasand techniques.Remark 2.4: The assumption s > 2 is used in appendix A (moreprecisely just after formula (A.13)). We think it is probably possibleto relax this assumption, but we shall not try to do so.3. ProofsThis section is devoted to the proof of Theorem 2.1. In the followingwe shall denote by B(x;R) = fy 2 R2= jx� yj < Rg the disk of radiusR. We �x an arbitrary time T > 0 and consider our dynamical problemfor times t such that jtj < T . We shall also use the simpli�ed notationB(x) = B(x; T ). Finally we shall denote by C any positive constant(possibly depending on the �xed parameters, but independent of "),anf by ' = '(") any positive function vanishing with ".We start by giving a straightforward probability estimate:Lemma 3.1: Assume that 
 2]12; 1[, and for a given �xed x 2 R2,consider the indicator�1(cN) = �(�cN 2 B(x)N ; 8i = 1 : : : N; jci � xj > "
�): (3:1)Then, E" (�1) � 1 � '("): (3:2)Proof of lemma 3.1: We computeE"(1 � �1(cN)) =XN�0 e��" jB(x)j �N"N !ZB(x)N �(�9i 2 [1; N ]; ci 2 B(x; "
)�) dcN�XN�0 e��" jB(x)j �N"N ! N Zc12B(x;"
) Zc2;::;cN2B(x) dcN�XN�1 e��" jB(x)j �N"(N � 1)! �"2
 jB(x)jN�1



LINEAR BOLTZMANN EQUATION 7� �" � "2
 : (3:3)We now come back to the proof of theorem 2.1. Given a con�gurationc of scatterers such that �1(c) = 1; the energy of a light particle ofcoordinates (x; v) in the phase space satis�es the following identity(recall that jvj = 1),H(x; v; c) � 12 jvj2 +Xc2c ~V"(x� c) = 12 ; (3:4)where ~V"(x� c) = �V"(x� c)� "�s(
�1).Therefore for a con�guration c such that �1(c) = 1; and any timejtj � T , we know that jvc(t)j � 1 and xc(t) 2 B(x), so that the onlyobstacles acting on the 
ow are those in B(x) (at least when "
 < T ).Then, one can give for f" the following explicit formula,f"(t; x; v) = e��"jB(x)jXN�0 �N"N ! ZB(x)N dcN�1(cN)f0(T�tcN (x; v)) + '("):(3:5)From now on, we shall replace the 
ow T�tcN by the 
ow T tcN . The resultwill be the same thanks to the reversibility of this (Hamiltonian) 
ow.The rescaled cuto�ed potential �V" has "
 as range (more preciselyit is constant on B(0; "
)c and therefore the corresponding force is 0on this set). It means that the scatterer ci has no in
uence on the
ow whenever the light particle is outside its protection disk B(ci; "
).Therefore, among the obstacles c 2 c \ B(x), we distinguish betweenthose in
uencing the motion of the light particle and the others. Indeedwe call \external"(up to time t) the obstacles c 2 c \B(x) such thatinf0�s�t jxc(s)� cj > "
; (3:6)and \internal" all the others. Then we decompose a given con�gurationcN of B(x)N in the following way,cN = aP [ bQ; (3:7)where aP is the set of all external obstacles and bQ is the set of allinternal ones.Realizing then thatT tcN = T tbQ; �1(cN) = �1(bQ) (3:8)



8 L. DESVILLETTES AND M. PULVIRENTI(in fact �1 is the characteristic function of those con�gurations forwhich no obstacle is internal at time 0), we getf"(t; x; v) = e��"jB(x)jXQ�0 �Q"Q! ZB(x)Q dbQ�XP�0 �P"P ! ZB(x)P daP �(� the aP are external and the bQ are internal �)��1(aP [ bQ) f0(T taP[bQ(x; v)) + '(")=XQ�0 �Q"Q! ZB(x)Q dbQe��"jT (bQ)j�1(bQ)�(� the bQ are internal�)�f0(T tbQ(x; v)) + '("): (3:9)The factor e��"jT (bQ)j, where T (bQ) is the tube (at time t) de�ned byT (bQ) = �y 2 B(x); 9s 2 [0; t]; jy � xbQ(s)j < "
�; (3:10)arises from the integration over daP which has been performed ex-plicitely.Note that�(� the bQ are internal�) = �(�bQ � T (bQ)�): (3:11)Note also that when �1(bQ) = 1, the length of the curve (xbQ(s))s2[0;t]is not larger than t (since the velocity of the particle is bounded by 1),and therefore one has jT (bQ)j � 2 t "
: (3:12)We now set�2(bQ) = �(�bQ 2 B(x)Q; 8 1 � i < j � Q; jbi � bjj > 2 "
�):(3:13)Note that �2 is the characteristic function of the set of con�gurationsc for which there is no overlapping of the protection disks of any pairof internal scatterers of B(x).Then, we can prove theLemma 3.2: If 
 2]23; 1[, one hasXQ�0 �Q"Q! ZB(x)Q e��"jT (bQ)j�(�bQ � T (bQ)�)�1�2(bQ) dbQ � 1 � '("):(3:14)



LINEAR BOLTZMANN EQUATION 9Note however that �2(cN) = 0 with a large probability (when weconsider all the scatterers in the ball B(x) and not only the internalones).Proof of Lemma 3.2: We consider 
0 � 
 and computeI" =XQ�0 e��" jB(x)j �Q"Q! ZB(x)Q �(�9i; j 2 [1; Q]; bi; bj 2 T (bQ)and jbi � bjj � 2 "
0�dbQ: (3:15)Then: I" �XQ�2 e��" jB(x)j �Q"Q! Q (Q� 1)2�ZB(x)Q �(�b1; b2 2 T (bQ) and jb1 � b2j � 2 "
0�)dbQ: (3:16)Noting that�(b1; b2 2 T (bQ)) � �(b1 2 T (b3 : : : bQ)) + �(b2 2 T (b3 : : : bQ)) (3:17)sinceb1 =2 T (b3 : : : bQ); b2 =2 T (b3 : : : bQ) ) T (bQ) = T (b3 : : : bQ);we can writeI" � 12XQ�2 e��" jB(x)j �Q"(Q� 2)! ZB(x)Q�2 Zc12B(x)Zc22B(x)��(b1 2 T (b3 : : : bQ))+�(b2 2 T (b3 : : : bQ))��(�jb1�b2j � 2 "
0�)dbQ�XQ�2 e��" jB(x)j �Q"(Q� 2)! ZB(x)Q�2 jT (b3 : : : bN)jdb3 : : : dbQ jB(0; 2 "
0)j:Then, if we restrict the integration over the set for which �1(bQ) = 1,we bound the above integral by:I" � C(T ) "
+2
0�2: (3:18)The lemma is then a consequence of this estimate when 
 0 = 
.For a given con�guration bQ 2 B(x)Q such that �1�2(bQ) = 1 andsuch that the bi's are internal for i = 1 : : : Q, we de�ne�3(bQ) = �(�bQ; 8i = 1 : : : Q; x�1bQ(B(bi; "
)) is connected in [0; t] �):(3:19)



10 L. DESVILLETTES AND M. PULVIRENTIIn other words, �3 is the characteristic function of the set of con�g-urations for which there is no recollisions (up to time t) of the lightparticle with a given obstacle.According to the previous analysis (and in particular Lemma 3.1and 3.2), we can replace in (2.7) the quantity f" by f̂", de�ned in thefollowing way,f̂"(t; x; v) =XQ�0 �Q"Q! ZB(x)Q e��"jT (bQ)j�(�bQ � T (bQ)�)��1�2(bQ) f0(T tbQ)(x; v)dbQ: (3:20)However, instead of considering f̂" we shall analyze, for the moment,the behavior of ~f" de�ned by~f"(t; x; v) = e�2 t�" "
XQ�0 �Q"Q! ZB(x)Q �(�bQ � T (bQ)�)��1�2�3(bQ) f0(T tbQ)(x; v)dbQ: (3:21)Note that ~f" � f̂": (3:22)A typical trajectory for a con�guration of scatterers which is suchthat �1�2�3 = 1 (and such that the bi are internal for i = 1 : : : Q) canbe visualized in �g. 1.
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LINEAR BOLTZMANN EQUATION 11We say that the light particle performs a collision with the scattererbi when it enters into its protection disk B(bi; "
). Note that for a wellbehaving con�guration described here, the light particle moves freelybetween two separated collisions. During the collision with the obstaclebi (i.-e. for the times t such that jxbQ(t) � bij � "
), the dynamics isthat of a particle moving in the potential �V"(��bi) and can be computed\almost" exactly (see for instance [C]).For such a trajectory, one can de�ne, for each obstacle bi 2 bQ(i = 1 : : : Q), the time ti of the �rst (and unique because �3 = 1)entrance in the protection disk B(bi; "
), and the (unique) time t0i > tiwhen the light particle gets out of this protection disk. We also de�nethe impact parameter �i, which is the (algebraic) distance between biand the straight line containing the straight trajectory followed by thelight particle immediately before ti (see �g. 1).We now are in a position to perform the change of variables whichis the crucial part of this section. We �rst note that, because of thesymmetry with respect to b1 : : : bQ of the expression inside the integral(3.21), one has~f"(t; x; v) = e�2 t �" "
 XQ�0�Q" ZB(x)Q dbQ �1�2�3(bQ)��(�bQ � T (bQ)�)�(�t1 < t2 < � � � < tQ�) f0(T�tbQ(x; v)): (3:23)We now use the change of variables (which depends of t; x; v; " and 
)Z : bQ ! f�i; tigQi=1(bQ): (3:24)This mapping is indeed well{de�ned on the set � � B(x)Q of \well{ordered" con�gurations bQ constituted of (internal) scatterers satisfy-ing the property �1�2�3(bQ) = 1.The variables f�i; tigQi=1 satisfy then the constraints0 � t1 < t2 < � � � < tQ � t; (3:25)and 8i = 1; ::; Q; j�ij < "
: (3:26)We now give the explicit way of �nding the inverse mapping Z�1. Leta sequence f�i; tigQi=1 satisfying (3.25) and (3.26) be given. We builda corresponding sequence of obstacles �Q = �1 :: �Q and a trajectory(�(s); �(s)) inductively. Suppose that one has been able to de�ne theobstacles �1 :: �i�1 and a trajectory (�(s); �(s)) up to the time ti�1.



12 L. DESVILLETTES AND M. PULVIRENTIWe then de�ne the trajectory between times ti�1 and ti as that of theevolution of a particle moving in the potential �V"(� � �i�1) with initialdatum at time ti�1 given by (�(ti�1); �(ti�1)). Then, � 0i�1 > ti�1 isde�ned to be the �rst time of exit of the trajectory from the protectiondisk of �i�1. Finally �i is de�ned to be the only point at distance "
 of�(ti) and (algebraic) distance �i from the straight line which is tengentto the trajectory at the point �(ti).Note that for a given sequence f�i; tigQi=1, the sequence of obstacles�Q and the trajectory (�(s); �(s)) can always be constructed, but theresult of this construction sometimes gives rise to an unphysical tra-jectory, which means that the sequence �Q is not in the range � of themapping Z. For instance the trajectory described in �g. 2 delivers var-ious inconsistencies leading to such a sequence �Q, namely �(s) entersinto the protection disk of �1 for � 03 < s < t4 (i.{e. there is recollision),�2 overlaps �3 (� 02 > t3), and �6 belongs to the tube spanned by �(s)for s 2 [� 01; t2] (we call that interferences).
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6Fig. 2It is however clear that Z is a di�eomorphism between � and thesequences f�i; tigQi=1 satisfying (3.25), (3.26), and such that for all i =2 : : : Q, (with the convention t0 = 0),�i =2 B(x; "
) [B(�1; 2 "
) [ � � � [ B(�i�1; 2 "
); (3:27)



LINEAR BOLTZMANN EQUATION 13(note that the condition � 0i�1 � ti is consequence of (3.27))mini=1:::Q minj=i+2;:::;Q inf� 0j�s�tj+1 j�(s)� �ij � "
; (3:28)mini=0:::Q�1 minj=i+2;:::;Q inf� 0i�s�ti+1 j�(s) � �jj � "
: (3:29)Note that condition (3.29) expresses the fact that the i� th obstaclecannot be inserted in the tube generated by the light particle beforethe time of the �rst (and unique) entrance in the protection disk of�i (what we call interference), while condition (3.28) eliminates thepossibility of recollisions. Conditions (3.27{29) are indeed satis�ed bythe image of Z and ensure the admissibilty of the con�gurations �Qand the trajectory (�(s); �(s)).Reminding that the modulus of the initial velocity of our light par-ticle is 1, the Jacobian of the previous change of variables is also 1.We now can write~f"(t; x; v) = e�2 t�" "
 XQ�0�Q" Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q�(�8i = 1 : : : Q; �i =2 B(x; "
)�)�(�8i; j = 1 : : : Q; i 6= j; j�i��jj > 2 "
�)��(� mini=1:::Q minj=i+2;:::;Q inf� 0j�s�tj+1 j�(s) � �ij � "
�)��(� mini=0:::Q�1 minj=i+2;:::;Q inf� 0i�s�ti+1 j�(s)� �jj � "
�) f0(�(t); �(t)):(3:30)The main point in the above representation is that the unphysical tra-jectories eliminated by the characteristic functions in the right handside of eq. (3.30) are indeed negligible in the limit "! 0 (at least forsuitable values of 
). More precisely, we can prove theProposition 3.1: For 
 2]1517; 1[, one has~f"(t; x; v) = e�2 t�" "
 XQ�0�Q" Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q f0(�(t); �(t)) + '("): (3:31)



14 L. DESVILLETTES AND M. PULVIRENTIBefore proving Proposition 3.1, which is the central part of our proof,we conclude the proof of Theorem 2.1.We make the change of variablesf�igi=1;:::;Q ! f�igi=1;:::;Q; (3:32)where �i is the angle of the scattering produced by the i{th obstacle(see �g. 1). The Jacobian determinant of this change of variables isgiven by QQi=1 �B";
(�i) = QQi=1 d�id�i respectively. Here �B";
 is the crosssection associated to the rescaled cuto�ed potential �V". Introducingthe cross section B";
 of the unrescaled cuto�ed potential V" (see def.(1.2)), we have �B";
 = "B";
 and therefore,~f"(t; x; v) = e�2 t�" "
 XQ�0�Q Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ ��� d�1 Z ��� d�2� � � Z ��� d�Q QYi=1 B";
(�i) f0(�(t); �(t)) + '("): (3:33)We denote by  j the angle Pji=1 �i (with the convention  0 = 0), anduse the convention t0 = 0, tQ+1 = t. Then, the following estimateholds: j�(t)� (x+ QXi=0 R i(v) (ti+1 � ti))j � Q"
: (3:34)Note also that R Q(v) = �(t) except when t 2]tQ; � 0Q[.A tedious exercice of classical mechanics based on the energy con-servation shows that jti � � 0i j � C "
.Using this estimate and the fact that f0 lies in W 1;1, we obtain:���� ~f"(t; x; v)� e�2 t �" "
 XQ�0�Q Z t0 dt1� � �Z ttQ�1 dtQ Z ��� d�1� � � Z ��� d�QQYi=1 B";
(�i)f0(x+ QXi=0 R i(v) (ti+1 � ti); R Q(v))����� C e�2 t �" "
 XQ�0Q"
 (2 t �" "
)QQ!+e�2 t �" "
 XQ�0 2QZ t0 dt1 Z tt1 dt2� � �Z tsup(t�5 "
 ;tQ�1) dtQ(2�" "
)Q� C(T ) "2
�1 + C "2
�1: (3:35)



LINEAR BOLTZMANN EQUATION 15Finally, we get~f"(t; x; v) = e�2 t � "
�1XQ�0�Q Z t0 dt1� � �Z ttQ�1 dtQ Z ��� d�1� � � Z ��� d�QQYi=1 B";
(�i)f0(x+ QXi=0 R i(v) (ti+1 � ti); R Q(v)) + '("): (3:36)Noting that " Z ��� d�B";
(�) = Z "
�"
 d� = 2 "
; (3:37)we see that the series expansion in the right hand side of (3.36) (whichis obviously converging) is nothing else than h";
 in the form of the seriesolution (obtained by perturbing around the loss term) to eq.(2.6).On the other hand h
;" � 0 and according to the conservation ofmass, Z h";
 dxdv = Z f0 dxdv:Then, according to (3.22), ~f", �f" and h";
 have the same asymptoticbehavior in L1t (L1x;v) as "! 0, so that (2.7) is proven.Proof of Proposition 3.1: We put t0 = 0, �0 = 0, x = �0 andbegin by estimating the probability of overlapping of two successivescatterers �i; �i+1 (including the beginning of the trajectory i = 0).We have A" = e�2 t�" "
 XQ�1�Q" Z t0 dt1 Z tt1 dt2� � � Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q Q�1Xi=0 �(�j�i � �i+1j � 2 "
�)� e�2 t�" "
 XQ�1�Q" Z t0 dt1 Z tt1 dt2� � � Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q Q�1Xi=0 �(�ti+1 � ti � C "
�)� C e�2 t �" "
 XQ�1 2�" "
Q(Q� 1)! tQ�1Q"
� C "5
�2: (3:38)



16 L. DESVILLETTES AND M. PULVIRENTIThen , we prove that other types of overlappings as well as interferenceshave small probability. We estimate the quantityD" = e�2 t�" "
 XQ�1�Q" Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q Q�1Xi=0 QXj=i+2�(��j 2 [s2]ti;ti+1[B(�(s); 2 "
)�):(3:39)It is clear that if we show that D" is vanishing with ", we also haveproven that conditions (3.27) and (3.29) can be removed in (3.30).We have D" = D1" +D2" ; whereD1" = e�2 t�" "
 XQ�1�Q" Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQ Z "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�QQ�1Xi=0 QXj=i+2�(��j 2 [s2]ti;ti+1 [B(�(s); 2 "
)�)�(�d(�i+1+� � �+�j�1; �Z�) � "��);(3:40)andD2" = e�2 t�" "
 XQ�1�Q" Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQ Z "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�QQ�1Xi=0 QXj=i+2�(��j 2 [s2]ti;ti+1 [B(�(s); 2 "
)�)�(�d(�i+1+� � �+�j�1; �Z�) � "��);(3:41)where d(x;Z�) = infk2Z;k 6=0 jx� kj; (3:42)and �i are the scattering angles introduced in (3.32). We �rst estimateD1" .
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α > ε Fig. 3According to �g. 3, we see that the integral on tj can be restrictedto a set � of measure at most 16 "
�� (for " small enough).Then, we can writeD1" � e�2 t�" "
 XQ�1(2�" "
)QQ2�16 "
�� Z t0 dt1� � � Z ttj�2 dtj�1 Z ttj+1 dtj+1� � � Z ttQ�1 dtQ� e�2 t �" "
 16 "
��XQ�1(2�" "
)QQ2 tQ�1(Q� 1)! � C(T ) "4
�3��: (3:43)Furthermore:D2" � e�2 t�" "
 XQ�1 (�" t)QQ! Z ��� d�1 Z ��� d�2� � �Z ��� d�Q �B";
(�1) : : : �B";
(�Q)�Q�1Xi=0 QXj=i+2�(�d(�i+1 + � � �+ �j�1; �Z�) � "��)��(�j�kj � �2Q for some k = i+ 1 : : : j � 1�): (3:44)Note that the last characteristic function can be introduced because iffor k = i + 1; ::; j � 1 we had j�kj � �2Q , then we would have j�i+1 +� � �+ �j�1j � �2 .



18 L. DESVILLETTES AND M. PULVIRENTIIntroducing the set:Z�Q = � �Q;�Q+ 1; : : : ;�1; 1; 2; : : : ; Q�; (3:45)we can writeD2" � e�2 t�" "
 XQ�1 (2 t �" "
)QQ! Q3 supi=0;::;Q�1 supj=i+2;::;QZ ��� d�i+1� � � Z ��� d�j�1�B";
(�i+1)2 "
 : : : �B";
(�j�1)2 "
��(�d(�i+1 + � � � + �j�1; �Z�Q) � "��)�(�j�i+1j � �2Q�): (3:46)Using estimate (A.1) of the appendix :B";
(�) � C j�j�(1+1=s); (3:47)we get �B";
(�)2 "
 � C "1�
 j�j�(1+1=s): (3:48)Using the change of variable � = �i+1+ � � �+�j�1, and keeping in mindthat s � 2, we getD2" � e�2 t�" "
 XQ�1 (2 t �" "
)QQ! Q4 supi=0;::;Q�1 supj=i+2;::;Q� supl2Z�QZ l �+"�l ��"� d�C "1�
 ( �2Q)�(1+1=s)� 2 e�2 t�" "
XQ�1 (2 t �" "
)QQ! Q11=2 "�+1�
� C(T ) "9=2(
�1)+�: (3:49)Combining estimate (3.49) with (3.43), and optimizing �, we �nallyobtain: D" � C(T ) "(17
�15)=4: (3:50)Thus it remains to prove that the set of con�gurations of scatterersyielding recollisions (namely satisfying (3.28)) is also negligible in thelimit. To this purpose, we introduce the quantity I" = I1" + I2" ; whereI1" = e�2 t �" "
 XQ�0 �Q" QXi=1 QXj=i+2 Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q�(� inf� 0j�s�tj+1 j�(s)� �ij � "
�



LINEAR BOLTZMANN EQUATION 19�(� sin�jk � "�4 8k = i : : : j � 1�; (3:51)I2" = e�2 t �" "
 XQ�0 �Q" QXi=1 QXj=i+2 Z t0 dt1 Z tt1 dt2� � �Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q�(� inf� 0j�s�tj+1 j�(s)� �ij � "
��(� sin�jk � "�4 for some k = i : : : j � 1�; (3:52)and � 2]0; 1[ will be chosen later on. Here �jk denote the absolutevalues of the angles between the outgoing velocities uj = v(� 0j) anduk = v(� 0k) after the j�th and the k�th collisions respectively. Notethat sin�jk is small when the collision is grazing (i.{e. when �jk isclose to 0), but also when the angle �jk is close to �.In order to evaluate I1" we �rst observe that if sin�jk � "�4 for allk = i : : : j � 1 (and if there is a recollision), then j�r��j < "� for somer = 1 : : : j. Indeed the light particle must escape from the cone C (see�g.4) to return (when looking bacwards in time) in the protection diskof �i. This is clearly not possible if �jk < "�2 8k = i : : : j � 1 (see�g.4).
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20 L. DESVILLETTES AND M. PULVIRENTITherefore,I1" � e�2 t �" "
 XQ�0�Q" QXi=1 QXj=i+2 j�1Xk=i Z t0 dt1 Z tt1 dt2� � � Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � � Z "
�"
 d�Q �(fj�k � �j < "�g): (3:53)ButZ d�k �(fj�k � �j < "�g) = 2 "Z ���"� d� B";
(�) � C "1+�; (3:54)since away from � = 0, the cross section B";
 is bounded uniformly in" (Cf. Appendix).Then,I1" � e�2 t �" "
 CXQ�1 (2 t �" "
)QQ! Q3"1+��
 � C "2
+(1+�)�3: (3:55)We now evaluate I2" . We haveI2" � e�2 t �" "
 XQ�0�Q" QXi=1 QXj=i+2 j�1Xk=i Z t0 dt1 Z tt1 dt2� � � Z ttQ�1 dtQZ "
�"
 d�1 Z "
�"
 d�2� � �Z "
�"
 d�Q �(� inf� 0j�s�tj+1 j�(s)� �ij � "
���(� sin�jk � "�4 �: (3:56)To estimate the above integrals, we �x all the variables ftlgQl=1 andf�lgQl=1, except tk+1. Thus, everything is �xed but the length of theinterval L described by the particle during its free 
ight between thek{th and (k + 1){th collision (see �g. 5).
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υ Fig. 5By a simple geometrical argument, we argue that the integral overtk+1 is restricted over an interval of measure at most 8 ("
�� ). Then,I2" � e�2 t�" "
 XQ�0 (2 "
�")Q(Q� 1)! Q3 t(Q�1) 8 "
�� � C(T ) "
���4(1�
)(3:57)Optimizing � in (3.55), (3.57) we �nally obtainI" � C " 7
�62 ; (3:58)which concludes the proof.Remark 3.1: Note that if f0 is only essentially bounded we canintegrate against a test function and use Liouville's Theorem to get anestimate like eq. (2.7), but in the sense of L1 weak only.Remark 3.2: Note that only velocities of modulus 1 appear in eq.(2.6) so that h";
 a well as f0 can be considered as an L1 function onR2� S1. On the contrary, for the approximated problems, f" and f0must be considered as functions de�ned on R2�R2.Remark 3.3: We observe that eq. (2.8) is an evolution equationfor the probability density associated to a particle performing randomjumps in the velocity variable at random Markov times. On the con-trary, the original system is Hamiltonian, the only stochasticity beingthat of the positions of the scatterers (and the initial state distributedaccording to f0). The change of variables (3.24) outlines explicitely



22 L. DESVILLETTES AND M. PULVIRENTIthat the Poisson distribution of the scatterers induces a distribution ofthe instants and angles of collisions which, due to the recollisions, isneither independent nor Markov. The long tail memory is however lostin the limit. Notice, in addition, that the intensity of the process asso-ciated to eq. (2.6) (namely �"), is diverging in the limit. This is indeedthe e�ect of the grazing collisions. We control this from the point ofview of the equation, asserting that the sequence h
;" converges to f ina suitable weak sense. It would be interesting to get a more detailedcontrol from the point of view of the stochastic processes.Remark 3.4: Comparing our proof with that in [G] we underlinethat, in our case, the range of the interaction is diverging in the limit.This forces us to give an explicit bound on the sets de�ned by (3.27),(3.28) and (3.29).Remark 3.5: We underline that also in the linear case a notionof propagation of chaos can be established. Consider k independenttest particles evolving in our random medium. Suppose also that thek particles are, at time zero, independently distributed according tothe probability density fk0 (x1; v1 : : : xk; vk) = Qki=1 f0(xi; vi). Then theprobability density at time t is de�ned by:fk" (t; x1; v1 : : : xk; vk) = E " [fk0 (T�tc;"(x1; v1 : : : xk; vk))]; (3:59)where T�tc;" is the Hamiltonian 
ow for the k-particle system. Eventhough the particles do not interact for a �xed ", the quantity fk" (t)does not factorize any longer because two particles can interact withthe same obstacle. However in the limit " ! 0, such a factorizationproperty (propagation of chaos) is recovered, thanks to our analysis.Indeed the same argument proving that recollisions are negligible alsoshows that the probability for a given particle to hit an obstacle visitedby another particle is vanishing.AppendixProposition A.1: We denote by B";
 and B the cross sectionsrelative to the potentials V" (see (1.2)) and V (x) = jxj�s respectively.Then, the following estimates hold for all 
 2]0; 1[.8�0 2]� �; �[; sup�<1 B�;
(�0) � C j�0j�1�1=s; (A:1)8� 2]� �; �[; B(�) � C j�j�1�1=s: (A:2)Finally, B" converges towards B when � ! 0 for a.e. � 2]� �; �[.



LINEAR BOLTZMANN EQUATION 23Proof of proposition A.1: We recall the formula giving the scat-tering angle � in term of the impact parameter � for a particle movingin the potential V (r) = r�s,�(�) = � � 2Z +1r� � drr2q1� �2r2 � 2rs ; (A:3)where �2r2� + 2rs� = 1; (A:4)and the corresponding formula when V is replaced by the cuto�edpotential V�:�0(�) = 2Z A� � drr2q1 � �2r2 � 2Z Ar0� � drr2q1� �2r2 � ( 2rs � 2As ) ; (A:5)where �2r02� + ( 2rs� � 2As ) = 1; (A:6)and A = �
�1(A � 1).Putting u = �r in (A.3) and v = �r in (A.5), we get� = 2Z �20 �1 � sin�u+ s�s us�1� d�; (A:7)after the following change of variablesu2 + 2 (u� )s = sin2 �: (A:8)Analogously: �0 = 2Z �2arcsin( �A )�1 � sin�v + s�s vs�1� d�; (A:9)where: v2 + 2�(v� )s � ( 1A)s� = sin2 �: (A:10)Then, we computed�d� = 2�s+1 Z �20 sin� sus�1(u+ s�s us�1)2 �(s� 1) 1s�1 + s us�2�s1 + s us�2�s � s� d�; (A:11)and (for j�j � A),d�0d� = 2�s+1 Z �2arcsin( �A ) sin� s vs�1(v + s�s vs�1)2 �(s� 1) 1s�1 + s vs�2�s1 + s vs�2�s � s� d�



24 L. DESVILLETTES AND M. PULVIRENTI�2�1� 11 + s�s ( �A )s�2�; (A:12)so thatjd�0d� j = 2�s+1 Z �2arcsin( �A ) sin� s vs�1(v + s�s vs�1)2 �s� (s� 1) 1s�1 + s vs�2�s1 + s vs�2�s � d�+ 2 s�s ( �A )s�21 + s�s ( �A)s�2 : (A:13)It is clear (using for example Lebesgue's theorem of dominated conver-gence) that d�0d� converges (for any �) towards d�d� when A! +1 (notethat � � A when A is large enough).Note now that if � � 12 A, thenjd�0d� j � 2 s� s (12)s�2 11 + 2s s 22�s � C ��s: (A:14)On the other hand, if � � 12 A, thenjd�0d� j � 2�s+1 Z �2arcsin( 12 ) sin� s vs�1(v + s�s vs�1)2 d�: (A:15)Using the estimates v + s�s vs�1 � 2 sv ; (A:16)and v � inf(1=2; 8�1=s �); (A:17)we get jd�0d� j � inf( 14 s( 12 � )s+1; 14 s 8�1�1=s): (A:18)Finally, we have for all � � A,jd�0d� j � C1 + �s+1 ; (A:19)and the same estimate holds for d�d� by passage to the limit.Moreover, observing that v � sin�, we see that�0 � 2 s�s Z �2arcsin( �A ) vs�1v + s�s vs�1 d�� C1 + �s : (A:20)



LINEAR BOLTZMANN EQUATION 25Combining (A.19) and (A.20), we getB�;
(�0) = d�d�0 (�0) � C j�0j�1�1=s; (A:21)and the same estimate holds for B(�).We also know that B�;
 tends towards B everywhere because itsinverse mapping converges everywhere.Proposition A.2: Let s > 2, 
 2]0; 1[, and f0 2 L1(R2x � S1v).Then the solution h�;
 of eq. (2.9) converges (up to extraction of asubsequence) in L1 weak � towards a solution f of eq. (2.12) in thefollowing weak sense: for any � 2 D([0; T [�R2x� S1v ),�Z T0 ZR2 ZS1 f(t; x; v)�@t�+v�rx��dvdxdt�ZR2 ZS1 f0(x; v)�(0; x; v)dvdx= Z T0 ZR2 ZS1 f(t; x; v) Z ���(�(t; x;R�(v))� �(t; x; v))B(�) d�dvdxdt:(A:22)Proof of proposition A.2: According to the maximum princi-ple, the sequence h�;
 converges (up to extraction of a subsequence) inL1([0; T ]�R2�S1) weak � towards a function f , so that the left{handside of eq. (2.6) (integrated against the test function �) converges tothe left{hand side of eq. (A.22).Using estimates (A.1), (A.2) and the convergence a.e. of B�;
 towardsB, we get the convergence in L1([0; T ]�R2� S1) (strong) ofa�(t; x; v) = Z ���(�(t; x;R�(v))� �(t; x; v))B�;
(�) d� (A:23)towardsa(t; x; v) = Z ���(�(t; x;R�(v))� �(t; x; v))B(�) d�: (A:24)Finally, the right{hand side of eq. (2.6) (integrated against the testfunction �) converges to the right{hand side of eq. (A.22).Acknowledgment: The support of the TMR contract "AsymptoticMethods in Kinetic Theory", ERB FMBX CT97 0157 is acknowledged.References
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