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Microreversible collisions for polyatomic gases
and Boltzmann’s theorem

J.-F. BOURGAT *, L. DESVILLETTES *%, P. LE TALLEC *, ***
and B. PERTHAME *, ****

ABSTRACT. — We prove an H-Theorem for two Boltzmann models describing general polyatomic gases with
the help of only one additional degree of freedom. The kinetic density is then represented by a function
S x5 6,1, 120, xeR®, veR® and Te R where 12 represents the internal energy of the particles. The first
model is due te Borgnakke-Larsen, the second one is deduced from a monoatomic gas in higher dimension.
Because of the nonlinearity of the microscopic collision process, the classical proof has to be adapted. These
models are then illustrated by several numerical examples.

1. Introduction

The ciassical Boltzmann equation is used to describe perfect rarefied gases. In this
model, the density function f satisfies

D 0+ 2.V [=Q(N)

where Q is the quadratic Boltzmann operator.

This model is restiricted to monoatomic gases which for engineering applications is not
sufficient. For pollution of satellites or re-entry problems, polyatomic gases have to be
considered and Monte-Carlo simulations are usually performed using the Borgnakke &
Larsen [1975] model, or variants. Qur aim in this paper is to write in a general form
and to prove the fundamental H-Theorem for this model, that is the inequality

) f Q) logf<0,

which guarantees that f will approach its equilibrium repartition when advancing in time.
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238 1-F. BOURGAT et dl.

Moreover, we wish to introduce other models which also satisfy this inequality. The
main characteristic of this type of model is to describe the polyatomic gases by means of
the variables 120, x& R®, ve R® (the velocity of particles) and a single additional variable
I where, for later purposes, I? represents the internal energy of the particles. Then, in (1),
we take f=f(z, x, v, I). In the fluid limit such a model should also give (see [Cercignani,
[1988], [Vincent & Kruger, [1986]) the compressible Euler or Navier-Stokes equations
with an equation of state given by p=(y— 1) pe and where the whole interval ye(1, 5/3]
is reachable by an appropriate choice of a parameter in the model.

In the models below, Q depends on a parameter 8 (the number of additional degrees
of freedom of the gas) and we will obtain the relation

(3) = 8"'75
6+3

To obtain these values, several authors have proposed a collision operator for poly-
atomic gases, see for instance [Berroir, 1970]; [Bird, 1976]; [McCourt et al, 1990];
[Wiesen, 1991] and the teferences therein. Such models are physically correct but their
drawback is that they require several additional degrees of freedom, which leads to an
unacceptable memory storage in numerical applications. On the other hand, models
with only one degree of freedom are heuristic but cheaper. D. 1. Pullin [1978] and
1. Kuscer [1989] have proposed such models, based on physical considerations and follow-
ing the abstract formalism of E. M. Lifschitz & L. P. Pitaevskii [1981]. Here we will
generalize these models making them more precise (in particular parametrizing the
microscopic collision process) and show that another formalism is possible. We would
also like to mention the recent interest of several authors, Esteban & Perthame [1991],
Brun [1986], for inelastic collisions and simplified models with internal cnergy.

The main mathematical difficulty in treating models with one degree of freedom is
that the collision process is then nonlincar. Thus the classical proof of the H-Theorem
has to be adapted. For this purpose, we write the collision kernel in a microreversible
manner (which is not the case in the original paper [B & L, 1975]) and find an adequate
invariant measure.

The first section of this paper is devoted to the Rorgnakke-Tarsen model. In Section 2
and 3 we introduce another model, derived from a monoatomic gas in higher dimension,
for which we also prove the H-Theorem. In the Appendix we relate our theory to classical
Monte-Carlo schemes for solving the Boltzmann equation.

2. A meodel of Borgnakke-Larsen type

In this section we describe how the operator Q acts on the density f(z, x, v, I} in a
model proposed in [B & L, 1975]. The particles are supposed to have § internal degrees
of freedom, but § need not be an integer. We will first show where 3 enters in Q. Then
we will show that, at the microscopic level the collisions are reversible and satisfy some
symmetry properties. Finally we deduce the I-Theorem from some invariance property
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Moreover, we wish to introduce other models which also satisfy this inequality. The
main characteristic of this type of model is to describe the polyatomic gases by means of
the variables ¢ =0, xeR3, veR? (the velocity of particles) and a single additional variable
I where, for later purposes, I? represents the internal energy of the partictes. Then, in (1),
we take f=f(t, x, v, ). In the fluid limit such a model should also give (see [Cercignani,
[1988], [Vincent & Kruger, [1986]) the compressible Euler or Navier-Stokes equations
with an equation of state given by p=(y—1)pe and where the whole interval ye(1, 5/3]
is reachable by an appropriate choice of a parameter in the model.

In the models below, Q depends on a parameter & (the number of additional degrees
of freedom of the gas) and we will obtain the relation

6+5

® I

To obtain these values, several authors have proposed a collision operator for poly-
atomic gases, sce for instance [Berroir, 1970); [Bird, 1976); [McCourt ef al., 1990];
[Wiesen, 1991] and the references therein. Such models are physically correct but their
drawback is that they require several additional degrees of freedom, which leads to an
unacceptable memory storage in numerical applications. On the other hand, models
with only one degree of freedom are heuristic but cheaper. D. I. Pullin [1978] and
1. Kuscer [1989] have proposed such models, based on physical considerations and follow-
ing the abstract formalism of E. M. Lifschitz & L. P. Pitaevskii [1981]. Here we will
generalize these models making them more precise (in particular parametrizing the
microscopic collision process) and show that another formalism is possible. We would
also like to mention the recent interest of several authors, Esteban & Perthame [1991},
Brun [1986], for inelastic collisions and simplified models with internal energy.

The main mathematical difficulty in treating models with one degree of freedom is
that the collision process is then nonlinear. Thus the classical proof of the H-Theorem
has to be adapted. For this purpose, we write the collision kernel in a microreversible
manner (which is not the case in the original paper [B & L, 1975]) and find an adequate
invariant measure.

The first section of this paper is devoted to the Borgnakke-Larsen model. In Section 2
and 3 we introduce another model, derived from a monoatomic gas in higher dimension,
for which we also prove the H-Theorem. In the Appendix we relate our theory to classical
Monte-Carlo schemes for solving the Boltzmann equation.

2. A mode! of Borgnakke-Larsen type

In this section we describe how the operator QQ acts on the density f(¢, x, 2, I) in a
model proposed in [B & L, 1975]. The particles are supposed to have § internal degrees
of freedom, but 8 need not be an integer. We will first show where & enters in Q. Then
we will show that, at the microscopic level the collisions are reversible and satisfy some
symmetry properties. Finally we deduce the H-Theorem from some invariance property

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 13, N¢ 2, 1994

MICROREVERSIBLE COLLISIONS FOR POLYATOMIC GASES 239

of the measure defined through the cross-section in Q. This property is a consequence
of the microreversibility of the collisions.

2.1. THE MODEL

We consider the following model based on a simple repartition of the kinetic and
internal energy. As in the monoatomic case, the collision direction we S? is fixed and we
transform the vector (v, v,, I, I, , R) with v, T, € R3, 1, 1,20, r, Re[0, 1] by setting

|
4) et= Z|v—v* I>+12+12 =total energy,
49 g=uv— v, =relative velocity,
and by defining the post collision velocities (', v},) and energies (I', I}) by
(5) . v v, =vto,,
(6) g=v—v,=2Re{g2mg.0}/gl
(7) I2=r(1—-R*é?, I2=(1-r{(1—R?e*

The factors R and r determine the quantity of energy which is exchanged between
internal and kinetic energy and between the two internal energies, respectively.

We add the following definitions which, although unnecessary for the description of Q,
are useful in the resulting work; ¢, R’ €[0, 1]

{8) 12 +Ii=(1 —R'%e?,

9 P=¢(1-R%e?,

and we have the additional relations

{10) g:2R’e{g'—2cog’.m}/|g’|, EZ=(1-{1-R?%e.

Notice that it is always possible to define R’ by (8) and r' by (9) since 0<ST?+12 <2,
Moreover, in addition to the elementary conservation of momentum (5) we have the
following conservation of energy

1
(1D e’2=£ g PHI?+I =62

Now, we can introduce the corresponding collision operator

Q; (f)=j (f’f’* (II,II*j )a—l—ﬁ;)de* dI, @5 (r) drir; (R) dR do,
A %

with
A=R3x R, %[0, 1] x 82,
(12) P (N=[r(1-nNF?7Y, Y (R)=R*(1-R 1,
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240 J-F. BOURGAT et al.
(13) B:=B(e, R|g|, R|g.w|, I2¥{1—R?), Ii(l—r)(l—Rz), (1 —RZ)(12+Ii))>0.

As usual we have used the notation f=f(v, I), /" =f(", I'), f, =f (v, L)--.

The arguments of the collision cross-section B will turn out to be the quantitles
invariant under collisions. The practical forms of @; and \; given here are such that the
corresponding measure is invariant in the collision process.

We keep in mind that the term (IL/T'I,)*" is introduced to give the y-law in Euler
equations according to formula (3).

Notice that the general form of the equation above is close to that of [Pullin, 1978],
[Kuscer, 1989]. Only the parametrization differs.

Remarks. — 1) Variants are possible in the definition of Q, for example we could take
R, R'e[—1, +1]. The precise form of Q is not described in the paper [B & L, 1975]
which just describes a Monte-Carlo method implementing at a discrete level.

2) Here for simplicity we have restricted the dependance of B upon certain invariant
quantities. We could add v+v*, g.w@'/|g| 70 ® where @' denotes the space of vectors
orthogonal. Also, the positivity of B is certainly too strong for the sequel but this is the
usual assumption.

3) The collision term B, ¢; governs the kinetics of the collision process, hence the
viscosity of the underlying fluid. For example, the classical Variable Hard Sphere model
(VHS) associated to the viscosity law

u= KTl,’Z—u

will be obtained by setting
B=C|g|2u|g.mlRi+2m_

2.2. MICROREVERSIBILITY

We now set

T, (v v, L 1, r, O)=(2', v, I, I, r', RY),

s Ly

with o', v}, I', I}, r" and R’ as defined in (5)-(9).

s Lo

Folllowing the classical proof of the H-Theorem (see [Truesdell & Muncaster, 1580];
[Cercigriani, 1988]) thé first step is to obtain symmetry and inversibility properties for T,
These properties are more difficult to obtain here due to the fact that T, is not a linear
operator.

ProrosITION 1. — For any ®eS?, we have
() T, T,=Id,
(i)
€=e, 2|=Rlgl, R'g.o=-Rg.e, I?rY(1-R*=Fr(1-R?,
P2(1-r)(1-RH)=12(1-A(1-R?), (1-ROA*+I)=(1-R)P+12),
C(1=R) @ (r—D+rI2)= —(1 - R ('~ 1)+ T)

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 13, ne 2, 1994




240 I-F. BOURGAT et. al.
(13) B:=B{e, R|g|, R|g.m|, IPr(1—R3, Ii(lfr)(lfRz), (imRz)(IZ+I§))>0.

As usual we have used the notation f=7(v, I}, /" =f(2", I'), f,, =/ (v,, L)... _

The arguments of the collision cross-section B will turn out to be the quantities
invariant under collisions. The practical forms of @; and {; given here are such that the
corresponding measure is invariant in the collision process.

We keep in mind that the term (II/I'T,)* ! is introduced to give the y-law in Euler
equations according to formula (3}). -

Notice that the general form of the equation above is close to that of [Pullin, 1978],
[Kuscer, 1989]. Only the parametrization differs.

Remarks. — 1) Variants are possible in the definition of Q), for example we could take
R, R’e[—1, +1]. The precise form of Q is not described in the paper [B & L, 1975]
which just describes a Monte-Carlo method implementing at a discrete level.

2) Here for simplicity we have restricted the dependance of B upon certain invariant
quantities. We could add »+z*, g.0'/|g| t0 ® where @* denotes the space of vectors
orthogonal. Also, the positivity of B is certainly too strong for the sequel but this is the
usual assumption.

3) The collision term By, ¢, governs the kinetics of the collision process, hence the
viscosity of the underlying fluid. For example, the classical Variable Hard Sphere model
(VHS) associated to the viscosity law

H:KTI,Q.—G
will be obtained by setting
B=C|g|“|g.m|RH2“.

2.2. MICROREVERSIBILITY

We now set

T(n (7)5 U*, I; I*: v, R)=('U’5 'U:;:: I’: I:gu r’: R’),

with v/, v}, I, I}, ¥ and R’ as defined in (5)-(9).

Folllowing the classical proof of the H-Theorem (see [Truesdell & Muncaster, 1980];
[Cercigriani, 1988]) the first step is to obtain symmetry and inversibility properties for T,
These properties are more difficull to obtain here due to the fact that T, is not a linear
operator.

ProposiTioN 1. — For any ®eS?, we have
@) T, T,=Id,
(i)
e'=e, R’|g'|=Rig|, R'gy.0o=—-Rg.a, I'?¥ (1-R'2)=1%r(1—R2),
Z(A-r)1-R*)=LE1-n(1-R?), (1-RHI*+ID)=(1-R)H(*+13),
(I-RHP-D+rID)=—(1-RHA*(F - D+ 17
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(i) T,(vy, v, L. I 1—r, R)y=(v}, v, L, T, 1-r, R,
(iv) the collision invariants (i.c. the functions ¢ such that QO+, =o'+, for all
(o, r, R)) are given by
lof?

o (o, I)=v+g.v+u(7 +Iz), w velR £EeR3,

Proof of Proposition 1. — The conservation of energy in (ii) was already derived
in (11). We observe that the formulae (5), (8)-(10) defining T, ! are identical to the
formula (5)-(7) defining T, within the change of arguments. In other words, we have

w=T, " W) =T, (W) =T, (T, (),  Vw=(2, 7,, [ I, . R),

which is precisely {i). Next, we have

£'|=2Re, |g|=2R'e

which gives the second conservation in (ii). The third one is deduced from the identity

R
g.m.

g.0=—-2Reg.00f|g|=— =

The three following conservations in (ii) are easily deduced combining (7)-(9) and
(7)-(10). The last identity of (ii} can be obtained as follows. We multiply (9) by
(1—R*)(r—1) and (10) by (1—R?)r. If we add up the results, this yields

(1-RHT (r—D+r12)=e*(1-RH(A-RZ (r—7r).

The symmetry of this formula concludes (ii).

To check (iii) is also immediate. Finally, to prove (iv), we follow [C, 1988], [T & M,
1980]. We know that any function ¢ (v, I) which is invariant under the collision operator
T, reduces to the form given in (iv) as soon as we prove that, when (o, R, r) varies
in 8§2x[0, 1]%, then (', v, I', I,) takes all the possible values such that e =e
and »'+v,=v+to,. To do so, we choose an arbitrary (v', v, I', I,) with ¢'=¢ and

l [ l ' |

mz(_g_
|2|

g’ ). Classically, this gives

gl'
Fd

(assuming g/|g|#g’

>

g=ig'|(g—2g. wa)|g

and it remains to define R by

R=|g

[2e
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47 I-F. BOURGAT ef al.

o recover (6). Since ¢’ =e=1/2 |g’|, we have R in [0, 1]. Then we fix r using (7) and R’
ind #" using (8) and (9). With the above choice of (w, R, r) we have

(vl5 'U:k’ I’ Il r’ﬂ R’)___Tm (‘U: 1“*: I7 I*: r, R)'

3 Tyer

This concludes the proof of (iv) and of Propositien 1.

>.. 3. THE INVARIANT MEASURES

To conclude the fundamental properties of this model, it remains to find a measure
which is invariant under the collision process defined above.

ProrosITION 2. — For any B as in (13} and any 8> 0, the following measure is invariant
14) do=Bdvdo, IV dII," dl, @5 (r) dr s (R) dR.
i) other; words, do=doc’.
Proof of Proposition 2. — By construction, B'=B and, by Proposition 1 (ii), we have
Qs (N (I —RYF 2P 2 [ 2=[I2, (1~ RO [(1- ) 2 (1 - RAPA!
= s () (1= RZPTATC2I72
On the other hand, we have proved in Proposition 1 (ii) that

(1-R) |- D+r2|=(1-R?)

1?2 (" — D +r 12|
By division, Propasition 2 then reduces to the lemma
Lemma 3. — The collision process (4)-(10) satisfies

15) dA=|I*(r— D +ril|dvdv,dl* dlZ dr R* (1—-R*?dR _
=12 =)+ I | dv dI”? dIZ dr R (1~ R'%)? dR'=dA".

Proof of Lemma 3. — Standard algebraic manipulations lead to the identities
.
do dv* = Edgd(v+v*)

1
dg=|g|2d|g|dw=Elgidlglzdw

with w=g/|g| belonging to S?. Since v+v*=1'+3), it is enough to prove that the
measure

(16) (1-R2* |2 (r—1)+r12|R|g|d|g|? dwdR* dI* L dr
s invariant. Next, if we compute the jacobian I of the map
(|g|2, RZ, r, 12, Ii) — ([g |2, RZ, €%, (1-RH)I*r, 1 —RH(1—r)13),
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to recover (6). Since ¢'=e=1/2 |g'|, we have R in {0, 1. Then we fix r using (7) and R’
and # using (8) and (9). With the above choice of (w, R, r) we have

(@, v I, L 7, R)=T, (2, v, I, I, 7, R).

This concludes the proof of (iv) and of Proposition 1.

2..3. THE INVARIANT MEASURES

To conclude the fundamental properties of this model, it remains to find a measure
which is invariant under the collision process defined above.

ProrosiTioN 2. — For any B as in (13) and any 50, the following measure is invariant
(i4) do=Bdvdo, P~ dIE}" ' dl, @, (r) dr Y5 (R) dR.
In other words, do=dc’.
Proof of Proposition 2. — By construction, B'=B and, by Proposition 1 (ii), we have
Qs () (1 - R 2P 2L 2= r(1-R)PP27H (1 -0 (1 -RHP2T
=@ () (1-R2PT2IP721072,
On the other hand, we have proved in Proposition 1 (ii) that

I'2(F 1)+ r 2|

(1-RHP—1+rZ|=(1-=R?
By division, Proposition 2 then reduces to the lemma

Lemma 3. — The collision process (4)-(10) satisfies

(15) dA=|I%(r—1)+r12|dvdov, dI* dI2 dr R? (1—R?? dR
= T2 (" — 1)+ T2 | do' dut, dU* dI2 dr' R (1~ R™2)*dR' = dA".

Proof of Lemma 3. — Standard algebraic manipulations lead to the identities
1
dv dv™ = Edgd(v +o*)
2 1 2
dg=|g[*d|g|dw=|g|d|g dw

with w=g/|g| belonging to §%. Since v+v*=v"+u,, it is enough to prove that the
measure :

(16) (1—=R¥ PP (r—D)+rI;|R|g|d|g[* dwdR? dl* dI dr

is invariant. Next, if we compute the jacobian J of the map

5L R%, & (1-RHPr (1-R)(1-nIY,

(gl R% r 1510~ (g
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we gel
J=(1-R»?|E(r—D+r1Z|
This means that the measure in (16) can also be written
R|g{d|g|*dwdR?de* d[(1—R?)I? rdi(1-R¥)(1-n1Z].
By Proposition 1 (i}, the two last terms are clearly invariant. Also, since
e?=e?, |g'[?=4R%¢? and |g|* =4 R*?¢?, trivially we have
de* d|g|> dR?=de'* dlg | dr’2.
But R|g|=R’|g'|, dw=dw" (because w.o=w".m, and w.ot= —w, o). Combined with

Proposition 1 (ii), this proves that the measure (16) is invariant. Thus (15) is also invariant
proving Lermma 3.

Remark. — The introduction of 3 in the measure (14} is motivated by the next section
and the particular form of Q,. The collision process itself does not see particular values
of 6. In (14), the terms containing & could be entered in B, leading to the invariant
measure B dvdv, dI” dI7 dr R? (1 — R?) dR.

2.4. H-THEOREM

Classically, the properties collected above are sufficient to prove invariance properties
on the kernel Q; itself. Boltzmann’s theorem follows as well as does the characterisation
of the equilibrium. These results are given in the following theorem.

TurorREM 4. — Let B satisfy (13), then whenever those integrals are meaningful we have

. 1
an @ %@ V06 Divdi= | Qe 0, —0'—erldod
®3 xRy 4 RIxm,
(i1} Qs () log (f 1I' "5+ Do dl <0,
R xR,
(i) Qy(feg) =0 if and only if
(18) =X p—Iie*””_"P*“Z”szor some p, TeR,, ucR3.

eq ~ 8 T3 a2

Before proving this result, let us give some comments.

Remarks. — 1} An equilibrium like (18) is often used to describe dense polyatomic
gases (see [B, 1976]; [B & L, 1975]; [McC et al., 1990]; [V & K, 1986]). It is also used by
Deshpande [7] for numerical calculations.

2) The form (18) of the equilibrium generalizes the maxwellian. The choice of Ag in
(18} is performed so that

J (w0 (o)) fdedi=(p, pr pT,).
R xRy
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\ simple calculation then gives
2 2
J (_m|”| +12)feqdvdl=——p1ul +apT
R3x® 2 2

jith a=(5+3)/2.
In other words, the macroscopic equations are indeed the Euler equations for a

olytropic gas
3

2, U+ Y 4, F;(U)=0,

i=1
P P u;

U= | pu|, F;(U)= pujutpdyl , 1=/, k=3,
E (E+p)u;

dith p=pT, E=1/2p|u|*+opT, thanks to the relation between & and y in (3), and
=1/(y—1).

3) A possible application of this result is to reduce an existence proof of global
olutions to the Boltzmann Eq. (1) following the recent result of Di Perna & Lions [1989].
Ve will not do that here, since our purpose is to settle the model rather than to perform
 complete mathematical analysis. O

Proof the Theorem 4, — The proof follows the case of a monoatomic gas. Thus we
ndicate how the formalism goes. We have by construction

R
fQ‘mq’d”dI_mPI;)ﬁ—l (J[Jt,ﬁ)“‘)(“km’CO

vhere do is the measure introduced in Proposition 2. Then the classical symmetrisation
ransformations used in the monoatomic case gives (1). Inequality (ii) follows by applying
i) to p=log (S I! %)+1.

Finally, at equilibrium, we must have

I fe __Js

Ly~ )t

ence log (f1*~%) must be a collision invariant. From Proposition 1 (iv), this implies

f11‘5=exp<v+i.v+u(%+lz))

=Kexp[—(|v—ul>+2F)2T],

vhich is exactly (18). This completes our proof.

The above proof gives some more insight on the relation between & and the state law.
We have seen in Remark 2 that the coefficient « T in the state law is due to the term
5-1 which appears in the equilibrium distribution f,,. What is proved above is that this
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A simple calculation then gives

2 2
[oF +12)fchvdl= 2Ll ot
3J<|R+ 2 2

with &= (5+3)/2.
In other words, the macroscopic eguations are indeed the Euler equations for a

polytropic gas
3

3UT Y 8, F,(U)=0,
j=1

P p;
U= |pu|. Fj(U): pujuk+p5jk ) 1=/, k=3,
E (E-l—p)uj

with p=pT, E=1/2p |u|*+apT, thanks to the relation between & and vy in (3), and
o= 1/(y—1).

3) A possible application of this result is to reduce an existence proof of global
solutions to the Boltzmann Eq. (1) following the recent result of Di Perna & Lions [1989].
We will not do that here, since our purpose is to settle the model rather than te perform
a complete mathematical analysis. L]

Proof the Theorem 4. — The proof follows the case of a monoatomic gas. Thus we
indicate how the formalism goes. We have by construction

(( rfe S
ancf)@dvdI—J((I,I;)a_l (II*)S“I)deodm

where do is the measure introduced in Proposition 2. Then the classical symmetrisation
transformations used in the monoatomic case gives (i). Inequality (ii) follows by applying
(i) to p=log(f I' " ®+1.

Finally, at equilibrium, we must have

S'fe o T

(I: I;:)S -1 (II*)E -1

Hence log (f1' ~%) must be a collision invariant. From Proposition 1 (iv), this implies

fIl_5=exp(v+&.v+u(-|~%E +IZ))

=Kexp[~(v—u|*+21%)/2T},

which is exactly (18). This completes our proof. _

The above proof gives some more insight on the relation between & and the state law.
‘We have seen in Remark 2 that the coefficient o T in the state law is due to the term
I°~! which appears in the equilibrium distribution f,,. What is proved above is that this
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term I°~! appears only because we have added a factor (I/I'T,)*" ! to the source term
of our collision operator.

We also observe that setting g=/f/I°"! we could have used the alternative formalism
(19) d,eg+v.V, g=f (g2, 28, )Bdv, I dl, 0;(r)drR*(1-RY)* "1 4R.
A

Here, the natural measure is 4o I°~! dl and the equilibria on g are classical maxwellians.
The advantage of this formulae for fis that it is closer to the numerical method which
approaches the measures fdvdl and which is recalled in the Appendix,

3. A model derived from a monoatomic gas in higher dimension

We now describe another possible model for polyatomic gases leading to the same
equilibrium distribution. Its interest is that it is closer to the classical Boltzmann kernel.
It is derived from the monoatomic case in higher dimension as will be shown in
Section 3. 3.

3.1. THE COLLISION PROCESS

The collisions are more complicated here than in the Borgnakke-Larsen model. The
collision parameters are o=(a, b, @)e[0, 2n]*> x §? with do=dadbdwn). Two particles
(v, D), (vy, 1) now collide to give the “prime” quantities defined as follows (we use the
same notations as in Sec. 1):

(203 A= %g.mcosaJrsina(Iucosb—i-I*oc*sinb), ‘

21) v to,=vto,, g=g—4Awcosag,

(22) I'?=1"+4A%cos®hsin®a—41aAcosbsing,

(229 IZ=1;+4A*sin?bsin’a—41, o, Asinbsinag,

(23) o' =(al-2Acosbsina)/l', ap = (o, I, —2 Asin bsin a)/T,.

Here @, o e[—1, +1] are two parameters similar to » and R in Section 2. The collision
operator is defined by

@) QNE D= f (f’ 7 ( I, ) . ff*) B, (IL,)* 5 dl, dodv, do,

I'T,
where B is given below and

A=IR3X[R'+ x[—1, +1PFx]0, 2m]% x 82

3.2, MICROREVERSIBILITYAND H-THREOREM

As before, we set

Te(v, vy, L 1, o, )= (', vy, I, I, o, a)
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and the microreversibility of the collisions is expressed in the

ProposiTioN 5. — For any a=(a, b, ®), we have
(i T,-T,=1d
(i) e'=e, A=A, T2(1—aH=1(1-0), [Z(1-aD)=12(1—al),
(iti) Ty (v v, L, L 0y, ) =(0},0", L T, 01, o) for o'=(—a, (n/2)— b, ©).

(iv) the collision invariants are given by the formula (iv) in Proposition 1.

Proof of Proposition 5. — Let us set

(25) v=(§, T, I, oc*), V’=(‘i, I, I;a;)

(26) Q= (mcosa, sinacosb, sinasinb).

Observe that we have Q.Q=1. Then, the collision process is equivalently defined by

(27 A=V.Q

(28) vt =vtu,

29 I'2(1—-o?)=1*(1—a?, I2(1-oB)=12(1-0y),
(30) V'=V-2V.QQ,

(or equivalently V=V'—2V'.QQ).

These completely symmetric formulae prove (i). Moreover, from (30) we deduce
|V|*=|V'|?, which added to (28) and (29) gives the conservation of energy in (ii);
then A=V.Q=—V'.Q concludes the proof of (ii). Finally (iii) and (iv) are tedious
consequences of the formulation (25)-(30). They can also be recovered from the interpret-

ation given in the next section.

We can now give the invariant quantities which can be arguments of B. We need that
B satisfies

(31) B:=B(o+u,, ¢ |Al, I2(1-a2), 12(1—02), 4, b, ®)

=B(’u+v*, e, A, E(1—ad), I*(1-0o?), —aq, g —bh, m)>0.

Next the invariant measure is given by
ProPOSITION 6.
{32) dvdo 12 dldl, dode,=dv dv, I T2 dl dl, do' dor,.
Proof of Proposition 6. — We have
8 dvdv, 12 12 dl dl, do dot,, = d{v+v,) dg d1* dl do1do, 1,
=d@+o)d(1—a?) ) d({(l ~o2)3) dgd (@) d (e, 1,)
=2d(v+tv,)d((1 -2 d{(1—al) I3} dV.
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and the microreversibility of the collisions is expressed in the

PROPOSITION 5. — For any c=(a, b, ®), we have
iy T, T,=Id
(i) e=e, A'=—A, I'?(1—o')=1"(1~a?), [Z{1—-a})=T5(1- o),
(i) T, (vy, v, Lo L oy, 0)=(v},v, [, T, o, &) for o’ =(a, (1/2) — b, o).
(iv) the collision invariants are given by the formula (iv) in Proposition 1.

Proof of Proposition 5. — Lel us set

(25) V=(§, 14, I*oc*), V’=(—gz—, I'o, I;O'::k)

(26) QO=(wcosa, sinacos b, sinasin b).

Observe that we have Q.Q=1. Then, the collision process is equivalently defined by

(27 A=V.Q

(28) v +o =v+o,

(29) 20 —a'3)=1*(1—a?), [2(1—aP=12(1-a2),
(30) V=V-2V.Q0,

{or equivalently V=V’ —2V".QQ).

These completely symmetric formulae prove (i). Moreover, from (30) we C.ledl.lf:e
|V|?=|V'|?, which added to (28) and (29) gives the conservation of energy in '(11);
then A=V.Q=—V'.Q concludes the proof of (ii). Finally (iii) and (iv) are tedious
consequences of the formulation (25)-(30). They can also be recovered from the interpret-
ation given in the next section.

We can now give the invariant quantities which can be arguments of B. We need that

B satisfies
(31 B:=B(v+z, e, ]AL 12(1 —e?), Ii(lfcxfk), a, b, ®)

s
=B(v+v*, e, |ALTZ(1—a2), P(1—a?), —aq, 2 —b, co)>0.

Next the invariant measure is given by
PROPOSITION 6.
32) do dv, 12 dLdl do dow, = dv' dol, T 12 dU T, dot’ dor,.
Proof of Propositio;e 6. — We have
Bdodo NP 12dldl dudo,=d(v+o,) dg dl* di doldu, 1,
=d(v o) d(1-0) ) d((1- 021 dgd (@1} d (e, 1)
=2d(p+v)d{(1 - ) d({(1—a)12)dV.
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From the invariance property (i) of the formulation (26)-(30), we immediately deduce
the announced result.

These properties, used at the microscopic level, directly yield the results of the
H-Theorem 4 exactly as in Section 2. Therefore, these results do hold for this new model
but we do not state, neither prove, them again. We prefer to go directly to our motivations
for this model.

3.3. A MONOATOMIC GAS IN HIGHER DIMENSION

We now explain the origin of our model. It comes about when considering a classical
Boltzmann equation in dimension 3+8& where & is an integer. We therefore introduce
the variable (v, w)eR3"?, In this space, the collision process

(@, w, vy, W) = (¥, W, o), W)

has to satisfy the conservation of momentum and energy i.e.

— Z P I}
M+!Wl2+|w*r2:|7’ V| + W P |2

(33) vto, =0+, 2

Such a collision is obtained by considering a symmetry in R3*23 associated to the
unit vector £ which here is parametrized by

(34) Q=(mcosa, nsinacosb, 1, sinasind)

Above a, be[0, 27], and we R’, n, 1, e R® are unit vectors. Then we set

(35) y=(”;*, " w*)> v':(”—;"*, o w;),

and (o', v, w', w) is defined by

(36 ¥ =v—29.Q0=T,(v).
The corresponding Boltzmann equation associated with the function g (x, =, w, f) is then
(37) ogto.V,g=T;(g),
with a collision operator given by
(38) I's(g)= { 88,88, ) Bdo, dw dndn,do.
R x®¥ [0, 2 m2 x52 x (5B 1)2

and
B=H@w+v,, e [A

wr=(w=n) |w, [~ (w,.n)% a b, o).

E

This new model is related to our previous model in the following way. The parameters
a, b, @ the total energy are the same and A can be defined either by (27) or by

(39) I=|wl, a=w.njw

) A=2.0.
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More precisely we have

Tueorem 7. — If g(x, v, w, ©) satisfies (36)-(38), then

fx, v L, ¢)=J Plg(x, v, 10, 1)dd
1

58~

satisfies the Boltzmann Eq. (1), with a collision kernel given by (20)-(24) where, for some
constant |, B is given by

B= U (II*)B—B [(1 - ai) (l _ 0f.2)](673)ﬁ'2 P

40
9 {£=@(U+v*, E, [A], (102, 12 (1—a2).

Proof of Theorem 7. — Let w=10 with 8851, then integrating (38) with respect to
I°~1 40, the collision term becomes

{41) J T'5(2) 18-1 d9=j {g' 8. 88, } % B dn db, dn, (II*)‘S_l dl, dv, dc
§8-1 z

where we have used dw, =15"'dl, d and set

T=(8")* xR, x R3x[0, 2n}* x $2.

But, with 8, 8, fixed, n and n, only appear in % through o=n.0 and o, =7,.0,.
For the scattering term we can therefore replace dn dn,, by

1 (1 - o)®= 32 (1 — o232 gy oy,

for some constant ;. Indeed (1—02)® 7342 is the density measure of the first component
o of an element of the sphere $°~! and y; is a normalization constant coming from the
other components of 1 which do not appear in the integral (41). The scattering term in
(41) then becomes

rs=—psj(j glﬁ—lde)q g*Ii_ldG*)%’
sﬁ*l SS*l

[(1 —o?) (1 — o))~ D2 dodu, dl,, do, do
=— ij* B(IL.) ® da du, dl, dv, do,

thanks to the relation (40). This is exactly the scattering term of (24). The source term
can be treated in a similar way; indeed using the measure invariance du=dy' and the
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More precisely we have

Tueorem 7. — If g(x, v, w, {) satisfies (36)-(38), then

f(x,v,Lr)=J P lg(x, v, 16, 1)dd
gb—1

satisfies the Boltzmann Eq. (1), with a collision kernel given by (20)-(24) where, for some
constani [z, B is given by

(40) { B=y, (I ?[(1—a2)(1—a?)C 32

B=RB W+, B | A, E(1—02), 2(1—od).

Proof of Theorem 7. — Let w=18 with 6eS%~1, then integrating (38) with respect to
I~ 1 49, the collision term becomes

(41) J Fﬁ(g)15‘1d9=j {g‘g;—gg*},@dﬁdn dﬁ*dn*(ll*)s_,ldI*dv*dcs
§8—1 b3

where we have used dw, = I‘;" 141, df and set

T=(SH)* xR, x R3x[0, 27> X §2.

But, with 0, 8, fixed, n and n, only appear in # through a=1.9 and o, =n,.9,.
For the scattering term we can therefore replace dndn, by

s (1—02)E 2 (1 —a2)® 2 dod,

for some constant g Indeed (1—a?)® 22 is the density measure of the first component
o of an element of the sphere $°~! and y; is a normalization constant coming from the
other components of 1 which do not appear in the integral (41). The scattering term in
{41) then becomes

Fs=—uaj(j glslde) (J ) g*Ii‘ldB*)ﬂ?
SS—l 55 1

[(1—0?) (1 — o2}~ 32 dudov,, dl, dv,, do

=— Iﬁ* B (11, P dodo, dl, dv, do,

thanks to the relation (40). This is exactly the scattering term of (24). The source term
can be treated in a similar way; indeed using the measure invariance dv=dr’ and the
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change of variable (v, v,, w, w,) — (¢, o, W', w), for any function ¢ (jw|, v) we have.
(42) JFS Qdvdw= jg' g, oL, v B dvdv, dwdw, dndn,ds
= Jg’ 8. 0 (L, V) B &' dv, dw' dw, dndn, do
= fgg* o', V)& dvdv, dwdw, dndn,do.
Next, the same changes of variables as before yield that (42) is also
JFS odvdw= Jﬂ* o, v)Bdvdo, (1. *dldl, dudu,do.

Now, with (39), the pair (I, v) defined by the collision process (35} is identical to the
pair (I', o'} obtained by the collision process (20)-(23). Applying Proposition 6, we can
then write

J T, ¢ dvdw= j oo, o) (A1) 8B do’ dol, (I'T,)? dI d, dot’ d doo.

Changing variables, this can be rewritten as

Jl‘;, @ dodw= Jf' Frod, o) (UL " Bdvdy, (1) duda, dq.
Since this equality holds for any function g, it implies that
J g g, BdOdndd, dn, (1) "' dl dv, do
z ’ :
= Jf’f; (I'T,)! "®Bdo, (IL,)* *+* ' dI, doda, do.

This means that we have also recovered the source temr of (24). Since the transport
equation on g, once integrated by I° ! d8, gives the transport equation on f, we obtain
Theorem 7. :

APPENDIX

Relation with a discretization through a particle method

In this appendix, we show the relation between the collision operator Q; we have
introduced in Section ¥, and its numerical discretization in the spirit of [B & L, 1975].
We have choosen to present the method of Babovski [1986] because it is closer to the
Boltzmann equation, but the main conclusions would be true for the Monte-Carlo
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methods (see B, 1976]; [I & R, 1988]). The random choice for r, R has to incorporate
the law @; () ; (R) B.

In order to present the random particle method of [B, 1986], let us introduce the
notation

(43) {fgr= S, Dgle, Davdl,

B3 xRy

and assume that ¢;(r);(R)dr dR do is normalized so as to be a probability measure
on [0, 1> x 8. After a splitting between transport and collisions, we are led to solve the
homogeneous equation below which is written in a weak form. For any g continuous
solve

d 1 , 1
(44) 7 <f(1), g>=<Qs(f), g>= 2Jﬁ* (g'+g,)Bdm— Ejﬁ* (g+g,)Bdm.
Here we have used the notation
dm=dvdv, dldl, o;{;dr dR do.

This formulation is obtained using Theorem 4(i) and Proposition 2. It still makes
sense when fis a sum of delta masses

(45) 2N ZB(U 30 (1—1).
i=1

For such f, the scattering term is then simply

(46) 8N2 Z[g(vn ID+g(v, IDIW
with weight W;; given by
(47) ' Wij=jB (=0, v,=0, I=1, I, =1, r, R, ©) @5 Vs dr dR do>.

Similarly, the source term in (44) is

48) ) f B(.. )lg (ci, 1)+ (v ] 05 Yy dr dR dov,

where... means the same argument as before and v}, o}, I, I; is the result of the collision
of (v, I;) with (v;, I;) according to (4)-(7).
The random particle method of [B, 1986} consists of three steps:

(1) Replace the double sum in (46) or (48) by a random choice of N pairs of particles
{thus covering the set of 2 N particles, which explains the reed to deal with even numbers
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methods (see B, 1976]; [I & R, 1988]). The random choice for r, R has to incorporate

the law @ (r) ¥, (R)B.
In order to present the random particle method of [B, 1986], let us introduce the
notation

(43) (figr= S, Dgle, Ddvd,

R”3 xRy

and assume that @; (1) ;(R)drdR do is normalized so as to be a probability measure
on [0, 11> x §2. After a splitting between transport and collisions, we are led to solve the
homogeneous equation below which is written in a weak form. For any g continuous
solve

(44) g; <), £)={ Qs &)= %J-ﬁ“ (&' +g)Bdm— %Jff (g-+g,) Bdm.

Here we have used the notation

dm=dvdv, dldl, ©;\;drdR do.

This formulation is obtained using Theorem 4(i) and Proposition 2. It still makes
sense when f'is a sum of delta masses

(45) = Epﬁ DIETCEESEIEg Y

For such f, the scattering term is then simply

2
(46) SE’\IZ Yl (0 1) £ 0 LI Wy

with weight W;; given by

@7 w,.j=jB w=1, v,=0, 1=1, =1, r, R, 0) @, V3 dr dR dev.

Similarly, the source term in (44) is

) |
(48) L5 T |BC g6l D2 Do badr dR do,

where... means the same argument as before and v, v}, [, 1] is the result of the collision
of (v;, ) with (v, 1)) according to (4)~(7). '
The random particle method of [B, 1986] consists of three steps:

(1) Replace the double sum in (46) or (48) by a random choice of N pairs of particles
(thus covering the set of 2N particles, which explains the reed to deal with even numbers
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Fig. 1. — Temperature contours. Monoatomic.

Fig. 2. — Temperature contours. Diatomic BL model.
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of particles), say
0'={('01, Il) (U*la I:;cl) }: {(st Iz)s (9*25 I*Z) }9 L '{(vN: IN): (’U*Ns I* N) }

This can be seen as the integration of a discrete measure through a random choice of
the variable. Indeed, for any quantity g (v, I, w, J) such that g (v, », I, [)=0, one has

2N
1 1 2N-
anp 2, 10 o 1 |glq§i 2N lzl‘””" ol |
L2N—1
- 2N2 219'(1’;: ’U*[, i I*l)

where Q denotes the set of all possible N-pairs o.

(2) Discretize in time with a forward Euler rule; then, if step 1 has been performed,
(44) becomes

49) Y o=< f " @ >+ p? At [source-scattering]

TON !Zl{ltp(v,-, L)+ ¢ (0, L, )11 —pArW)

+EA!f[<P(vp B+ o @, n LB fPa‘I’adrdem}

where p=2N—1/2N p and B,, W, stands for the quantitics in (46), (48) replacing (v, I),,
(’Us I)_J by (TJ, I)i: (T)*, I*)z

(3) The remaining integrals arec computed using a Monte-Carlo method. We perform
a random choice of r, R, o according to the law ¢ ¥r; dr dR dw, and a number se(0, 1)
is chosen (uniformly). Then, if s=pA¢B,, the collision is processed and the particles
(v, Dy, (v, 1); are teplaced by the particles (v, I'),, (v, L); corresponding to collisions
with the parameters r, R, @. In the other case the initial particles are kept. Under the
condition on At

(50) pAtB;=1,

this method amounts to writing
pALB; @5 s dr dR dov = J10§s§p3i A 45 @5 s dr dR doo,

1- EAIWE:JJIPB;ArSsS 1 A5 @5 Vg dr dR do,

and replacing these two integrals by a random choice of s, r, R, ®. Then, depending on
s compared to pB; Ar, one of them is O the other is 1. In the right-hand side of (49),
only one of the two terms is kept (collision or not) which enforces perfect conservation,

After this step, (49) gives a simple sum of N terms o; + ¢,; or @;+ @}, This identifies
/' to a new repartition of the same form (45) with 2N new particles.
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We have used this method to perform some calculations for the models described
before in the diatomic case §=2. The Borgnakke-Larsen model (BL) of Section 1, in the
hard sphere case i.e. B:R| g.o|, is presented in Figure 2 and compared with a
monoatomic gas in Figure 4, The Momnoatomic Gas in Higher Dimension (MGHD)
model is presented in Figure 3. The test problem is a global f{low around a two dimen-
sional ellipse at Mach 20 with a Knudsen number equal to 0.014. A partial accomodation
equal to 0.8 is taken on the body. These calculations where run using 300,000 particles.

The BL and MGHD models give similar results compared to the monoatomic case
(Fig. 1). The differences between BL and MGHD results certainly come from the colli-
sional laws which are rather different.

We wish to thank the University of Kaiserslautern and Prof. H. Neunzert for providing
us with the monoatomic code.
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