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AbstractWe propose here a survey of the results for the Boltzmann equationwhich use the Fourier transform. In particular, we introduce variousversions of the averaging lemmas, of the properties of smoothness ofBoltzmann's kernel, and various other computations.1 Introduction1.1 Kinetic equationsWe usually denote by \kinetic equations" those equations in which the un-known is the phase space densityf(t; x; v) � 0 (1)of particles which at time t and point x move with velocity v.Such a modeling is in some situations an alternative to the study ofequations (such as the Navier-Stokes system) in which the unknowns (suchas the usual density �, the mean velocity u or the internal energy e) onlydepend on t and x.The phase space density (1) typically veri�es an equation of the form@tf + v � rxf = R; (2)where R often depends on f . The reason for that is that when there isno interaction between the particles and their surrounding environment (in-cluding themselves), they will move at a constant velocity and along straightlines. In other words, for all times t and � , point x and velocity v, a particlewhich at time t sits at point x and move with velocity v will sit at time t+�at point x+ v� and will keep its velocity v. This entails that8�; f(t + �; x+ v�; v) = f(t; x; v); (3)or, after di�erentiation with respect to � ,@tf + v � rxf = 0: (4)Then, the left-hand side R appears as the contribution of the environmenton the motion of the particles. 3



Note that formulas like (2) are typical of classical mechanics. Whenrelativistic or quantum e�ects must be taken into account, the variable v isreplaced by the momentum p or the wave vector k, and equation (2) becomes@tf + v(p) � rxf = R (5)or @tf + v(k) � rxf = R (6)Those are still considered as kinetic equations, as long as the function v isnot constant on some substantial part of the domain of variation of p or k(this is of course always true in the relativistic context, and in most of theother situations).Equations like (5) are also typical of the kinetic formulations of conser-vation laws.Note �nally that in many situations (e.g. in the study of radiative trans-fer and in the study of realistic gases, or in the modeling of sprays), thedensity f also depends on extra variables (such as the frequency � of thephotons for the radiative transfer, the internal energy I of diatomic gases,the size r, the temperature � and even sometimes the eccentricity y of thedroplets for the sprays).The behavior of the solutions of eq. (2) strongly depends on the form ofthe term R.When a given force F (t; x) acts on the particles (such a force can alsodepend on v in speci�c situations, for example when the particles are chargedand feel the action of a magnetic �eld, or when the force is the drag forcedue to a surrounding gas), the particles will follow the trajectories of thefollowing system of di�erential equations :_x(t) = v(t); (7)_v(t) = F (t; x(t)); (8)and the corresponding partial di�erential equation satis�ed by f (that is,the PDE whose characteristic curves are exactly the solutions of eq. (7),(8)), is the Vlasov equation@tf + v � rxf + F (t; x) � rvf = 0: (9)In many cases, the force F is itself related to f (through Poisson's orMaxwell's equations for example). That leads to the classical Vlasov-Poissonor Vlasov-Maxwell systems.The equations we wish to investigate in this document are of a di�erenttype. We describe them in the sequel.4



1.2 The Boltzmann equationWhen the forces acting on the particles are mainly due to the collisions ofthe particles between themselves, one is led to write down the Boltzmannequation. This equation is valid when one is interested in a situation wherethe typical dimension of the physical objects under study are of the sameorder as the mean free path of the particles (that is, the length of thetrajectory of a typical particle between two collisions). When this is thecase, the gas is said to be rare�ed. For gases which are not rare�ed, onehas to use the equations of 
uid mechanics (such as the compressible orincompressible Euler or Navier-Stokes systems).Many features of the Boltzmann equation are related to the hypothesisthat the gas is rare�ed. In particular, this assumption implies that thecollisions are binary (that is, the ternary, etc., collisions are neglected), theyare localized in time and space (that is, the size of the region in which thevelocities of the particles vary is small in front of the size of the objects understudy), and no correlations occur between the velocities of the particles(that is, roughly speaking, collisions do not occur very often, so that theprobability for a particle to encounter a particle which has already interactedwith it (through other particles) is negligeable).Starting from the general form (2) of kinetic equations, we see thanks tothe property of locality in space and time thatR(t; x; v) = R(f(t; x; �))(v):It is therefore su�cient to de�ne the e�ect of R on a function f dependingon v only.We denote by f2(v1; v2) the joint density of two particles with respectivevelocities v1 and v2. We see (thanks to the assumption that the collisionsare binary) that we must take into account only two distincts phenomenawhich modify the number density of particles with velocity v.First, because of a possible collision with a particle of velocity v�, aparticle which had v for velocity will end up with a velocity v0 (its partnerin the collision will end up with velocity v0�).Secondly, some particle with a velocity w will encounter a particle withvelocity w� and will end up with a velocity v after the collision (its partnerin the collision will end up with velocity w0�).We now denote by p(v1; v2 ! v3; v4) the (density of) probability that fortwo particles sitting at the same point x at a given time t, a collision occursand transforms the ingoing velocities v1 and v2 in the outgoing velocities v3,5



v4 (we shall see that in the so-called non cuto� case, this quantity is in factfar from being a probability density, since it is not integrable).We see that R(f) is the sum of two terms �R�(f) and R+(f) whichrespectively correspond to the two phenomena described above.According to their de�nition, R� and R+ writeR�(f)(v) = Zv� Zv0 Zv0� f2(v; v�) p(v; v�! v0; v0�) dv0�dv0dv�;and R+(f)(v) = Zw Zw� Zw0� f2(w;w�) p(w;w�! v; w0�) dw0�dw�dw:According to the hypothesis that no correlations occur, we can replacein the previous formula f2(v; v�) by f(v) f(v�) and f2(w;w�) by f(w) f(w�).Then, R is clearly quadratic as a function of f . As a consequence, we shallfrom now on denote it by Q(f; f), and we obtain the formulasQ(f; f) = Q+(f; f)� Q�(f; f);with Q�(f; f)(v) = Zv� Zv0 Zv0� f(v) f(v�) p(v; v�! v0; v0�) dv0�dv0dv�;and Q+(f; f)(v) = Zw Zw� Zw0� f(w) f(w�) p(w;w�! v; w0�) dw0�dw�dw:We now introduce the microreversibility assumption8v1; v2; v3; v4; p(v1; v2 ! v3; v4) = p(v3; v4 ! v1; v2):This assumption is justi�ed by the fact that the motion of two interactingparticles is modeled by ordinary di�erential equations which are reversible.We get the formulaQ(f; f)(v) = Zv� Zv0 Zv0� �f(v0) f(v0�)�f(v) f(v�)� p(v; v�! v0; v0�) dv0�dv0dv�:Then, we use the conservation of momentum and kinetic energy in acollision : v + v� = v0 + v0�; (10)6



jvj22 + jv�j22 = jv0j22 + jv0�j22 : (11)Note that the conservation of kinetic energy holds only in the case of monoatomicgases. For gases of the real atmosphere such as diatomic nitrogene N2 anddiatomic oxygene O2, only the conservation of the total energy holds : onehas to introduce various kinds of internal energy (vibration, rotation) inorder to get a realistic modeling.As a consequence, the measure p is concentrated on the set de�ned byidentities (10) and (11). At this point, it is useful to parametrize thoseequations.When we are interested in a two-dimensional situation, the best way toparametrize seems to use the center of mass reference frame, that is, theframe moving with velocity v+v�2 . Then, the conservation of energy simplybecomes jv � v�j2 = jv0 � v0�j2:Finally, v0 and v0� are de�ned byv0 = v + v�2 +R��v � v�2 �;v0� = v + v�2 �R��v � v�2 �;where R� is the rotation of angle �.The situation is not so good in dimension N equal or bigger than three.Then, two di�erent parametrizations are traditionally used. The �rst oneuses symmetries, and has the advantage of being with respect to v; v�. Itwrites v0 = v + ((v� � v) � !)!;v0� = v � ((v� � v) � !)!;with ! varying in the sphere (or half sphere) SN�1.We shall however rather use the parametrization which uses the centerof mass reference frame, and which writesv0 = v + v�2 + jv � v�j2 �; (12)v0� = v + v�2 � jv � v�j2 �; (13)with � varying in the sphere SN�1. 7



Note that � and ! are related by a simple change of variables (Cf. [19]for example to get a precise formula for the corresponding Jacobian).The Galilean invariance which holds in the context of binary collisionsentails that the measure p(v; v� ! v0; v0�) can only depend on jv � v�j andv�v�jv�v� j � � (or ���� v�v�jv�v�j � !����, or even j�j in dimension 2).We now can write down the \�nal" form of Boltzmann's collision oper-ator : Q(f; f)(v) = Zv�2IRN Z�2SN�1 �f(v0) f(v0�)� f(v) f(v�)��B�jv � v�j; v � v�jv � v�j � ��d�dv�; (14)where B is called the cross section (sometimes a slightly di�erent de�nitionof the cross section is presented, namely B=jv� v�j), and v0; v0� are given byformulas (12), (13).We shall also use the bilinear form Q(g; f) related to the quadratic formQ(f; f), and de�ned byQ(g; f)(v) = Zv�2IRN Z�2SN�1 �f(v0) g(v0�)� f(v) g(v�)��B�jv � v�j; v � v�jv � v�j � ��d�dv�: (15)Finally, we write down the standard form of the Boltzmann equation :@tf + v � rxf = Q(f; f); (16)where Q is given by (14).For a general exposition of the theory of the Boltzmann equation, werefer to [23], [25] and [70].The rigorous derivation of the Boltzmann equation starting from thedynamics of N particles in interaction is performed in [53] and [22] in thecontext of local (in time) solutions or of global (in time) solutions close tovacuum. 8



1.3 Cross sectionsIt is possible to (almost) explicitly compute the cross section B when theinterparticle force is proportional to r�s (with r denoting the interparticledistance and s > 2). In such a case (and in dimension 3), B writes (withcos � = v�v�jv�v� j � �) :B (jv � v�j; cos�) = jv � v�j s�5s�1 b(cos�);with b a smooth function except at point 1 andsin � b(cos�) ��!0 Kj�j s+1s�1 ; (17)with K > 0.Since s+1s�1 > 1, the singularity in the angular variable � is always nonintegrable. Because of the di�culties entailed by this singularity, Grad hasproposed to introduce an angular cuto� near � = 0 (Cf. [42]). It means thatwe replace B by a new cross section~B (jv � v�j; cos�) = jv � v�j s�5s�1 ~b(cos �);with b smooth, or at least such that � 7! sin � ~b(cos �) is integrable near� = 0.In the sequel, we shall speak of cuto� cross sections (or cuto� potentials)when B is locally integrable, and of non cuto� cross sections (or non cuto�potentials) when B has a singularity like in (17).Note that the decomposition Q = Q+ �Q�, withQ+(f; f)(v) = Zv�2IRN Z�2SN�1 f(v0) f(v0�)B�jv � v�j; v � v�jv � v�j � ��d�dv�;(18)Q�(f; f)(v) = Zv�2IRN Z�2SN�1 f(v) f(v�)B�jv � v�j; v � v�jv � v�j � ��d�dv�;(19)holds only when the cross section B is integrable (that is, cuto�).We shall also speak of hard potentials when B ! +1 as its �rst variabletends to in�nity, of soft potentials when B ! 0 as its �rst variable tendsto in�nity, and of Maxwellian molecules when B does not depend on the9



�rst variable (what we shall call cuto� Maxwellian molecules in the sequelis sometimes called pseudo Maxwellian molecules).Finally, note that the case when s = 2 (that is, the Coulomb potential),leads to a di�erent equation, namely the Fokker-Planck-Landau equation.1.4 Basic properties of Boltzmann's kernelWe shall systematically use in the sequel the so-called pre/post collisionalchange of variables (v; v�; �) 7! (v0; v0�; �) which ensures that for all functionsf � f(v; v�; v0; v0�; �), one has (at the formal level) :ZIRN ZIRN ZSN�1 f(v; v�; v0; v0�; �) d�dv�dv= ZIRN ZIRN ZSN�1 f(v0; v0�; v; v�; �) d�dv�dv:This formula is obvious when one uses the parametrization with � in dimen-sion two (or, in fact, the parametrization with ! in higher dimension). Theproof can be found for example in [19].We shall also use the change of variables (v; v�; �) 7! (v�; v; �), whichensures that for all function f � f(v; v�; v0; v0�; �), one has (still at the formallevel) ZIRN ZIRN ZSN�1 f(v; v�; v0; v0�; �) d�dv�dv= ZIRN ZIRN ZSN�1 f(v�; v; v0�; v0; �) d�dv�dv:As an immediate consequence of those formulas, we get the followingvarious weak formulations for Boltzmann's kernel Q :ZIRN Q(f; f)(v)�(v) dv = ZIRN ZIRN ZSN�1 ��(v0)� �(v)�� f(v) f(v�)B d�dv�dv; (20)ZIRN Q(f; f)(v)�(v) dv = 12 ZIRN ZIRN ZSN�1 ��(v0�) + �(v0)� �(v0)� �(v)�� f(v) f(v�)B d�dv�dv; (21)ZIRN Q(f; f)(v)�(v) dv = �14 ZIRN ZIRN ZSN�1 ��(v0�)+�(v0)��(v0)��(v)���f(v0) f(v0�)� f(v) f(v�)�B d�dv�dv: (22)10



Plugging �(v) = 1; vi; jvj22 in formula (21), we get the conservation ofmass, momentum and energy at the level of the Boltzmann operator :ZIRN Q(f; f)(v) 0@ 1vijvj22 1A dv = 0: (23)Boltzmann's H-theorem is obtained by plugging � = log f in (22).De�ning the entropy dissipation byD(f) = � ZIRN Q(f; f)(v) log f(v) dvwe get D(f) = 14 ZIRN ZIRN ZSN�1 �f(v0) f(v0�)� f(v) f(v�)� (24)� log�f(v0) f(v0�)f(v) f(v�) �B d�dv�dv;we observe (this is the �rst part of Boltzmann's H-theorem) that D(f) � 0.Then, it is possible to prove (under suitable, but rather weak assumptionson B and f) thatD(f) = 0 () 8v 2 IRN ; Q(f; f)(v) = 0() 9� � 0; T > 0; u 2 IRN ; f(v) = �(2�T )N exp �jv � uj22T ! :This is the second part of Boltzmann's H-theorem (Cf. [70]).1.5 A priori estimatesSince this work is more concerned with the qualitative properties of thesolutions of Boltzmann's equation than with the existence theory, we shallonly state some basic a priori estimates related to the conservation propertiesof the previous section, and only one theorem of existence.We �rst introduce the Cauchy problem for the spatially homogneousBoltzmann equation. That consists in looking for solutions to the full Boltz-mann equation (16) which only depend on the variables t and v, a compatibleinitial datum being given. 11



In other words, it writes@tf(t; v) = Q(f; f)(t; v); (25)f(0; �) = fin: (26)According to the results of the previous subsection, the solutions of thisequation (at least formally) satisfy the conservation of mass, momentumand energy8t � 0; Zv2IRN f(t; v) 0@ 1vijvj22 1A dv = Zv2IRN fin(v)0@ 1vijvj22 1A dv; (27)and the decay of the entropy (de�ned by R f log f dv and not by� R f log f dvas in physics)8t � 0; Zv2IRN f(t; v) log f(t; v) dv+ Z t0 D(f)(s) ds� Zv2IRN fin(v) log fin(v)dv: (28)Then, it is easy to show (still at the formal level) that as soon as theinitial datum has �nite mass, energy and entropy (in the two next formu-las, f log f is replaced by f j log f j, so that only nonnegative quantities areconsidered : this does not lead to any di�culties), that is whenKin = Zv2IRN fin(v) (1+ jvj2+ j log fin(v)j) dv < +1; (29)there exists for all T > 0 a constant CT > 0 (only depending on Kin) suchthatsupt2[0;T ]Zv2IRN f(t; v) (1+ jvj2+ j log f(t; v)j) dv+ Z T0 D(f)(s) ds � CT : (30)In the sequel, we shall use the following (now classical) theorem of existence,proven in [8], [9] and [40]:Theorem 1 Let B be a (nonnegative) cross section satisfying (for x 2 IRand � 2 [0; �]), sin � B(x; cos �) � K (1 + jxj) j�j�1�
;12



for some K > 0 and 
 < 2 (that is, cuto� or non cuto� hard potentials orMaxwellian molecules).Let also fin be a (nonnegative) measurable function from IRN to IR suchthat Kin < +1 (Kin is de�ned by (29)).Then, there exists a solution f � f(t; v) lying in L1(IR+;L12(IRN )) andC(IR+;D0(IRN )) to eq. (25) written in the weak form (Cf. eq. (21)) for alltest functions � 2 D(IRN ),@t ZIRN f(t; v)�(v)dv = 12 ZIRN ZIRN ZSN�1 ��(v0�) + �(v0)��(v�)� �(v)�f(t; v) f(t; v�)B d�dv�dv:This solution can be constructed in such a way that the conservations ofmass, momentum and energy and the decrease of the entropy hold.1.6 Simpli�ed modelsIn the sequel, we shall be led to consider various simpli�cations of Boltz-mann's kernel, which we now describe.The �rst one is the so-called Kac's operator (Cf. [47]). It acts on func-tions of a one-dimensional variable (v 2 IR) and writesQ(f; f)(v) = ZIR Z 2�0 �f(v cos � � v� sin �) f(v sin � + v� cos �)�f(v) f(v�)��(j�j) d�dv� (31)for some nonnegative cross section �. We shall conserve for this model theterminology on cross sections that we adopted for the Boltzmann equation.That is, it is said to be cuto� if � is integrable, and non cuto� if �(�) ��!0j�j�1�
 , for 
 2]0; 2[.Mass and energy, but not momentum, are conserved for this operator.The H theorem is also valid except that in the second part of the theo-rem, the set of all Maxwellians must be replaced by the set of centeredMaxwellians. As we shall see in the sequel, this operator is very close to theBoltzmann operator for Maxwellian molecules when it is restricted to theradially symmetric functions. 13



The second model that we shall introduce is even simpler. It acts onfunctions of a periodic variable (v 2 T 1), and writesQ(f; f)(v) = Z 1=2�1=2 ZIT 1 [f(v + �) f(v0 � �)� f(v) f(v0)] �(j�j) d�dv0: (32)This operator is close to a linear operator in the sense that (at the formallevel)Q(f; f)(v) = ZIT 1 f(w) dw Z 1=2�1=2�f(v + �) � f(v)��(j�j) d�: (33)It is associated to a spatially inhomogeneous equation which writes@tf(t; x; v) + cos(2�v) @xf(t; x; v) = Q(f; f)(t; x; v); (34)where the unknown is the number density f � f(t; x; v). Here, t � 0 is thetime variable, the position variable is x 2 IT 1, and v 2 IT 1 parametrizes thevelocity cos(2�v) of the particles. This model was introduced in [30].Finally we introduce the classical linear Fokker-Planck operatorQ(f)(v) = r � (rf + v f);and the corresponding (con�ned) linear Vlasov-Fokker-Planck equation (some-times also called kinetic Fokker-Planck equation)@tf + v � rxf �rxV (x) � rvf = rv � (rvf + v f); (35)where V is the con�ning potential. Here x and v vary in IRN , and theequation models the motion of a particle in a thermal bath.1.7 The Fourier transform in the context of the BoltzmannequationFor a given function f : IRN ! IR, we de�ne its Fourier transform f̂ (some-times also denoted by Ff) by the formulaf̂(�) = ZIRN e�ix�� f(x) dx:With this de�nition, the inversion formula writesf(x) = (2�)�N ZIRN eix�� f̂(�) d�;14



and Plancherel's formula becomesZIRN jf̂(�)j2 d� = (2�)N ZIRN jf(x)j2 dx:We shall also use the relationship between derivatives and moments. De-noting by � a multiindex of INN , we haved@�f(�) = (i�)� f̂ (�);and d(�ix)�f (�) = @�f̂(�):In the sequel, we shall use the Fourier transform with respect to variousvariables (t and x, x and v, v only, etc.). We shall therefore systemati-cally recall which variables are concerned and what are the name of thecorresponding Fourier variables.Like for other PDEs, the Fourier transform is useful in many ways inthe context of the Boltzmann equation. For example, it enables to obtainexplicit solutions in some situations (typically, in the case of Maxwellianmolecules, which somehow plays a role in the theory of the Boltzmann equa-tion analogous to that played in the theory of PDEs by the linear equationswith constant coe�cients, Cf. [15] and [16] ). It is also extremely useful forthe study of the smoothness of the solutions, as we shall see repeatedly inthe sequel.We recall that the large j�j behavior of f̂(�) is related to the smoothnessof f . This link is best seen in the context of Sobolev spaces based on L2.Precisely, for all s 2 IN , the norms� Xj�j�s ZIRN j@�f(x)j2 dx�1=2and �ZIRN jf̂(�)j2 (1 + j�j2)s d��1=2are equivalent and de�ne the same space Hs(IRN ).So are the norms�ZIRN jf(x)j2 dx+ ZIRN ZIRN jf(x)� f(y)j2jx� yjN+2s dydx�1=2and �ZIRN jf̂(�)j2 (1 + j�j2)s d��1=2;for the space Hs(IRN ) with s 2]0; 1[.15



1.8 Some notations for spaces of functionsIn addition to the norms of Hs de�ned above, that isjjf jjHs(IRN ) = �ZIRN jf̂(�)j2 (1 + j�j2)s d��1=2;we introduce for 0 < s < N=2 the homogeneous Sobolev space _Hs(IRN )of functions f of L2N=(N�2s)(IRN ) such that bf 2 L1loc(IRN) and j�js bf (�) 2L2(IRN� ). Its norm is given bykfk _Hs(IRN ) = �Z�2IRN j bf(�)j2j�j2s d��1=2 : (36)We shall also use for p � 1, q � 0, the weighted space Lpq(IRN) embeddedwith the normkfkLpq(IRN) = �Zv2IRN jf(v)jp(1 + jvj)pq dv�1=p ; (37)and for k 2 IN the Sobolev spacesW k;1(IRN) = �f 2 L1(IRN); 8� 2 INN ; j�j � k; jj@�f jjL1(IRN) < +1�;embedded with the normjjf jjW k;1(IRN ) = Xj�j�k jj@�f jjL1(IRN):2 Averaging Lemmas2.1 IntroductionAveraging lemmas are designed for the study of the regularity of the solu-tions of kinetic (transport) equations of type@tf(t; x; v) + v � rxf(t; x; v) = g(t; x; v) (38)or of the (space independant) typev � rxf(x; v) = g(x; v): (39)Because of the hyperbolicity of the operators v �rx and @t+v �rx (theirrespective symbols are (with obvious notations) i v � � and i � + i v � �), there16



is no hope that the solution f of eq. (38) (or eq. (39)) be smoother thanthe right-hand side g. In fact, for any f (that is, as singular as one wants),f(x� vt; v) is a (weak) solution of eq. (38) with g = 0.However, the set of � (di�erent from 0) such that v � �j�j = 0 varies whenv varies, so that when one takes averages in v of f (weak) solution of eq.(38) (or eq. (39)), there is some hope of getting a function (of t; x) smootherthan g.Unfortunately, though eq. (38) has a very simple explicit solution,namely f(t; x; v) = f(0; x� vt; v) + Z t0 g(s; x� v (t� s); v) ds;it seems very di�cult to prove such a gain of smoothness by using thisformula without Fourier transform.The use of the Fourier transform, on the other hand, enables to obtainthis gain of smoothness. This was �rst observed in [39], [38] and [1].In the next two subsections, we give two proofs using the Fourier trans-form, but in a very di�erent way. In the �rst one, better adapted to a steadyequation, or to a situation in which one needs smoothness in the time vari-able, the Fourier transform is taken with respect to t and x. In the secondone, better adapted to situations where smoothness in the time variable isnot required, the Fourier transform is taken with respect to x and v.2.2 Use of the Fourier Transform in x or t; xWe begin here by recalling the proof of [38] in the case of the steady equa-tion, when the averaging function � is L1 (and compactly supported). Wegive estimates which are fully explicit, but not necessarily optimal in somerespects. In particular, sums of norms instead of products appear in theright-hand sides of our estimates.Theorem 2 Let f � f(x; v) be a function of L2(IRN � IRN ) such thatg = v �rxf also lies in L2(IRN �IRN ). Then, for all function � in L1(IRN )with its support included in [�R;R]N, the following estimate holds :�������� ZIRN f(�; v)�(v) dv��������2H1=2(IRN) � 4 (2R)N�1 jj�jj2L1(IRN )�jjf jj2L2(IRN�IRN )17



+ jjgjj2L2(IRN�IRN )�: (40)Proof : We denote by f̂ the Fourier transform of f in the x variable only,and by � the corresponding Fourier variable. Then, ĝ(�; v) = i (v � �) f̂(�; v).The idea is to consider separately those v 2 IRN such that jv � �j�j j is largeand those such that jv � �j�j j is small.The computation gives (for some function � � �(�) which will be chosenlater on) ���� ZIRN f̂ (�; v)�(v)dv����2 � 2 ���� Zjv� �j�j j�� f̂(�; v)�(v)dv����2+2 ���� Zjv� �j�j j�� f̂(�; v)�(v)dv����2� 2 ���� Zjv� �j�j j�� 1j�j jv � �jjv � �j�j j f̂(�; v)�(v)dv����2 + 2 ���� Zjv� �j�j j�� f̂(�; v)�(v)dv����2� 2j�j2 Zjv� �j�j j�� j�(v)j2jv � �j�j j2 dv ZIRN jĝ(�; v)j2dv+2 Zjv� �j�j j�� j�(v)j2 dv ZIRN jf̂(�; v)j2dv� 2j�j2 jj�jj2L1(IRN ) (2R)N�1 2 Z +1� dv1v21 ZIRN jĝ(�; v)j2dv+2 jj�jj2L1(IRN ) (2�) (2R)N�1 ZIRN jf̂(�; v)j2dv� 4 (2R)N�1 jj�jj2L1(IRN )� 1�j�j2 ZIRN jĝ(�; v)j2dv + � ZIRN jf̂(�; v)j2dv�:We conclude by taking �(j�j) = 1j�j .Note that a di�erent choice of � would enable to obtain at the end aproduct of norms of f and g instead of a sum of such norms.This result can be extended in many ways. We give here the proof oftwo useful such extensions. 18



The �rst one enables to treat the case of kinetic equations with right-hand sides including derivatives in the v variable (�rst-order derivativesas in Vlasov, or second-order derivatives as in Landau, but also fractionalderivatives such as in the non cuto� Boltzmann equation). The second oneenables to treat space-dependant equations. Of course those two extensionscan be combined in a single theorem, but we shall not write down sucha theorem in this work, since we wish to present only typical proofs, notoptimal results.We begin with the theorem adapted to the Vlasov equation. The esti-mate given here is almost explicit (that is, explicit up to a numerical constantwhich can be estimated). With respect to the previous theorem, It needsmore derivatives of the averaging functions �. The proof is very close tothat of [34].Theorem 3 Let f � f(x; v) be a function of L2(IRN � IRN ) such thatg = v � rxf is of the form g = @Kv h, where h 2 L2(IRN � IRN ) and @Kvdenotes any derivative in the v variable of order K. Then, for all function �in WK;1(IRN ) with its support included in [�R;R]N, the following estimateholds (for some constant CK > 0) :�������� ZIRN f(�; v)�(v)dv��������2H1=2(K+1)(IRN) � CK RN�1 jj�jj2WK;1(IRN )��jjf jj2L2(IRN�IRN ) + jjhjj2L2(IRN�IRN )�: (41)Proof: We still denote by f̂ the Fourier transform of f in the x variableonly, and by � the corresponding Fourier variable.Moreover, we introduce (for � � �(�) to be chosen later) a cuto� function�� of D(IR) which takes its values in [0; 1], has its support in [�2�; 2�],and satis�es ��(x) � 1 for x 2 [��; �]. We still use the identity ĝ(�; v) =i (v � �) f̂(�; v).We compute :���� ZIRN f̂ (�; v)�(v)dv����2 � 2 ���� ZIRN f̂(�; v)��(v � �j�j)�(v) dv����2+2 ���� ZIRN f̂(�; v) (1� ��(v � �j�j))�(v) dv����219



� 2 ���� ZIRN f̂(�; v)��(v� �j�j)�(v) dv����2+2 ���� ZIRN @Kv ĥ(�; v)v � � (1���(v� �j�j))�(v) dv����2� 2 ���� ZIRN f̂(�; v)��(v � �j�j)�(v) dv����2+ XP+Q+R=K CP;Q ���� ZIRN ĥ(�; v)� �j�j�P @P (1���)(v� �j�j) @Q�(v) �R(v � �)R+1 dv����2(with obvious notations)� 2 Zjv� �j�j j�2� j�(v)j2dv ZIRN jf̂(�; v)j2dv+ XP+Q+R=K CP;Q Zjv� �j�j j�2� ��2P j@Q�(v)j2 j�j2Rjv � �j2R+2 dv ZIRN jĥ(�; v)j2dv� 8 � (2R)N�1 jj�jj2L1(IRN ) ZIRN jf̂(�; v)j2dv+ XP+Q+R=K CP;Q (2R)N�1 ��2Pj�j2 jj@Q�jj2L1(IRN )� Zjv1j�� dv1jv1j2R+2 ZIRN jĥ(�; v)j2 dv� CK RN�1�� jj�jj2L1(IRN) ZIRN jf̂(�; v)j2dv+ XP+Q+R=K ��2P�2R�1j�j2 jj@Q�jj2L1(IRN) ZIRN jĥ(�; v)j2 dv�:Choosing � = j�j� 1K+1 ;the previous computation yields the estimate���� ZIRN f̂(�; v)�(v)dv����2 � CK RN�1 jj�jj2WK;1(IRN)��j�j� 1K+1 ZIRN jf̂(�; v)j2dv + XS�K j�j�2+ 2S+1K+1 ZIRN jĥ(�; v)j2dv�:This in turn enables us to write down the estimateZj�j�1 j�j 1K+1 ���� ZIRN f̂(�; v)�(v)dv����2d� � CK RN�1 jj�jj2WK;1(IRN )20



��Z Zj�j�1 jf̂(�; v)j2dvd� + XS�K Z Zj�j�1 j�j2 S�KK+1 jĥ(�; v)j2dvd��:Since on the other hand, it is easy to estimateZj�j�1 j�j 1K+1 ���� ZIRN f̂(�; v)�(v)dv����2d�by the L2 norm of f , we conclude the proof.We now treat the second extension of theorem 2. This is the case whenf , which also depends on t, satis�es eq. (38) on IR� IRN � IRN . It enablesto get smoothness of the averages in v of f in both variables t and x. Theproof is close to that of [38]. In order to use such a result in the context ofthe study of the Cauchy problem for a partial di�erential equation, one hasin general to use techniques of truncation, etc., in the time variable. Thosetechnicalities can sometimes be avoided when one uses the results of nextchapter.Theorem 4 Let f � f(t; x; v) be a function of L2(IR � IRN � IRN ) suchthat g = @tf+v �rxf lies in L2(IR�IRN �IRN ). Then, for all function � inL1(IRN ) with support included in [�R;R]N, the following estimate holds :�������� ZIRN f(�; �; v)�(v)dv��������2H1=2(IR�IRN ) � 4 jj�jj2L1(IRN) (2R)N�2 (5 + 14R+12R2 + 8R3)� �jjf jj2L2(IR�IRN�IRN ) + jjgjj2L2(IR�IRN�IRN )�: (42)Proof: We now denote by f̂ the Fourier transform of f in the t andx variable only, and by � and � the corresponding Fourier variables. Therelation between f̂ and ĝ is now ĝ(�; �; v) = i (� + v � �) f̂(�; �; v).We compute (for any �)���� ZIRN f̂(�; �; v)�(v)dv����2 � 4 ����1j�j�1;j� j�2R ZIRN ĝ(�; �; v)i(� + v � �) �(v) dv����2+4 ����1j�j�1;j� j�2R ZIRN f̂(�; �; v)�(v)dv����2+4 ����1j�j�1 Zj�+v��j�� f̂(�; �; v)�(v)dv����221



+4 ����1j�j�1 Zj�+v��j�� ĝ(�; �; v)i(� + v � �) �(v) dv����2� 4 1j�j�1;j� j�2R jj�jj2L1(IRN) �Zjvj�R dvj� + v � �j2��ZIRN jĝ(�; �; v)j2dv�+4 1j�j�1;j� j�2R jj�jj2L1(IRN)�Zjvj�R dv��ZIRN jf̂(�; �; v)j2dv�+4 1j�j�1 jj�jj2L1(IRN )�Zj�+v��j��;jvj�R dv��ZIRN jf̂(�; �; v)j2dv�+4 1j�j�1 jj�jj2L1(IRN)�Zj�+v��j��;jvj�R dvj� + v � �j2� �ZIRN jĝ(�; �; v)j2dv�:We now observe that1j�j�1;j� j�2R Zjvj�R dvj� + v � �j2 � (2R)N12 j� j2 � R21j�j�1;j� j�2R;1j�j�1;j� j�2R Zjvj�R dv � (2R)N 1j�j�1;j� j�2R;1j�j�1 Zj�+v��j��;jvj�R dv � (2R)N�1 �j�j 1j�j�1;j� j��+R j�j;1j�j�1 Zj�+v��j��;jvj�R dvj� + v � �j2 � (2R)N�1j�j2 Zjwj� �j�j ;jw� �j�j j�R dwjwj2 1j�j�1� (2R)N�1�1j� j�2R j�j 1� j�j + 1j� j�2R j�j 1� j�j� 1j�j�1:Then, Z ZIR�IRN �j� j+ j�j����� ZIRN f̂(�; �; v)�(v)dv����2 d� d�� Z Zj�j�1�j� j+ j�j� ���� ZIRN f̂ (�; �; v)�(v)dv����2 d� d�+ Z Zj�j�1;j� j�2R j�j�j� j+ j�j� ���� ZIRN f̂ (�; �; v)�(v)dv����2 d� d�+ Z Zj�j�1;j� j�2R j�j�j� j+ j�j� ���� ZIRN f̂ (�; �; v)�(v)dv����2 d� d�� Z Zj�j�1�j� j+ 1� ���� ZIRN f̂(�; �; v)�(v) dv����2 d� d�22



+ Z Zj�j�1;j� j�2R j�j(1 + 2R) j�j ���� ZIRN f̂(�; �; v)�(v)dv����2 d� d�+ Z Zj�j�1;j� j�2R j�j�j� j+ j�j� ���� ZIRN f̂ (�; �; v)�(v)dv����2 d� d�� 4 jj�jj2L1(IRN ) (2R)N�1 Z ZIR�IRN �j� j+ 1�� 8Rj� j2 1j� j�2R+ 2R 1j� j�2R���ZIRN jf̂(�; �; v)j2dv + ZIRN jĝ(�; �; v)j2dv�d� d�+4 jj�jj2L1(IRN) (2R)N�1 Z Zj�j�1(1 + 2R) j�j � �j�j + 1� j�j���ZIRN jf̂(�; �; v)j2dv + ZIRN jĝ(�; �; v)j2dv�d� d�+4 jj�jj2L1(IRN) (2R)N�1 Z Zj� j�2R;j�j�1 j� j+ j�jj� j j�j��ZIRN jf̂(�; �; v)j2dv + ZIRN jĝ(�; �; v)j2dv�d� d�:Note �nally that � = 1 yields the theorem.Many more extensions of the previous results can be found in the worksof [36], [37], [35], [12], [58], [64] and [52]. Among those extensions, one canwrite down results in Lp instead of L2 (those are obtained by interpolationtechniques), one can replace v by a(v), where a is any function satisfying anon degeneracy condition, and �nally one can introduce in the right-handside of the equation derivatives in t; x of order strictly less than one.2.3 Use of the Fourier Transform in x; vWe now introduce a di�erent way of looking at averaging lemmas. We areinterested in this section only in the time-dependant case, but we don't tryto get regularity in the t variable. As a consequence, the results we shall getare more adapted to solutions of the transport equation which are de�nedon a time interval [0; T ], for which the initial datum is given.Though the results are weaker than those of the previous section, theproofs turn out to be more easily extendable in the case of discretized intime equations. 23



The idea used here consists in writing down the Fourier transform in xand v of the free transport operator, instead of its Fourier transform in tand x. This procedure was used in particular by Golse (Cf. [37]) and byP.-L. Lions and Perthame (Cf. [59]).As we noticed previously, the interest of this method lies in the factthat it yields results when some discretization in time is in order. Such asituation is described in [31]. In this work, the operator splitting techniquebetween the free transport part and the collisional part of the Boltzmannequation is studied, in the framework of renormalized solutions. We give innext subsection another example of dicretization in time.The proof given here is inspired of [20]. We denote by L2 � w the weaktopology of L2.Theorem 5 Let f 2 C([0; T ]; L2(IRNx � IRNv )� w) solve eq. (38) for someg 2 L2(]0; T [�IRNx � IRNv ). We denote f0 = f(0; �). Then, for any  2C1c (IRN ), the average quantity� (t; x) = ZIRN f(t; x; v) (v)dv (43)lies in L2(]0; T [; H1=2(IRNx )), and for all s > (N � 1)=2,k� kL2(]0;T [;H1=2(IRNx )) � CN;s�Z ZIRN�IRN jf0(x; v)j2 j (v)j2 (1 + jvj2)s dvdx+ Z Z Z[0;T ]�IRN�IRN (jf(t; x; v)j2+ jg(t; x; v)j2) j (v)j2 (1 + jvj2)s dvdxdt�:(44)Proof: Let us denote bf(t; �; v) the Fourier transform of f in the x vari-able, and Ff(t; �; �) the Fourier transform of f in the x; v variables. Then,(38) yields @t bf + i v � � bf = bg: (45)Solving this equation in the sense of distributions, we getbf(t; �; v) = e�i v�� t bf0(�; v) + Z t0 e�i v�� sbg(t� s; �; v) ds: (46)24



Multiplying (46) by  (v), we obtainbf(t; �; v) (v) = e�i v�� tdf0 (�; v) + Z t0 e�i v�� scg (t� s; �; v) ds; (47)and after integration in v,b� (t; �) = F(f0 )(�; t�) + Z t0 F(g )(t� s; �; s�)ds: (48)This type of formula with double Fourier transform evaluated at (�; t�)was used in [37]. For a.e. � 2 IRN , we estimate this quantity thanks toCauchy{Schwarz inequality, and getjb� (t; �)j2 � 2 jF(f0 )(�; t�)j2+ 2 t Z t0 jF(g )(t� s; �; s�)j2 ds: (49)Integrating this estimate on ]0; T [, and using the variable � = t � s, weobtain Z T0 jb� (t; �)j2 dt � 2 Z T0 jF(f0 )(�; t�)j2dt+2T Z T0 Z T0 jF(g )(�; �; s�)j2d�ds� 2j�j Z T j�j0 jF(f0 )(�; � �j�j)j2 d� + 2Tj�j Z T0 Z T j�j0 jF(g )(�; �; � �j�j)j2d�ds:(50)Let us now state a very classical trace lemma.Lemma 1 Let � 2 Hs(IRN� ) with s > (N � 1)=2. Then, for any � 2 IRNsuch that j�j = 1,k�(z�)kL2(z2IR) � CN;s k(Id���)s=2�kL2(IRN� ): (51)For each integral in z, we use this lemma and Plancherel's identity. We getfor a.e. �,Z T0 jb� (t; �)j2 dt � CN;sj�j Zv2IRN ���df0 (�; v)���2 (1 + jvj2)s dv+CN;sj�j Z Tt=0 Zv2IRN ���cg (t; �; v)���2 (1 + jvj2)s dvd�:25



Then,Z T0 ZIRN j�j jb� (t; �)j2d�dt � CN;s�Z ZIRN�IRN jf0(x; v)j2 j (v)j2� (1+jvj2)s dvdx+Z Z Z[0;T ]�IRN�IRN jf(t; x; v)j2 j (v)j2 (1+jvj2)s dvdxdt:�2.4 Time discretizationWe use here the techniques of the previous subsection to get averaging lem-mas adapted to a time discretization of eq. (38). More precisely, we presentthe Euler implicit scheme and the second-order Crank-Nicolson scheme cor-responding to the free transport equation (that is, eq. (38) with g = 0).The results of this subsection are extracted from [20].Note that another example of time discretization is presented in [20]. Itconcerns the convergence of the operator splitting method for the Boltzmannequation in the renormalized framework (Cf. [31]). Let us also mentionthat there exists another method to prove the convergence of the splittingalgorithm, which does not use averaging lemmas, see [72].Finally, we underline the fact that the results of this subsection belongto the general class of the so-called \averaging lemmas at the limit". Thoseare designed to prove the convergence of the numerical schemes towards thesolutions of the kinetic equations. They can concern other variables than t.We introduce implicit methods for solving the free transport equation@tf + v � rxf = 0. The distribution function f is approximated by fn attime n�t (�t > 0, n 2 IN). We treat the cases of the Euler implicit schemefn+1 � fn�t + v � rxfn+1 = 0; (52)and of the second-order Crank-Nicolson schemefn+1 � fn�t + v � rx fn + fn+12 = 0: (53)26



The initial datum fin = f0 is assumed to belong to L2(IRNx � IRNv ). Thenfn is uniformly bounded in L2, kfnkL2(IRNx �IRNv ) � kf0kL2(IRNx �IRNv ). For anytest function  2 C1c (IRNv ), we de�ne the averages�n (x) = ZIRN fn(x; v) (v)dv 2 L2(IRNx ): (54)We begin with an easy computation for the Euler implicit scheme.Theorem 6 For the Euler implicit scheme (52), �n 2 H1=2(IRN) for anyn � 1, and for any s > (N � 1)=2,�t 1Xn=1 k�n k2_H1=2(IRN) � CN;sk (v)(1+ jvj2)s=2k2L1(IRNv )kf0k2L2(IRNx �IRNv ):(55)Proof : We denote by f̂ or by Ff the Fourier transform of f withrespect to the x variable, and by � the corresponding Fourier variable.The solution fn+1 of (52) is given in terms of fn byfn+1(x; v) = Z 10 e�sfn(x��tsv; v) ds; (56)and we easily deduce by induction that for any n � 1,fn(x; v) = R10 e�s sn�1(n�1)!f0(x��tsv; v) ds;bfn(�; v) = R10 e�s sn�1(n�1)!e�i�t s v�� bf0(�; v) ds: (57)Then, for a.e. � 2 IRN , the Fourier transform � of the average in v of f ,b�n (�) = RIRN bfn(�; v) (v)dv= R10 e�s sn�1(n�1)!F(f0 )(�;�ts�) ds: (58)According to the Cauchy-Schwarz inequality,jb�n (�)j2 � Z 10 e�s sn�1(n� 1)! ds Z 10 e�s sn�1(n� 1)! jF(f0 )(�;�ts�)j2ds; (59)27



and since the �rst integral has value 1,�tP1n=1 jb�n (�)j2 � �t R10 �P1n=1 e�s sn�1(n�1)!� jF(f0 )(�;�ts�)j2ds= 1j�j R10 jF(f0 )(�; z �j�j)j2 dz� CN;sj�j Rv2IRN j bf0(�; v)j2dv k (v)(1+ jvj2)s=2k2L1(IRNv )(60)by the same estimate as in Theorem 5. The result (55) follows by integrationwith respect to the variable �.We now turn to the Crank-Nicolson scheme, and propose a very di�erenttype of estimate.Theorem 7 For the Crank-Nicolson scheme (53), the following compact-ness estimate for averages in time holds. For any R > 0,Zj�j>R ������t mXn=0�n b�n (�)�����2 d� � C ��t2A2 + ABR � kf0k2L2(IRNx �IRNv ); (61)where m 2 IN , (�n)0�n�m are arbitrary complex numbers, andA = m�1Xn=0 j�n � �n+1j+ j�mj; B = �t mXn=0 j�nj (62)represent respectively the total variation and the L1 norm of �.Proof : We use the same notations as in the proof of theorem 6.The solution fn+1 of (53) is given in terms of fn byfn+1(x; v) = 2 R10 e�sfn(x� �t2 sv; v) ds� fn(x; v);bfn+1(�; v) = 1�i�t2 v��1+i�t2 v�� bfn(�; v): (63)Therefore, for any n � 0, we obtain by inductionbfn(�; v) =  1� i�t2 v � �1 + i�t2 v � �!n bf0(�; v); (64)and b�n (�) = RIRN bfn(�; v) (v)dv= RIRN �1�i�t2 v��1+i�t2 v���n bf0(�; v) (v)dv: (65)28



Let us now introduce the angle � 2]� �; �[ de�ned by1� i�t2 v � �1 + i�t2 v � � = e�i� ; (66)or equivalently � = 2 Arctg(�t2 v � �). Then,�t mXn=0�n b�n (�) = ZIRN '(�) bf0(�; v) (v)dv; (67)'(�) = �t mXn=0�ne�in� : (68)Using Abel's transform, we get'(�) = �tPm�1n=0 (�n � �n+1)�Pnl=0 e�il��+�t�mPml=0 e�il� ;j'(�)j � �tAj sin(�=2)j � (69)Now, since sin(�=2) = �t2 v � � =q1 + (�t2 v � �)2, we obtainj'(�)j � �tA+ 2Ajv � �j � (70)But we can also use the trivial estimate j'(�)j � B, and combined with (70)this yields j'(�)j � �t A+min� 2Ajv � �j ; B� : (71)Now, coming back to (67) we get for a.e. � 2 IRN������t mXn=0�n b�n (�)�����2 � ZIRN j bf0(�; v)j2dv ZIRN j'(�)j2j (v)j2dv (72)� 2 ZIRN j bf0(�; v)j2dv ��t2A2 ZIRN j (v)j2dv+ ZIRN min2� 2Ajv � �j ; B� j (v)j2dv �:The last integral can be computed,ZIRN min2� 2Ajv � �j ; B� j (v)j2dv (73)29



= Z 1u=�1min2� 2Aj�jjuj ; B��Zv02�? j (u �j�j + v0)j2 dv0� du� CN;s k (v)(1+ jvj2)s=2k2L1(IRNv ) Z 1�1min2� 2Aj�jjuj; B� du= CN;s k (v)(1+ jvj2)s=2k2L1(IRNv ) 8ABj�j �Finally, estimate (72) gives for any s > (N � 1)=2������t mXn=0�n b�n (�)�����2 � 2 ZIRN j bf0(�; v)j2dv�k k2L2(IRN)�t2A2+CN;s k (v)(1+ jvj2)s=2k2L1(IRNv )ABj�j �; (74)and (61) follows by integration in �.Let us now emphasize the big di�erence between the two schemes de-scribed above. Using the implicit scheme (52), we immediately see that forn � 1, fn + �t v � rxfn 2 L2x;v. Therefore, according to [38], �n 2 H1=2x .However, in general �0 =2 H1=2 (for example, take for f0 a tensor product).Then, in an estimate like (61), we only get a term in 1=R (a term in �tappears if the sum starts at n = 0).For the Crank-Nicolson scheme (53), the situation is very di�erent sincethere is time reversibility, as in the continuous case (the L2 norm of fn isconstant). When f0 varies in L2, fn also varies in L2, and thus �n only liesin L2x (for a given n). Compactness only occurs for averages in time, andwe must have a term in �t in (61). However, the situation here is worsethan in the continuous case, since we can only estimate an average in timewith respect to a smooth function �(t) (of bounded variation), whereas inthe continuous case, an L2 function is enough. Note that this regularity of� is really needed. There is no inequality like (61) with the L2 norm in timeinstead of the average with respect to �. This can be seen by writing (65)asb�n (�) = Z ��=�� e�in� Zv02�? df0 ��; 2�tj�j tan �2 �j�j + v0�dv01 + tan2 �2�tj�j d�:(75)Then by Parseval's formula �t Xn2ZZ jb�n (�)j230



= 2��t Z ��=�� �����Zv02�? df0 ��; 2�tj�j tan �2 �j�j + v0�dv0 1 + tan2 �2�tj�j �����2 d�= 2� Z 1u=�1 ����Zv02�? df0 ��; u �j�j + v0�dv0����2 1 + (�t2 j�ju)2j�j du;and it is impossible to control the term in �t2j�j.3 Regularity of Q+3.1 IntroductionWe recall the general form of the positive partQ+ of the Boltzmann operator(18),Q+(f; f)(v) = ZZv�2IRN�2SN�1 f �v + v�2 � jv � v�j2 �� f �v + v�2 + jv � v�j2 �� (76)�B �jv � v�j; v � v�jv � v�j � �� d�dv�;where B is the cross section.The classical assumption of angular cuto� of Grad (Cf. [42]) that B isintegrable will always be made in this section.The properties of Q+ with the assumption of angular cuto� of Grad(without this assumption, Q+ is not de�ned even for very smooth functionsf) have �rst been investigated by P.-L. Lions in [54], [55]. In this work, itis proven that if B is a very smooth function with support avoiding certainpoints, then kQ+(f; f)k _H(N�1)=2(IRNv ) � C kfkL1(IRNv ) kfkL2(IRNv ) (77)for any f 2 L1 \ L2(IRNv ).The proof of this estimate used the theory of Fourier integral operators.The very restricting conditions onB were not a serious inconvenience since inthe application to the inhomogeneous Boltzmann equation, only the strongcompactness in L1 of Q+(f) was used, and not the estimate itself, so thatthese assumptions could be relaxed by a suitable approximation of B.31



An extension of this work to the case of the relativistic Boltzmann kernelcan be found in [6].Then, a simpli�ed proof of (77) was given by Wennberg (Cf. [78] and[79]) with the help of the regularizing properties of the (generalized) Radontransform. The hypothesis on B were considerably diminished, so that forexample forces in r�s with angular cuto� and s � 9 were included.We intend here to give a yet simpli�ed proof of (77)-like estimates, usingonly elementary properties of the Fourier transform. Moreover, we provethat the estimate holds for a large class of cross sections B, including allhard potentials with cuto� (that is when s � 5).One of the drawbacks of the results here given is that instead of havinga L1 norm times a L2 norm in the right-hand side of (77), we only get aL2 norm to the square. The proofs of this section are extracted from [19].They are also close of that of [60].3.2 A simpli�ed situationWe begin with the simplest possible cross section, that is B � 1. We onlytreat here the three-dimensional case for the sake of simplicity (the two-dimensional case is in fact slightly more involved because some part of thecomputation cannot be written down explicitly).Our theorem writes :Theorem 8 For any " > 0, there exists a constant C" only depending on "such that for any f 2 L11(IR3) \ L2(3+")=2(IR3), Q+(f) 2 _H1(IR3) withkQ+(f; f)k _H1(IR3) � C" kfk2L2(1+")=2 : (78)Proof: We note �rst that for all f 2 L11(IR3) \ L2(3+")=2(IR3), the kernelQ+(f; f) lies in L1(IR3).Therefore, we can compute the Fourier transform of Q+(f; f),dQ+(f; f)(�) = ZZZv;v�2IR3�2S2 e�iv��f �v + v�2 � jv � v�j2 ��32



�f �v + v�2 + jv � v�j2 �� d�dvdv� (79)= ZZZv;v�2IR3�2S2 e�i��(v+v��jv�v� j�)=2f(v)f(v�) d�dvdv�;according to the pre-post collisional change of variables.We then note thatZ�2S2 eijv�v� j���=2 d� = 2� Z +1u=�1 eijv�v� jj�ju=2 du= 8� sin(12 jv � v�j j�j)jv � v�j j�j :Thus we obtaindQ+(f; f)(�) = 8� ZZv;v�2IR3 e�i��(v+v�)=2f(v)f(v�)sin(12 jv � v�j j�j)jv � v�j j�j dvdv�:(80)Using the variables z = v + v�2 ; w = v � v�; (81)we get dQ+(f; f)(�) = 8� Z ZIR3�IR3 e�i z�� f(z + w=2)f(z � w=2)�sin(12 jwj j�j)jwj j�j dwdz= 8�j�j ZIR3 df(�+ w2 )f(� � w2 ) sin(12 jwj j�j)jwj dw:According to Cauchy-Schwarz's inequality and Plancherel's identity,ZIR3 j�j2 j dQ+(f)(�)j2 d� � 64 �2 ZIR3 dwjwj2 (1 + jwj)1+"� ZIR3 ZIR3 j df(�+ w2 )f(� � w2 )(�)j2d� (1 + jwj)1+" dw33



� C" ZIR3 ZIR3 jf(z + w2 )f(z � w2 )j2 (1 + jwj)1+" dwdz� C" ZIR3 ZIR3 f(v)2 f(v�)2 (1 + jv � v�j)1+" dvdv�� C" kfk4L2(1+")=2 :and the proof is complete.3.3 General cuto� cross sectionsWe now turn to the general case, that is when cuto� hard potentials (orMaxwellian molecules) are considered (note that assumption (82) below issatis�ed only by potentials gently cuto�).The proof, extracted from [19], follows the same lines as that of the pre-vious section, but is slightly more involved. We still only consider dimensionthree.Theorem 9 Let B be a continuous cross section from ]0;1[�[�1; 1] to IR,admitting a continuous derivative in the second variable. We assume thatB satis�es the estimate :8x > 0; 8u 2 [�1; 1]; ����B(x; u)����+ ����@B@u (x; u)���� � KB(1 + x): (82)Then, for any " > 0, there exists a constant C" only depending on " suchthat for any f 2 L11(IR3) \ L2(3+")=2(IR3), Q+(f; f) 2 _H1(IR3) withkQ+(f; f)k _H1(IR3) � C"KB kfk2L2(3+")=2 : (83)Proof : We �rst note that since jB(x; u)j � KB(1+x), the integral (76)de�ning Q+(f; f) is absolutely convergent for a.e. v. Moreover, Q+(f; f) 2L1(IR3), and kQ+(f; f)kL1 � 4�KB kfk2L11 : (84)Therefore, we can compute the Fourier transform of Q+(f; f),dQ+(f; f)(�) = ZZZv;v�2IR3�2S2 e�iv��f �v + v�2 � jv � v�j2 �� f �v + v�2 + jv � v�j2 ��(85)34



�B �jv � v�j; v � v�jv � v�j � �� d�dvdv�= ZZZv;v�2IR3�2S2 e�i��(v+v��jv�v� j�)=2f(v)f(v�)B �jv � v�j; v � v�jv � v�j � �� d�dvdv�;according to the pre-post collisional change of variables. Thus we obtaindQ+(f; f)(�) = ZZv;v�2IR3 e�i��(v+v�)=2 f(v)f(v�)D(v� v�; �) dvdv�; (86)where for any w; � 2 IR3nf0gD(w; �) = Z�2S2 eijwj���=2B �jwj; wjwj � �� d� (87)= Z +1u=�1 eijwjj�ju=2 Z 2�'=0B0@jwj ; u �j�j � wjwj +p1� u2s1� � �j�j � wjwj�2 cos'1A d' du;with spherical coordinates and u = � � �j�j � (88)Integrating by parts, we getD(w; �) = � Z +1u=�1 2eijwjj�ju=2ijwjj�j� Z 2�'=00@ �j�j � wjwj � up1� u2s1� � �j�j � wjwj�2 cos'1A�@B@u 0@jwj ; u �j�j � wjwj +p1� u2s1� � �j�j � wjwj�2 cos'1A d' du+2eijwjj�j=2ijwjj�j 2�B �jwj; �j�j � wjwj�� 2e�ijwjj�j=2ijwjj�j 2�B �jwj;� �j�j � wjwj� ; (89)35



and thereforejD(w; �)j � 4�jwjj�jKB(1 + jwj) Z +1�1 �1 + jujp1� u2�du (90)+ 8�jwjj�jKB(1 + jwj)� 24�j�j KB(1 + 1=jwj):Coming back to (86) and using the variablesz = v + v�2 ; w = v � v�; (91)we get dQ+(f; f)(�) = Zw2IR3 W (f)(w; �)D(w; �)dw; (92)where W (f)(w; �) = Zz2IR3 e�iz��f(z + w=2)f(z � w=2) dz (93)is a Wigner-type transform of f . Then, according to Cauchy-Schwarz'sinequality, we get for any " > 0��� dQ+(f; f)(�)���2 � Zw2IR3 jW (f)(w; �)j2 (1 + jwj)3+" dw� Zw2IR3 jD(w; �)j2 dw(1 + jwj)3+" (94)� C"K2Bj�j2 Zw2IR3 jW (f)(w; �)j2 (1 + jwj)3+" dw:Finally, using Plancherel's identity, we obtainZ�2IR3 j�j2 ��� dQ+(f; f)(�)���2 d� (95)� C"K2B Zw2IR3 0B@ Z�2IR3 jW (f)(w; �)j2 d�1CA (1 + jwj)3+" dw36



= C"K2B(2�)3 Zw2IR3 0B@ Zz2IR3 jf(z + w=2)f(z � w=2)j2 dz1CA (1 + jwj)3+" dw= C"K2B(2�)3 ZZv;v�2IR3 jf(v)f(v�)j2 (1 + jv � v�j)3+" dvdv�� C"K2B(2�)3kfk4L2(3+")=2 ;and the proof is complete.Note that assumption (82) can be relaxed (in order to treat (not too)soft potentials for example). The estimate is then not as good as in theprevious theorem (Cf. [19] for more details).3.4 Propagation of Singularities for the spatially homoge-neous Boltzmann equationThe results obtained in the previous subsections can be directly applied tothe study of the propagation of singularities for the spatially homogeneousBoltzmann equation.This is due to the fact that as soon as the cross section is cuto�, theBoltzmann operator Q can be written under the formQ(f; f) = Q+(f; f)� f Lf;where Q+ is de�ned by (18) andLf(v) = (A � f)(v);with A(x) = Z�2SN�1 B(x; xjxj � �) d�:As a consequence, a solution of (25), (26) can be written under the\Duhamel" or mild formf(t) = fin exp�� Z t0 (A � f)(�)d��+ Z t0 Q+(f; f)(s) exp�� Z ts (A � f)(�)d��ds: (96)37



Let us look for example at cross sections likeB(x; u) = jxj� b(u);where � 2]0; 1[ and b is of class C1 on [�1; 1] (that is, typical cuto� hardpotentials).We consider solutions of (25), (26) which lie in L1(IR+;L2s(IRN )) forsome large s (such solutions are known to exist as soon as the initial datumalso lie in the same space).Then, for all s; � � 0, (A � f)(�) 2 HN=2+�loc (IRN ) and Q+(f; f)(s) 2H(N�1)=2(IRN ). According to formula (96), we see that for all t � 0, andp � (N � 1)=2,fin 2 Hploc(IRN ) () f(t) 2 Hploc(IRN):This can be seen as a theorem of propagation of singularities. As can bededuced from formula (96), the singularities of the initial datum are prop-agated (in a trivial way : they stay at the same position in the space ofvelocities) and decrease exponentially fast. Such a behavior is con�rmed bynumerical simulations.4 Propagation of Singularities for the spatially in-homogeneous Boltzmann equation4.1 IntroductionIn this section, we investigate the smoothness (more precisely, the lack ofsmoothness, that is, the singularities) of the solution of the full cuto� Boltz-mann equation (16).In the sequel, we shall in fact limit ourselves to cross sections B whichsatisfy the following assumption:Assumption 1. The nonnegative cross section B lies in W 1;1(IR+ �[�1; 1]).We denote as in the previous sectionA(x) = Z�2SN�1 B(x; xjxj � �) d�;and Q(f; f) = Q+(f; f)� f Lf:38



Note that the classical cross sections of (cuto�) Maxwellian moleculesor (cuto�) regularized soft potentials satisfy this assumption. The caseof (cuto�) hard potentials, which do not satisfy assumption 1 because ofthe large relative velocities, is brie
y discussed in a remark at the end ofsection 2.In this section, we shall deal with solutions of the full Boltzmann equa-tion (16), for which many kinds of solutions exist.Global renormalized solutions have been proven to exist for a large classof initial data by DiPerna and P.-L. Lions in [33] (Cf. also [54] and [55]).Global solutions (in the whole space) close to the equilibrium have beenstudied by Imai and Nishida in [46] and Ukai and Asano in [71]. Finally,global solutions for small initial data were introduced by Kaniel and Shinbrot(Cf. [48]) and studied by Bellomo and Toscani (Cf. [11]), Goudon (Cf. [41]),Hamdache (Cf. [43]), Illner and Shinbrot (Cf. [45]), Mischler and Perthame(Cf. [61]), Polewczak (Cf. [65]) and Toscani (Cf. [68]).In our study of how the singularities of the initial datum are propagatedby the Boltzmann equation, we need some smoothness (basically, we needthat f be L1 with some decay in x; v), and we shall therefore concentrate onthe framework of small initial data, where such estimates are available. Wethink that our work is likely to extend to solutions close to the equilibrium,but we shall not investigate this case.We consider only the dimension three for the sake of simplicity.We recall here one of the theorems of existence of such small solutions.We use a formulation adapted to our study, which is inspired from [61].Theorem 10 Let B be a cross section satisfying assumption 1 and f in bean initial datum such that, for all x; v 2 IR3 � IR3,0 � f in(x; v) � (81 kAkL1)�1 exp�� 12(jxj2+ jvj2)�: (97)Then there exists a global distributional solution f to Boltzmann equation(16) with initial datum f in, such that, for all T > 0, t 2 [0; T ] and x; v 2IR3 � IR3,0 � f(t; x; v) � CT exp�� 12(jx� vtj2 + jvj2)� :=MT (t; x; v); (98)where CT is a constant only depending on T and kAkL1.39



We now state the main result of this section. It concerns the form ofthe singularities of the solution of the Boltzmann equation (in our setting),and is extracted from [21]. An analogous result in a di�erent setting can befound in [7].Theorem 11 Let B be a cross section satisfying assumption 1 and f in bean initial datum such that (97) holds. Then we can write, for all (t; x; v) 2IR+ � IR3 � IR3,f(t; x; v) = f in(x� vt) �1(t; x; v) + �2(t; x; v);where �1;�2 2 H�loc(IR+ � IR3 � IR3) for all � 2]0; 1=25[.This theorem shows that the singularities of the initial datum (that is,for example, the points around which f in is in L2 but not in Hs for anys > 0) are propagated with the free 
ow, and decrease exponentially fast(since in fact �1 has an exponential decay).In particular, an x-dependant version of the result of subsection 3.4holds. Namely, for all t � 0 and s < 1=25,f(t) 2 Hs(IR3 � IR3) () f in 2 Hs(IR3 � IR3):The proof of theorem 11 uses the regularizing properties of the kernel Q+presented in the previous section. We recall that they were �rst studied byP.-L. Lions in [58], and extended by Wennberg in [78], [79], by Bouchut andDesvillettes in [19], and by Lu in [60]. We also recall that those properties areexactly what is needed to give the form of the singularities of the solutionsto the spatially homogeneous cuto� Boltzmann equation (this is the resultof subsection 3.4). In order to conclude in our inhomogeneous setting, wealso have to use the averaging lemmas of Golse, P.-L. Lions, Perthame andSentis (Cf. [38]), in the form of theorem 5.Proof : We brie
y sketch the proof of theorem 11 before detailing it.The main idea is the following : we write down the Duhamel form of thesolution of the Boltzmann equation (as in the spatially homogeneous case),also called the mild exponential form. For (t; x; v) 2 IR+ � IR3 � IR3, wehave f(t; x; v) = f in(x� vt; v) exp�� Z t0 Lf(�; x� v(t� �); v) d��40



+ Z t0 �Q+(f; f)(s; x� v(t� s); v) (99)� exp�� Z ts Lf(�; x� v(t� �); v) d���ds:We are going to prove that both Lf and Q+(f; f) lie in L2loc(IR+;H�loc(IR3�IR3)) for any � 2]0; 1=25[.We now begin to give a detailed proof. Next subsection is devoted tothe study of the regularity of Lf .4.2 Regularity of LfDenoting by BR the ball of radius R and center 0 in IR3, we prove thefollowing intermediate result :Proposition 1 Suppose that B satis�es assumption 1 and that f in is suchthat (97) holds. Then, for any T > 0 and R > 0, there exists KT;R > 0 suchthat kLfkL2([0;T ];H1=2(BR�BR)) � KT;R kAkL1(IR3):Proof : Let us choose T > 0. Since Lf is the convolution with respectto v by A, we obviously have that, under assumption 1, Lf 2 L2([0; T ]t �IR3x;H1=2loc (IR3v)) (in fact, Lf lies in L2([0; T ]t�IR3x;W 1;1loc (IR3v))) and satis�eskLfkL2([0;T ]�BR;H1=2(BR)) � K 0T;R kAkW 1;1(IR3):It remains to prove that Lf 2 L2([0; T ]t� IR3v;H1=2loc(IR3x)).Let us de�ne the function T�, 0 < � < 1=2, by T�(v�) = e��v� , and studythe following quantitykLfk2L2([0;T ]t�IR3v ;H1=2(IR3x)) (100)= Zt;vZx;h ���� Zv� A(v � v�)(f(t; x+ h; v�)� f(t; x; v�))dv�����2dx dhjhj4dvdt:We want to use theorem 5, which we here recall under the form :41



Lemma 2 Let f 2 C([0; T ]t;L2w(IR3x � IR3v�)) solve the equation@tf + v� � rxf = g in ]0; T [�IR3� IR3;for some g 2 L2([0; T ]� IR3 � IR3).Then, for any  2 D(IR3), the average quantity de�ned by� (f)(t; x) = Zv�2IR3 f(t; x; v�) (v�) dv�belongs to L2([0; T ];H1=2(IR3)) and satis�es, for any s > 1,k� (f)k2L2([0;T ];H1=2(IR3)) � Cs �Zx;v jf(0; x; v�)j2j (v�)j2(1 + jv�j2)sdv�dx+ Zt;x;v� jg(t; x; v�)j2j (v�)j2(1 + jv�j2)sdv�dxdt� ;where Cs is a constant only depending on s.Using lemma 2, eq. (100) becomes, for any s > 1 and any open ball BRof IR3,kLfk2L2([0;T ]t�BRv ;H1=2(IR3x))� Zv2BR 



�A(v��)T�� fT��



2L2([0;T ];H1=2(IR3))dv� Cs Zv2BR �Zx;v� jf in(x; v�)T�(v�) j2jA(v � v�)j2jT�(v�)j2(1 + jv�j2)sdv�dx+ Zt;x;v� j(@t + v� � rx) fT� j2� jA(v � v�)j2jT�(v�)j2(1 + jv�j2)sdv�dxdt�dv� CR;sM�;s2kAk2L1(IR3) (101)�� 



f inT� 



2L2(IR3�IR3) + 



(@t + v � rx) fT�



2L2([0;T ]�IR3�IR3) �;where CR;s is a constant andM�;s = supv�2IR3 jT�(v�)(1 + jv�j2)s=2j: (102)42



Note that, since we have (97), the following estimate holds :0 � f in(x; v)T�(v) � � e�jxj2=2 e(��1=2)jvj2;where � is an absolute constant, so that (recall that 0 < � < 1=2) we can�nd a constant C� > 0 such that



f inT� 



L2(IR3�IR3) � C�: (103)Moreover, we have����(@t + v � rx) fT� ���� � jQ+(f; f)jT� + jfLf jT� : (104)It is clear, by (98), thatjf(t; x; v) Lf(t; x; v)jT�(v) � MT (t; x; v) LMT (t; x; v)T�(v)� C2T (2�)3=2 kAkL1 e� 12 jx�vtj2 e(�� 12 )jvj2 :Hence there exists a constant C� such that



fLfT� 



L2([0;T ]�IR3�IR3) � C�: (105)It is also clear that, for (t; x; v) 2 [0; T ]� IR3 � IR3,jQ+(f; f)(t; x; v)jT�(v) = 1T�(v) ����Zv�;� f(t; x; v0)f(t; x; v0�) B d�dv������ Q+(MT ;MT )(t; x; v)T�(v)= MT (t; x; v) LMT (t; x; v)T�(v) ;so that 



Q+(f; f)T� 



L2([0;T ]�IR3�IR3) � C�: (106)Taking (105){(106) into account, (104) implies that



(@t + v � rx) fT�



L2([0;T ]�IR3�IR3) � C�: (107)43



Then, using (103) and (107) in (101), we getkLfk2L2([0;T ]t�IR3v;H1=2(IR3x)) � CsC�2M�;s2kAk2L1 :Recalling that Lf 2 L2([0; T ]t� IR3x;H1=2loc(IR3v)), we �nally obtain thatLf 2 L2([0; T ];H1=2loc (IR3x � IR3v)); (108)which ends the proof of proposition 1.We now turn to the more complicated term Q+(f; f).4.3 Regularity of Q+(f; f)Studying Q+(f; f), a new di�culty arises when we try to prove that thisterm is (somewhat) smooth in x; v. Namely, Q+(f; f) itself cannot easily beexpressed in terms of averages in v of f , whereas it was possible for Lf inthe previous section.However, its own averages in v (that is, for � smooth, quantities likeRv Q+(f; f)(t; x; v) �(v)dv) can be expressed in terms of averages in v of f .More precisely, they are integrals with respect to an auxiliary parameter ofsuch averages in v.Therefore, the strategy of proof is now the following : in a �rst step,we show that averages in v of Q+(f; f) are somewhat smooth in x, and wekeep track of the averaging function � in the estimate which expresses thissmoothness. Then, in a second step, we approximate Q+(f; f) by Q+(f; f)�v�", where �" is a smoothing family of functions. The quantity Q+(f; f) �v �"is (somewhat) smooth in x according to the �rst step. It simply remains touse the properties of smoothness in v of Q+(f; f) (that is, the results of theprevious section) to control the di�erence between Q+(f; f) and Q+(f; f)�v�", and to optimize the parameter ".We begin with the �rst part of this program.4.3.1 Study of the averages (in velocity) of Q+(f; f)This part is devoted to the proof of the44



Proposition 2 Let � 2 D(IR3v), B satisfying assumption 1, and f in suchthat (97) holds. Then we have, for any T > 0 and h 2 IR3,Zt;x���Zv[Q+(f; f)(t; x+ h; v)� Q+(f; f)(t; x; v)]�(v)dv���2dxdt� KT k�k2W 1;1(IR3) jhj2=5; (109)where KT is a constant that depends on T (more precisely on the constantCT in (98) and on kBkW 1;1(IR+�[0;1])).Proof: Let � 2 D(IR3v). We haveZIR3 Q+(f; f)(v)�(v) dv = Zv;v�;� f(v0)f(v0�)B �(v)d�dv�dv: (110)By changing pre/post collisional variables, eq. (110) becomesZIR3 Q+(f; f)(v) �(v) dv = Zv;v� f(v)f(v�) Z� B �(v0) d� dv�dv: (111)Let us set Z(v; v�) = Z� B �(v0)d�; (112)which depends neither on t nor on x and belongs to L1(IR3 � IR3). As amatter of fact, we havekZkL1(IR3�IR3) � 4� kBkL1(IR3�S2) k�kL1(IR3):Note that we still cannot directly express the quantity RIR3 Q+(f; f)(v)�(v)dvin terms of averages in v of f , because Z is not a tensor product. As aconsequence, we approximate Z by (integrals) of such tensor product.This is done by taking a mollifying sequence ( ")">0 of functions of v.Thanks to (111), we getZIR3 Q+(f; f)(v) �(v) dv = Zv;v� f(v)f(v�)�Zw;w� Z(w;w�)� "(v � w) "(v� � w�)dw�dw�dv�dv+ Zv;v� f(v)f(v�) � Zw;w� (Z(v; v�)� Z(w;w�))45



� "(v � w) "(v� � w�)dw�dw�dv�dv: (113)We name I1 (respectively I2) the �rst (respectively second) integral in (113).They are functions of t 2 IR+ and x 2 IR3.� Estimate on I1.The integral I1 can be rewritten asI1 = Zw;w� Z(w;w�) � "(��w)(f)(t; x) � "(��w�)(f)(t; x) dw�dw;where � (f) denotes the average quantity of f with respect to  .Let us study the norm k�hI1 � I1kL2([0;T ]�IR3), for h 2 IR3, with thenotation �hg(x) = g(x+ h).The following equality holds :Zt;x j�hI1 � I1j2dxdt= Zt;x ���� Zw;w� Z(w;w�)[� "(��w)(f)(t; x+ h)� "(��w�)(f)(t; x+ h)�� "(��w)(f)(t; x)� "(��w�)(f)(t; x)]dw�dw����2dxdt:We immediately getZt;x j�hI1 � I1j2dxdt � C kZk2L1(IR3�IR3) Zt;x dtdx���� Zw;w����(� "(��w)(f)(t; x+ h)� � "(��w)(f)(t; x))� "(��w�)(f)(t; x+ h)+ � "(��w)(f)(t; x) (� "(��w�)(f)(t; x+ h)� � "(��w�)(f)(t; x))���dw�dw����2� C kZk2L1(IR3�IR3) � Zt;x dtdx ���� Zw;w����((�h � Id)� "(��w)(f))(t; x)� �h� "(��w�)(f)(t; x)���dw�dw����2dxdt+ Zt;x dtdx ���� Zw;w����((�h � Id)� "(��w�)(f))(t; x)46



� "(��w)(f)(t; x)���dw�dw����2dxdt�:In the previous inequality, the two terms can be similarly treated. Forexample, let us study the second one, which we name J .J = Zt;x�Zw � "(��w)(f)(t; x)dw�2��Zw� ���((�h � Id)� "(��w�)(f))(t; x)���dw��2 dxdt� CT Zt;x�Zw� ���((�h � Id)� "(��w�)(f))(t; x)���dw��2 dxdt;where CT is the constant in (98). Let us choose 0 < � < � < 1=2. Using thenotation T� as in subsection 4.2, we haveJ � CT �Zw�e��jw� j2dw����Zt;x;w�((�h � Id)� "(��w�)(f))2(t; x)e�jw�j2dw�dxdt�� CT;�jhj Zw� dw� e�jw�j2


� "(��w�)T�� fT��


2L2([0;T ];H1=2(IR3)):Then, thanks to the averaging lemma (lemma 2), we obtainJ � CT;�;sjhj Zw� dw� e�jw�j2� "Zx;v� f in(x; v�)2T�(v�)2  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dx+ Zt;x;v� ((@t + v� � rx) fT� )(t; x; v�)2�  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dxdt� :Let us take care of the term with f in (the other one is treated in the sameway thanks to (107)). We notice that, for any w� 2 B(v�; "),e�jw�j2 � e2�jv�j2e2�"2 :We thus haveZw� e�jw�j2 Zx;v� f in(x; v�)2T�(v�)2  "(v� � w�)2T�(v�)2(1 + jv�j2)sdv�dxdw�47



� Zx;v� f in(x; v�)2T�(v�)2 T�(v�)2(1 + jv�j2)s� Zw�2B(v�;") e�jw�j2 "(v� � w�)2dw�!dv�dx� Zx;v� f in(x; v�)2T�(v�)2 T���(v�)2(1 + jv�j2)se2�"2k "k2L2dv�dx� (e�M���;s)2"3 



f inT� 



2L2(IR3�IR3);for 0 < " < 1.Note that we have used that k "k2L2 � "�3 and M���;s is de�ned by(102).Hence we get, thanks to (103),J � C�;�;s"3 ;and �nally k�hI1 � I1k2L2([0;T ]�IR3) � C�;�;skZk2L1(IR3�IR3)"�3jhj: (114)� Estimate on I2.Let us now study the norm k�hI2�I2kL2([0;T ]�IR3), with the same notation�h as before. We successively havek�hI2 � I2k2L2([0;T ]�IR3) = Zt;x dtdx���� Zv;v� (f(t; x+ h; v)f(t; x+ h; v�)�f(t; x; v)f(t; x; v�))��Zw;w�(Z(v; v�)� Z(w;w�)) "(v � w) "(v� � w�)dw�dw�dv�dv����2� C kZk2W 1;1(IR3�IR3) �Zw jwj "(w)dw�2� Zt;x dtdx�Zv;v�(�h + Id)(jf(t; x; v)f(t; x; v�)j)dv�dv�2: (115)48



Thanks to (98), the second integral term is bounded by a constant KT � 0.Hence there exists a constant CT � 0 such thatk�hI2 � I2k2L2([0;T ]�IR3) � CT kZk2W 1;1(IR3�IR3)"2: (116)� Estimate on the average quantity.Under assumption 1, the following inequality clearly holds :kZkW 1;1(IR3�IR3) � C k�kW 1;1(IR3); (117)where C is a constant depending on T and kBkW 1;1(IR+�[�1;1]). Conse-quently, using (113){(117), we get, for h 2 IR3,Zt;x���Zv[Q+(f; f)(t; x+ h; v)�Q+(f; f)(t; x; v)]�(v) dv���2dxdt� KT k�k2W 1;1(IR3) ("2 + "�3jhj);that gives (109), if we choose " = jhj1=5.Thus, we conclude the proof of proposition 2.4.3.2 Study of Q+(f; f)We turn back to the proof of our theorem.Let us once again choose a mollifying sequence ( �)�>0 of functions ofv. We obviously have, for all � > 0,Q+(f; f) = (Q+(f; f)�  � �v Q+(f; f)) +  � �v Q+(f; f):Note that, thanks to (109), for any h 2 IR3 and � > 0,Zt;x���Zw [Q+(f; f)(t; x+ h; w)�Q+(f; f)(t; x; w)] �(v � w)dw���2dxdt� C k �(v � �)k2W 1;1(IR3)jhj2=5� C ��8 jhj2=5: (118)On the other hand, we know that thanks to the regularizing propertiesof Q+ (theorem 9), and thanks to the fact that f 2 L1([0; T ]�BR;L2s(IR3v))(for all s; R > 0), Q+(f; f) 2 L1([0; T ]� BR;H1(IR3v)) and thereforekQ+(f; f)�  � �v Q+(f; f)kL2([0;T ]�BR�BR) � C�: (119)49



Using again the translations �h in the variable x (h 2 IR3), and assumingthat jhj � 1, we successively haveZ(t;x;v)2[0;T ]�BR�BR����hQ+(f; f)� Q+(f; f)���2dvdxdt� C� Zt;x;v���(Q+(f; f)�  � �v Q+(f; f))(t; x; v)���2dvdxdt+ Zt;x;v���(�h( � �v Q+(f; f))�  � �v Q+(f; f))(t; x; v)���2dvdxdt�� CR (�2 + jhj2=5��8); (120)thanks to (118){(119).Then for a good choice of � (that is, � = jhj1=25) in (120), we �nd thefollowing estimate : Z T0 Z(BR)xZ(BR)v j�hQ+(f; f)�Q+(f; f)j2dvdxdt!1=2 � Cjhj1=25;which ensures that Q+(f; f) 2 L2([0; T ]� (BR)v ;H�((BR)x)), for any 0 <� < 1=25.Besides, we know that Q+(f; f) 2 L2([0; T ]� (BR)x;H1((BR)v)).Then, by a standard interpolation result, we can state that for all � 2]0; 1=25[, Q+(f; f) 2 L2([0; T ];H�loc(IR3 � IR3)): (121)4.4 ConclusionLet us now conclude the proof of theorem 11. Note that if we use the notationf#(t; x; v) = f(t; x+vt; v), formula (99) is (at least formally) easily rewrittenas f#(t; x; v) = exp�� Z t0 Lf#(�; x; v) d����f in(x; v) + Z t0 �Q+(f; f)#(s; x; v) (122)� exp�Z s0 Lf#(�; x; v) d���ds�:In (122), we name E1 the �rst exponential term and E2 the whole integralterm with Q+. 50



We �rst notice that since Lf has the same H1=2 smoothness in bothvariables x and v, it is clear that Lf# 2 L2([0; T ];H1=2loc (IR3 � IR3)). In thesame way, Q+(f; f)# lies in L2([0; T ];H�loc(IR3 � IR3)) for all � 2]0; 1=25[.Besides, we have, for any h 2 L2([0; T ];H�(BR � BR)), R > 0, � 2]0; 1=25[,Z T0 


Z t0 h(�)d�


2L2([0;T ];H�(BR�BR))dt � T 2khk2L2([0;T ];H�(BR�BR)): (123)Using (123) with h = Lf#, we immediately obtain that for any t 2 [0; T ],Z t0 Lf#(�)d� 2 L2([0; T ];H1=2loc(IR3 � IR3)):Its time derivative is exactly Lf# which also lies in L2([0; T ];H1=2loc (IR3 �IR3)). Consequently, we have proven thatZ t0 Lf#(�) d� 2 H1loc(IR+;H1=2loc(IR3 � IR3)) � H1=2loc (IR+ � IR3 � IR3):Since x 7! ex is a bounded C1 function on [�T maxLf; T maxLf ], wecan conclude that E1 belongs to H1=2loc(IR+ � IR3 � IR3).Then, we notice that E2 is the integral of the product of two terms whichare both in A = L2([0; T ];H�loc(IR3 � IR3)) \ L1(IR+ � IR3 � IR3) for all� 2]0; 1=25[. The previous vector space A is in fact an algebra, so E2 is theintegral of a term that lies in A. Using once again (123), we �nd that E2belongs to H�loc(IR+ � IR3 � IR3) for all � 2]0; 1=25[.Since E1 and E2 are obviously in A, ~�1 = E1 and ~�2 = E1 � E2 liein A too, so that both quantities belong to H�loc(IR+ � IR3 � IR3) for all� 2]0; 1=25[.Finally, from (122) back to the standard formulation, we obtain (99)with the required smoothness on both �1 and �2, because ~�1 and ~�2 havethe same smoothness in the three variables t, x and v.In this proof, we have only considered cross sections B lying in the spaceW 1;1(IR+� [�1; 1]), which covers the case of (cuto�) Maxwellian moleculesand (cuto�) regularized soft potentials.We brie
y explain here how to transform the proof to get a result in thecase of hard potentials (with angular cuto�) or hard spheres.51



Note �rst that the solutions of [61], which have an exponential decay inboth x and v, are replaced by solutions with an algebraic decay in at leastone of the variables, like those of [11] or [65]. Then, throughout the proof,if the algebraic decay concerns the variable v, the function T� is replacedby S�(v�) = (1 + jv�j2)��2 . The estimate on Q+(f;f)S� becomes then moreintricate (but is still valid).Then, one has to replace the estimates in W 1;1 by estimates in C0;�(except for hard spheres) because the cross sections of hard potentials areonly H�older continuous, not Lipschitz continuous.Finally, the L1 estimates must be replaced by weighted L1 estimatesbecause the cross sections of hard potentials (and hard spheres) tend toin�nity when jv � v�j tends to in�nity. At the end, the exponent in theSobolev space is less than 1=25 (and may be very small for hard potentialsclose to Maxwellian molecules, because of the bad smoothness of the crosssection for small relative velocities).The situation for true soft potentials (that is, when one keeps the truesingularity of the cross section for small relative velocities) is not so good,and one probably needs to �nd new estimates to prove a result of smoothnessin such a case.Finally, when one considers a cross section without cuto�, or the Landaukernel, a very di�erent behaviour is expected, and will be described in thesequel.5 The Fourier transform of the Boltzmann opera-tor with Maxwellian molecules and applications5.1 IntroductionUp to now, we have used the Fourier transform dQ(f; f) of Boltzmann's kernelQ(f; f), but we have only written it in terms of f itself and not in terms off̂ . In this section, we shall use a formula, written down by Bobylev in [13],[16], which enables to express directly dQ(f; f) (or dQ+(f; f)) in terms of f̂ .This formula is computed in subsection 5.2.However, this formula is easily tractable only for a special kind of crosssections, namely the Maxwellian molecules. We recall that in our terminol-ogy, it means that B depends only on the second variable. As a consequence,many results are valid only for that particular type of cross sections, and52



many others, whose validity is larger, are more easily proven in the case ofMaxwellian molecules.In subsection 5.2, we write down Bobylev's identity, which expressesdQ(f; f) in terms of f̂ . Then, in the remaining subsections, we treat onlythe case of Maxwellian molecules, and give at the same time results whichare only valid for this cross section (study of explicit and eternal solutions,uniqueness in the non cuto� case) and results which have a larger validity,but which can be proven more easily when Maxwellian molecules are consid-ered (a new proof of the regularization properties of Q+(f; f), and the studyof the smoothness of the solutions of the non cuto� spatially homogeneousBoltzmann equation).5.2 Bobylev's identityWe write down here the proof of an identity due to Bobylev, which enablesto obtain a simple expression of the Fourier transform of Boltzmann collisionoperator (or even, separately, its positive and negative part) in terms of theFourier transform of f . The proof is extracted from [15].Theorem 12 We consider Boltzmann's kernel Q in the case when B doesnot depend on jv � v�j :Q(g; f)(v) = ZIRN ZSN�1 �g(v0�) f(v0)� g(v�) f(v)� b� v � v�jv � v�j � ��d� dv�:Then, the following formulas hold (f̂ or Ff both denote the Fourier trans-form of f in the variable v) :F�Q+(g; f)�(�) = ZSN�1 b� �j�j � �� ĝ(��)f̂(�+) d� ; (124)F�Q�(g; f)�(�) = ZSN�1 b� �j�j � �� ĝ(0)f̂(�) d� : (125)In the previous formulas, we have used the shorthand notation�+ = � + j�j�2 ; �� = � � j�j�2 : (126)53



Proof: We perform here the calculation of the Fourier transform of thegain term in a general Boltzmann collision operator :Q+(g; f)(v) = ZIRN ZSN�1 B�jv � v�j; v � v�jv � v�j � ��g(v0�) f(v0) d� dv�:First of all, for any test-function '(v), holdsZIRN Q+(g; f)(v)'(v)dv = ZIR2N�SN�1 B�jv � v�j; v � v�jv � v�j � ��� g(v�) f(v)'(v0) dv dv� d� :Plugging '(v) = e�iv�� in this identity, we getF [Q+(g; f)](�) = ZIR2N�SN�1 g(v�) f(v), �B�jv � v�j; v � v�jv � v�j � �� e�i v+v�2 ��e�i jv�v�j2 ��� dv dv� d� :A key remark by Bobylev is thatZSN�1 B �jv � v�j; v � v�jv � v�j � ��e�i jv�v�j2 ��� d�= ZSN�1 B �jv � v�j; �j�j � ��e�i j�j2 ��(v�v�) d�:This is a consequence of the general equalityZSN�1 F (k � �; ` � �) d� = ZSN�1 F (` � �; k � �) d�; j`j = jkj = 1(due to the existence of an isometry on SN�1 exchanging ` and k).Thus,F [Q+(g; f)](�) = ZIR2N�SN�1 g(v�) f(v)B�jv � v�j; �j�j � ��� e�i�� v+v�2 e�ij�j�� v�v�2 dv dv� d�= ZIR2N�SN�1 g(v�) f(v)B�jv � v�j; �j�j � �� e�iv��+e�iv���� dv dv� d� ;where �+ and �� are de�ned by (126).54



By the Fourier inversion formula, this is also1(2�)N ZIR2N�SN�1 nZIR2N ĝ(��)f̂(�)B�jv � v�j; �j�j � ��eiv����eiv��e�iv��+e�iv� ��� d�� d�odv dv� d�= 1(2�)N ZIR2N�SN�1 ĝ(��)f̂(�)�ZIR2N B �jv � v�j; �j�j � ��eiv� �(�����)eiv�(���+) dv dv� �d� d� d�� :By the change of variables q = v � v�,ZIR2N B �jv � v�j; �j�j � ��eiv� �(�����)eiv�(���+) dv dv�= ZIRN ZIRN B �jqj; �j�j � �� eiv�(��+������+)e�iq�(�����) dq dv= (2�)N=2B̂ �j�� � ��j; �j�j � �� �[� = � � ��];where � is the Dirac measure, and B̂(j�j; cos�) = RIRN B(jqj; cos�)e�iq�� dqdenotes the Fourier transform of B in the relative velocity variable.Thus the Fourier transform of Q+(g; f) is given by1(2�)N=2 ZIRN�SN�1 ĝ(��)f̂(� � ��)B̂ �j�� � ��j; �j�j � �� d�� d� :Writing �� = �� � ��, we �nd in the endF [Q+(g; f)](�) = 1(2�)N=2 ZIRN�SN�1 ĝ(�� + ��)f̂(�+ � ��)�B̂ �j��j; �j�j � ��d�� d� : (127)In the particular case considered here (that is, when B(jzj; cos �) =b(cos �)), we haveB̂(j��j; cos�) = (2�)N=2�[�� = 0]b(cos �);55



and as a consequenceF [Q+(g; f)](�) = ZSN�1 ĝ(��)f̂(�+)b� �j�j � �� d� :The formula for F [Q�(g; f)](�) is then easily obtained by the same kind ofcomputations (but much simpler).We now write down a simpler form of the Fourier transform of Boltz-mann's kernel (in the case of Maxwellian molecules) for functions which areradially symmetric (or, equivalently, for functions the Fourier transform ofwhich is radially symmetric). We observe thatj�+j2 = j�j2 1 + �j�j � �2 ; j��j2 = j�j2 1� �j�j � �2 ;so that if we de�ne � by cos(2�) = �j�j � �;we obtain j�+j2 = j�j2 cos2 �; j��j2 = j�j2 sin2 �:Then, the Fourier transform of Boltzmann's kernel (in the case of Maxwellianmolecules) for functions which are radially symmetric writes (with � 2 IR)F [Q+(g; f)](�) = Z �=2�=��=2 ĝ(� sin �) f̂(� cos �) �(j�j) d�; (128)F [Q�(g; f)](�) = Z �=2�=��=2 ĝ(0) f̂(�) �(j�j) d�; (129)where �(j�j) = 12 sin(2j�j) b(cos(2�))(in dimension 3). Remember that f̂ and ĝ are even functions of � in theprevious formulas.Those formulas are sometimes called the Fourier transform of Kac's op-erator, since its corresponds to taking the Fourier transform in (31), that is,when v 2 IR andQ(g; f)(v) = ZIR Z ��� �g(v sin � + w cos �) f(v cos � � w sin �)� g(w) f(v)��(j�j)dwd� : (130)56



5.3 Explicit and eternal solutions of Boltzmann's equationwith Maxwellian moleculesUsing formulas (128) and (129) and making the change of variablesx = �22 ; s = cos2 �;together with the change of function�(t; x) = f̂(t; �);Boltzmann's equation for radially symmetric functions writes@t�(t; x) = Z 1s=0 ��(t; sx)�(t; (1� s)x)� �(t; 0)�(t; x)�G(s) ds; (131)where G is related to b.The systematic study of this equation was made by Bobylev and Cer-cignani. The results of this subsection are extracted from their articles [17]and [18].First, we look for solutions to (131) of the form�(t; x) = e�2�x �0(x e�2�t);for �; � 2 IR.The equation satis�ed by �0 is�2� y�00(y) = Z 10 ��0(sy)�0((1� s)y)� �0(0)�0(y)�G(s) ds: (132)We see that �0(y) = (1 + y) e�y is a solution to eq. (132) as soon as� = 12 Z 10 s (1� s)G(s) ds:As a consequence, we obtain solutions � to eq. (131) of the form�(t; x) = e�2�x (1 + x e�2�t) exp�� x e�2�t�:57



Those in turn lead to the following formula for the Fourier transform of theBoltzmann equation :f̂ (t; �) = e�� j�j2 (1 + 12 j�j2 e�2� t) exp�� 12 j�j2 e�2�t�:The well-known BKW mode (Cf. [13], [14] and [51]) is then recovered bytaking the inverse Fourier transform of the previous formula (with � = 12 ,and in dimension 3):f(t; v) = (2� (1� e�� t))�3=2�1 + e�� t3 (1� e�� t) � jvj21� e�� t � 3��� exp�� jvj22(1� e�� t)�:This has long been the only (up to some transformations) known nonneg-ative (nontrivial) explicit solution to the (spatially homogeneous) Boltzmannequation.However, Bobylev and Cercignani recently discovered (Cf. [17]) newnonnegative explicit solutions in the particular case when G = 1.We only write here the simplest one. It is given by the formulaf(t; v) = 2� 12 �� 52 e�t Z 10 u e�u�u+ jvj2 e�2t=32 �2 du : (133)This solution is said to be eternal. This means that it is de�ned andnonnegative for all times t 2 IR.This does not contradict the conjecture that all eternal (nonnegative)solutions with �nite mass and energy of the (spatially homogeneous) Boltz-mann equation are trivial (that is, Maxwellian). The reason for that is thatthe solution given by (133) has in�nite energy.In fact, Bobylev and Cercignani recently made a signi�cant step towardsthis conjecture by proving the following result (Cf. [18]) :58



Theorem 13 Let f be a radially symmetric nonnegative eternal solution ofthe Boltzmann equation with Maxwellian molecules such that all its momentsof even order mn(t) = ZIRN f(t; v) jvj2ndvare �nite for all t 2 IR. Then, f is a (constant) Maxwellian.Proof : We can suppose that m0 = 1 and m1 = N without loss ofgenerality (this is possible thanks to a multiplication and dilatation of f).Then, we want to prove thatf(t; v) = (2�)�N=2 e� jvj22 :We now use the Fourier transform of f and keep the notations (�, s, G, etc.)of this subsection. For the sake of simplicity, we write down the proof onlyin the case when G � 1.The equation satis�ed by � is (131). The same equation is satis�ed by de�ned by  (t; x) = ex �(t; x);that is@t (t; x) = Z 1s=0 � (t; sx) (t; (1� s)x)�  (t; 0) (t; x)�G(s) ds: (134)According to the de�nition of  , we simply want to prove that for all t 2 IR,x 2 IR+,  (t; x) = 1.Then, writing (with the convention that the derivatives concern the sec-ond variable) �(t; x) = +1Xn=0 �(n)(t; 0)n! ; (t; x) = +1Xn=0  (n)(t; 0)n! ;we see that for all n � 2,@t (n)(t; 0)� �n (n)(t; 0) = Xp+q=n;p;q2[1;n�1] n!p! q!59



� (p)(t; 0) (q)(t; 0) Z 10 sp (1� s)q ds; (135)with �n = 2n+1 � 1.We now suppose that we do not have  (0; x) � 1 (that is, f is not aMaxwellian initially), so that there exists p 2 IN� such that  (i)(0; 0) = 0for i = 1; ::; p� 1, and  (p)(0; 0) 6= 0.Then, thanks to (135), it is clear (by induction) that for all t 2 IR, (i)(t; 0) = 0 for i = 1; ::; p�1. Again by induction, for all t 2 IR,  (i)(t; 0) =e�i t  (i)(0; 0) for i = p; ::; 2p� 1, and (2p)(t; 0) = � (2p)(0; 0)� Bp  (p)(0; 0)22�p � �2p � e�2p t + Bp  (p)(0; 0)22�p � �2p e2�p t;with Bp = (2p)!(p!)2 Z 10 sp (1� s)p ds:Then, we observe that 2�p < �2p, so thatBp  (p)(0; 0)22�p � �2p e2�p t < 0:Because �(x) = e�x  (x);one has for all n 2 IN�(n)(t; 0) = Xa+b=n n!a! b! (�1)a (b)(t; 0);so that �(2p)(t; 0) = 2pXb=p (2p)!(2p� b)! b! (�1)2p�b  (b)(t; 0)= 2p�1Xb=p (2p)!(2p� b)! b! (�1)2p�b e2�b t+� (2p)(0; 0)� Bp  (p)(0; 0)22�p � �2p � e�2p t + Bp  (p)(0; 0)22�p � �2p e2�p t:When t ! �1, the dominant term in the previous formula is the term ine2�p t, and it is strictly negative. 60



This means that there exists a time T (negative and large enough inabsolute value) such that �(2p)(T; 0) is negative.We now recall that expandingf̂ (t; jkj) = Z eijkjx1 f(t; x) dx = �(t; jkj22 )in power series, we get for all n 2 IN ,�(n)(t; 0)2n n! = (�1)n2n Z x2n1 f(t; x) dx;so that the assumption that f be nonnegative entails the nonnegativity of�(2p)(t; 0) for all t 2 IR and p 2 IN , and we have a contradiction. Then, f isinitially a Maxwellian and (thanks to a standard theorem of uniqueness), itwill remain a Maxwellian for all times.We also notice that in the computation above, there is no need that thepower series (of � or  ) converge, nor is it compulsory for the equation on� to be de�ned for all time : those are only used at the formal level to writeequations on the moments of f , and could be removed from the proof.Note that the only other known result concerning the eternal solutionsof some spatially homogeneous kinetic equation is the result by Villani (Cf.[76]) for the Fokker-Planck-Landau equation.5.4 Uniqueness for Boltzmann's equation with Maxwellianmolecules without angular cuto�We present here a result of stability of the (cuto� or non cuto�) spatiallyhomogeneous Boltzmann equation with Maxwellian molecules in a weaknorm due to Toscani and Villani (Cf. [69]).In the non cuto� case, no other proof of uniqueness is known.First, we de�ne by d2(f; g) = sup�2IRN jf̂(�)� ĝ(�)jj�j2 ;a distance between functions f; g 2 L12(IRN) such thatZIRN f(v) 0@ 1vjvj22 1A dv = ZIRN g(v) 0@ 1vjvj22 1A dv = 0@ 10N=21A :61



Note that for such functions f; g, the quantity d2(f; g) is indeed �nite.Then, the following property holds :Theorem 14 Let B be a cross section verifying B(x; u) = b(u) (that is,of Maxwellian molecules type) with j sin �j b(cos �) � K j�j�1�
 and K > 0,
 < 2 (in other words, cuto� or non cuto�).Then, for all (nonnegative) energy-conserving solutions f; g of the spa-tially homogeneous Boltzmann equation (25) with respective initial data finand gin satisfyingZIRN fin(v) 0@ 1vjvj22 1A dv = ZIRN gin(v) 0@ 1vjvj22 1A dv;(such solutions are known to exist thanks to theorem 1), one has the relation8t � 0; d2(f(t; �); g(t; �))� d2(fin; gin):Proof : We can impose (up to a translation, a dilatation and a multi-plication) thatZIRN fin(v) 0@ 1vjvj22 1A dv = ZIRN gin(v) 0@ 1vjvj22 1A dv = 0@ 10N=21A :Then, thanks to the identites (124) and (125), we see that f and g satisfy8t � 0; f̂(t; 0) = ĝ(t; 0) = 1;so that @tf̂(�) = ZSN�1 �f̂(��) f̂(�+)� f̂(�)�b� �j�j � �� d�;@tĝ(�) = ZSN�1 �ĝ(��) ĝ(�+)� ĝ(�)� b� �j�j � �� d�;and @t(f̂(�)� ĝ(�)) = ZSN�1 � �f̂ (��) f̂(�+)� ĝ(��) ĝ(�+)���f̂(�)� ĝ(�)�� b� �j�j � �� d�:62



But���� f̂ (��) f̂(�+)� ĝ(��) ĝ(�+)j�j2 ���� � jf̂(�+)j ���� f̂(��)� ĝ(��)j��j2 ���� j��j2j�j2+ jĝ(��)j ���� f̂ (�+)� ĝ(�+)j�+j2 ���� j�+j2j�j2� sup�2IRN ���� f̂(�)� ĝ(�)j�j2 ���� � j��j2 + j�+j2j�j2 �� sup�2IRN ���� f̂(�)� ĝ(�)j�j2 ����:Then, denoting h(�) = f̂(�)�ĝ(�)j�j2 , we obtain@th(�) � ZSN�1 � jjhjjL1(IRN ) � h(�)� b� �j�j � �� d�:Supposing momentarily that b is integrable (cuto� assumption), we imme-diately get that d2(f; g) = sup�2IRN jh(�)j decreases with t.Since this estimate does not depend on b, it also holds in the non cuto�case (this is easily obtained by imposing a cuto� depending on a parametersuch that, when this parameter goes to 0, the cuto� cross section convergesto the non cuto� one).Note that the previous estimate immediately implies a property of unique-ness (as we already pointed out, such a property can easily be obtainedwithout the Fourier transform in the cuto� case, but the proof above is theonly one up to now in the non cuto� case).5.5 Alternative proof for the properties of Q+We now propose a proof of the smoothing properties of Q+ which usesBobylev's identity and which is therefore particularly simple when Maxwel-lian molecules are considered. The assumption and the conclusion are closeto that of theorems 8 and 9, but are not exactly the same.We shall use the following formula to compute some integrals on thesphere SN�1 (N � 2). It deals with functions which only depend on onecomponent: for any function � de�ned on ]� 1; 1[,ZSN�1 �(!N ) d! = 2�(N�1)=2�(N�12 ) Z 1�1 �(u)(1� u2)(N�3)=2 du: (136)63



We now state our result. The proof is close to the one used in [19] :Theorem 15 Assume thatb 2 L2(]� 1; 1[; (1� u2)(N�3)=2du): (137)Then for any f 2 L21(IRN), Q+(f) 2 _H(N�1)=2(IRN) andkQ+(f)k _H(N�1)=2(IRN ) � CN kbkL2(]�1;1[;(1�u2)(N�3)=2du)kfk2L21(IRN ): (138)Proof : We know thatdQ+(f; f)(�) = Z�2SN�1 bf �� � j�j�2 � bf �� + j�j�2 � b� �j�j � �� d�: (139)We have by Cauchy-Schwarz's inequality��� dQ+(f; f)(�)���2 � Z�2SN�1 ���� bf �� � j�j�2 � bf �� + j�j�2 �����2 d�� Z�2SN�1 ����b� �j�j � ������2 d�; (140)and the last integral can be computed by (136),Z�2SN�1 ����b� �j�j � ������2 d� = 2�(N�1)=2�(N�12 ) Z 1�1 jb(u)j2(1� u2)(N�3)=2 du: (141)Then, Z�2SN�1 ���� bf �� � j�j�2 � bf �� + j�j�2 �����2 d�= Z�2SN�1 1Zr=j�j � @@r ���� bf �� � r�2 � bf �� + r�2 �����2 drd�� Z�2SN�1 1Zr=j�j ���� bf �� � r�2 �����2 ���� bf �� + r�2 ����� ����r bf �� + r�2 ����� drd�64



= Zj�j>j�j ���� bf �� � �2 ����� ���� bf �� + �2 ����� ����r bf �� + �2 ����� d�j�jN�1 :Therefore, Z�2IRN d� j�jN�1���� bQ+(f; f)(�)����2� CN ZZ�;�2IRN ���� bf �� � �2 ����� ���� bf �� + �2 ����� ����r bf �� + �2 ����� d�d�� CN ZZ�;�2IRN j bf(�)j j bf(�)j jcv f j(�)j d�d�� CN kfkL2(IRN ) kv fkL21(IRN ):As we shall see in the sequel, it is possible to extend this proof to nonMaxwellian molecules cross sections.5.6 Gain of smoothness for Kac equation without angularcuto�In this subsection, we investigate the smoothness of the solutions of thespatially homogeneous Boltzmann equation when the cuto� assumption ofGrad is not made. The result is quite di�erent from that of the cuto� case,since we shall in fact prove that an immediate e�ect of smoothing occurs,as in the heat equation.In order to put into evidence this e�ect, we investigate here the simplestnontrivial model, that is Kac's equation (de�ned by (130)) or, equivalenty,Boltzmann's equation with Maxwellian molecules in a radially symmetriccontext.We shall even restrict our attention to a typical non cuto� cross section,that is �(j�j) = j sin �j�2 cos �1j�j��=4 ; (142)rather than try to give general conditions.We state a theorem which was �rst proven in [26]. The proof given hereis however extracted from [29]. 65



Theorem 16 We consider Kac's operator Q de�ned by (130), together withthe cross section (142).Then, for all measurable even initial datum f in � 0 a.e. on IR satisfyingE(fin) := ZIR(1 + v2 + j log f inj)f indv < +1; (143)the Cauchy problem@tf(t; v) = Q(f; f)(t; v); f(0; �) = fin (144)has an a.e. even nonnegative solution f such thatsupt>0 ZIR(1 + v2 + j log f(t; v)j) f(t; v)dv < +1 : (145)In addition, for all � > 0,f 2 L1loc([�;+1[; H1(IRv)) : (146)Proof: We admit the existence of an even a.e. nonnegative solution toeq. (144) such that the conservation of mass and energy holds, and suchthat the entropy decreases. Moreover, we shall write down the estimates onf as if it were smooth. In order to justify all our computations, we shouldin fact write them on the solution of an approximated problem. We shallnot do that here for the sake of simplicity.According to formulas (128) and (129), we see thatF [Q(g; f)](�) = Z �=2�=��=2 �ĝ(� sin �) f̂(� cos �)� ĝ(0) f̂(�)��(j�j) d�:Then, for all � � 0,ZIR F [Q(g; f)](�)f̂(�)j�j2�d� = A+B; (147)with A = ZIR Z �=4��=4 �f̂ (� cos �) ĝ(� sin �) f̂(�)� 12 ĝ(0) �jf̂(�)j2 + jf̂(� cos �)j2� � j�j2� j sin �j�2 cos � d�d� (148)66



andB = 12 ZIR Z �=4��=4 ĝ(0)�jf̂(� cos �)j2 � jf̂(�)j2� j�j2� j sin �j�2 cos � d�d� :(149)Changing variables by � cos � 7! � shows thatjBj = 12 �����ZIR Z �=4��=4 ĝ(0)jf̂(�)j2j�j2�[(cos �)�2� � 1]j sin �j�2 cos �d������� E� ZIR g(v) dv kfk2H2� ; (150)with E� = 12 Z �=4��=4[(cos �)�2� � 1] j sin�j�2 cos � d� < +1 : (151)The most important estimate is the one concerning A:A � �12 ZIR Z �=4��=4 �jf̂(�)j2 + jf̂(� cos �)j2�� (ĝ(0)� jĝ(� sin �)j) j�j2� cos �j sin �j2 d�d�� �12 ZIR Z �=4��=4 jf̂(�)j2 (ĝ(0)� jĝ(� sin �)j) j�j2� j sin �j�2 cos � d�d� (152)(since g � 0 a.e., ĝ(0) = kgkL1 � jĝ(�)j for all � 2 IR).We now use the change of variables (�; �) 7! (�; � sin �) (this is where thespecial form (142) of the cross section helps) and getA � �12 ZIR Z j�j=p2�j�j=p2�ĝ(0)� jĝ(u)j� jf̂(�)j2j�j2�+1 dujujd�� �12 Z 1�1 ZIR g(x)�1� cos(ux)�dxdu�kfk2H�+1=2 � p2kfk2H�� : (153)As a consequences of estimates (150) and (153), we see thatZIR F [Q(g; f)](�) f̂(�) j�j2�d� � �Cg;�kfk2H�+1=2 +Dg;�kfk2H� ; (154)where Cg;� and Dg;� are nonnegative constants depending only on � > 0and E(g) (de�ned in (143)). 67



We now take the Fourier transform (in v) to both sides of (144) and mul-tiply the resulting equation by f̂(t; �)j�j2� (remember that f̂ is real becausef is even).We know that thanks to estimate (154),ddtkf(t)k2H� � �Cf;�kf(t)k2H�+1=2 +Df;�kf(t)k2H� : (155)Here, Cf;� and Df;� only depend on � because the evolution semigroup of(144) conserves the mass and energy of f and decreases the H function.Using an interpolation of H� between H�+1=2 and H�d for d largeenough (typically d > 1=2 so that L12 � H�d, estimate (155) becomes (forsome s�; K�; L� > 0),ddtkf(t)k2H� � �K� kf(t)k2+s�H� + L�: (156)Then, using a Gronwall type inequality, we see that for all �; t0; T > 0,supt0�t�T kf(t)kH� < +1:Note that the method used here is very close to that of Nash for the parabolicequations.The proof described in this subsetcion applies to the 3D homogeneous(non radially symmetric) Boltzmann equation for Maxwell molecules with-out angular cuto�: for all a.e. nonnegative measurable initial data with �nitemass, energy and entropy, the number density f satis�es f(t; �) 2 C1(IR3)for all t > 0. This is partly proven (in 2D) in [28].6 Extensions in the case of other cross sections6.1 IntroductionOne could think that though somehow complicated, the formula giving theFourier transform of Q(f; f) in terms of the Fourier transform of f whenthe cross section is not that of Maxwellian molecules will enable to extendthe results of the previous section.However, it turns out that this idea is hard to put in application. Amongthe rare works using this formula, one can quote [27] and [66].68



In fact, in order to extend the theorems of the previous section, it seemsa better idea to �nd estimates in the standard space in which appears thecross section of Maxwellian molecules, and only then, to take the Fouriertransform.In this section, we present two applications of this vague idea. The �rstone enables to extend the proof of the regularity properties of Q+ obtainedin the previous section. The second one deals with the non cuto� spatiallyhomogeneous Boltzmann equation.Finally, we conclude this introduction by pointing out the analogy be-tween the role of the Maxwellian molecules (with respect to other crosssections) and the role of the linear PDEs with constant coe�cients (withrespect to the linear PDEs with variable coe�cients). The ideas developedin this section have their origin in this analogy.6.2 Properties of Q+We now propose an extension of the result of subsection 5.5 in the case ofhard potentials. We obtain a result which is close to that of theorem 9, butstill with an assumption and a conclusion slightly di�erent. The theoremand its proof are extracted from [19].We shall make on the cross section the following assumption :Assumption 2 : We suppose that B takes the formB �jv � v�j; v � v�jv � v�j � �� = b1�jv � v�j� b2� v � v�jv � v�j � �� ; (157)where b1 and b2 are functions de�ned on ]0;1[ and ]�1; 1[ respectively, andsatisfy for some Kb � 0, �b � 0,8x > 0; jb1(x)j � Kb (1 + x)�b; (158)and b2 2 L2(]� 1; 1[; (1� u2)(N�3)=2du): (159)Then, the following result holds :69



Theorem 17 Under assumption 2, for any f 2 L21+�b(IRN), Q+(f; f) 2_H(N�1)=2(IRN ), and there exists a constant CN > 0 such thatkQ+(f; f)k _H(N�1)=2(IRN ) � CN Kb kb2kL2(]�1;1[;(1�u2)(N�3)=2du)kfk2L21+�b(IRN):(160)Proof : We �rst de�ne the operator Q+ for functions of two variablesF (v1; v2), v1; v2 2 IRN byQ+(F )(v) = ZZv�2IRN�2SN�1 F �v + v�2 � jv � v�j2 �; v + v�2 + jv � v�j2 �� (161)� b2� v � v�jv � v�j � �� d�dv�:Then, theorem 17 is the direct consequence of the following proposition :Proposition 3 For the linear operator (161), we have(i) If b2 2 L1(]� 1; 1[; (1� u2)(N�3)=2du), then for any F 2 L1(IRN � IRN ),Q+(F ) 2 L1(IRN) andkQ+(F )kL1(IRN) � 2�(N�1)=2�(N�12 ) kb2kL1(]�1;1[;(1�u2)(N�3)=2du)kFkL1(IRN�IRN ):(162)(ii) If b2 2 L2(] � 1; 1[; (1 � u2)(N�3)=2du), then for any F 2 L2(IRN �IRN ) such that (v2 � v1)F 2 L2(IRN � IRN ), the integral (161) is absolutelyconvergent for a.e. v, Q+(F ) 2 _H(N�1)=2(IRN ) andkQ+(F )k _H(N�1)=2(IRN ) � CN kb2kL2(]�1;1[;(1�u2)(N�3)=2du)�kFk1=2L2 k(v2 � v1)Fk1=2L2 : (163)Let us postpone the proof of Proposition 3 and deduce Theorem 17.Proof of Theorem 17. Let us de�neF (v1; v2) = f(v1) f(v2) b1 (jv2 � v1j) : (164)70



Then, it is clear that Q+(f; f) = Q+(F ). Now, by (158) we havejF (v1; v2)j � jf(v1)jjf(v2)jKb(1 + jv2 � v1j)�b� Kbjf(v1)jjf(v2)j(1 + jv1j+ jv2j)�b� Kb j(1 + jv1j)�bf(v1)j j(1 + jv2j)�bf(v2)j : (165)Therefore, kFkL1 � Kb kfk2L1�b ; kFkL2 � Kb kfk2L2�b ; (166)and sincej(v2 � v1)F (v1; v2)j � jv1jjF (v1; v2)j+ jv2jjF (v1; v2)j� Kb���(1 + jv1j)1+�bf(v1)������(1 + jv2j)�bf(v2)���+Kb���(1 + jv1j)�bf(v1)������(1 + jv2j)1+�bf(v2)���;we also have k(v2 � v1)FkL2 � 2KbkfkL2�bkfkL21+�b : (167)Now since b2 2 L2 by (159), we can apply Proposition 3 (ii), and we obtainthat Q+(f; f) = Q+(F ) 2 _H(N�1)=2, andkQ+(f; f)k _H(N�1)=2 � CN kb2kL2Kb kfk3=2L2�b kfk1=2L21+�b ; (168)and (160) follows since kfkL2�b � kfkL21+�b .Proof of Proposition 3. Estimate (i) is easy, and we only prove (ii).By a computation similar to that of subsection 5.2, we getdQ+(F )(�) = Z�2SN�1 bF �� � j�j�2 ; � + j�j�2 � b2� �j�j � �� d�: (169)Then, the computation closely follows that of theorem 15.We have by Cauchy-Schwarz's inequality��� dQ+(F )(�)���2 � Z�2SN�1 ���� bF �� � j�j�2 ; � + j�j�2 �����2 d� Z�2SN�1 ������ �j�j � ������2 d�;(170)and the last integral can be computed by (136).71



Then, Z�2SN�1 ���� bF �� � j�j�2 ; � + j�j�2 �����2 d�� Zj�j>j�j ���� bF �� � �2 ; � + �2 ����� �����r2 bF � r1 bF��� � �2 ; � + �2 ����� d�j�jN�1where r1 bF and r2 bF are the gradients of bF with respect to the �rst andsecond variables. Therefore,Z�2IRN d� j�jN�1 Z�2SN�1 ���� bF �� � j�j�2 ; � + j�j�2 �����2 d�� 2N (2�)2NkFkL2(IRN�IRN )k(v2 � v1)FkL2(IRN�IRN );and together with (170), we obtain (163).6.3 Gain of smoothness in the non cuto� case6.3.1 Introduction and presentation of the estimateAs speci�ed in the general introduction of this section, we shall not try hereto use the formula which gives the Fourier transform of Q(f; f) in termsof the Fourier transform of f for non Maxwellian molecules. Instead, weshall choose a quantity (the entropy dissipation) which is monotonous withrespect to the cross section, so that it is possible to estimate it in termsof the same quantity for Maxwellian molecules. Then, a computation closeto that of subsection 5.6 yields an estimate of regularity (typically, someSobolev norm of pf can be estimated by the entropy dissipation).In this subsection, we consider only the dimension three, and we take across section B which satisfy the two following assumption (for all x � 0,� 2 [0; �]) : K0 j�j�1�� � sin � B(x; cos�) � K1 (1 + jxj) j�j�1��; (171)for some K0; K1 > 0 and � 2]0; 2[.This is a typical assumption of non cuto� hard potentials (includingMaxwellian molecules), except that usually for hard potentials, the crosssection takes the value 0 for x = 0. This last di�culty leads to tremendous72



technicalities but can be overcome. We shall not present those di�cultieshere. This subsection presents works which are included in [4]. In thisreference can be found a much more complete overview of the problemstackled here.We shall prove here the following estimate :Theorem 18 Under assumption (171) on the cross section, one hasD(f) � c1kpfk2H�=2 � c2kfk2L12 : (172)for some constants c1 and c2 which may depend on K0; � and (only) on themass, entropy and energy of f .6.3.2 Proof of the estimateFirst we use the monotonicity of D with respect to the cross section B inorder to replace B by b � b( v�v�jv�v�j � �) de�ned bysin � b(cos�) = K0 j�j�1�� : (173)We getD(f) = � ZIR2N�SN�1 �f(v0�) f(v0)�f(v�) f(v)� log f(v)B dv dv� d� (174)� � ZIR2N�SN�1 �f(v0�) f(v0)� f(v�) f(v)� log f(v) b dv dv� d�: (175)Then, we rewrite D(f) using the standard pre/post collisional change ofvariables :D(f) � � ZIR2N�SN�1 �f(v0�) f(v0)� f(v�) f(v)� log f(v) b dv dv� d� (176)� ZIR2N�SN�1 f(v�) f(v) log f(v)f(v0) b dv dv� d�= ZIR2N�SN�1 f(v�) �f(v) log f(v)f(v0) � f(v) + f(v0)� b dv dv� d�+ ZIR2N�SN�1 f(v�) (f(v)� f(v0)) b dv dv� d� :73



This decomposition splits D(f) into two parts, the �rst of which is signedand retains all the smoothness control. As for the second, it involves strongcancellations due to the presence of the term f(v)� f(v0).Under our assumptions on the cross-section, a general lemma (calledcancellation lemma) of [4] gives a bound for the second term on the right,Z f(v�) (f(v)� f(v0)) b dv dv� d� � c2 kfk2L12 :For the �rst term, we use the inequalityx log xy � x+ y � (px�py)2 ;which can be proven easily using the fact that it is homogeneous of degreeone.HenceD(f) + c2 kfk2L12 � Z f(v�) (qf(v0)�qf(v))2 b dv dv� d�: (177)From now on, we let F (v) = qf(v)and we use the notation F 0 for F (v0).Then we use the following result (written in an arbitrary dimension N) :Lemma 3 The following Plancherel-type identity holds for arbitrary func-tions g 2 L1(IRN ), F 2 L2(IRN) :ZIR2N ZSN�1 g(v�) (F 0 � F )2 b� v � v�jv � v�j � �� dv dv� d� (178)= 1(2�)N ZIRN ZSN�1 hĝ(0)jF̂ (�)j2+ ĝ(0)jF̂(�+)j2�ĝ(��)F̂ (�+)F̂ (�)� ĝ(��)F̂ (�+)F̂ (�)ib� �j�j � ��d� d� ;with the notations of (126). 74



Proof of Lemma 3 :Expanding the quadratic term in (178) gives three terms,F 02 � 2FF 0 + F 2 : (179)From now on, we denote by Qb ( and Q+b ) Boltzmann's operator (andits positive part) with the cross section b (that of Maxwellian molecules).We begin with the middle term. By the pre/post collisional change ofvariables and Parseval's identity,Z b� v � v�jv � v�j � �� g(v�)F 0F dv dv� d� = Z Q+b (g; F )F dv= 1(2�)N Z F�Q+b (g; F )�F̂ d� :Then, we invoke Bobylev's identity (124) and deduce thatZ b� v � v�jv � v�j � �� g(v�)F 0F dv dv� d�= 1(2�)N Z b� �j�j � �� ĝ(��)F̂ (�+)F̂ (�)d� d� :Of course, this expression is also equal to its own complex conjugate. Thisshows how to compute the cross-products in (178).Next, we note that, since RSN�1 b(k � �) d� does not depend on the unitvector k,Z b� v � v�jv � v�j � �� g(v�)F 2 dv dv� d� = Z d� Z g(v�) dv� Z F 2 dv (180)= 1(2�)N Z b� �j�j � �� ĝ(0) jF̂ j2(�) d�d�;where we have applied the usual Plancherel identity.For the term involving F 02, we �rst make the change of variables (v; v�)!(v � v�; v�), and then v ! v0 to obtainZ Z g(v�) b( vjvj � �) �����v�F (v + jvj�2 )���2dv d� dv� (181)75



= Z Z g(v�) b( (v0; �)) 2N�1( v0jv0j � �)2 j��v�F (v0)j2 dv0 d� dv� ;where  (v0; �) = 2� v0jv0j � ��2 � 1 ;and ��v�F = F (v� + �).Because jF(�hF )j = jF(F )j, and using the fact that RSN�1 b(k � �) d�does not depend on k, we obtain1(2�)N Z g(v�)�Z b( (�; �)) 2N�1� �j�j � ��2 jF̂ (�)j2d� d� �dv� :Finally we note that the inner integral does not depend on v�, so that,reversing the change of variables, we can rewrite the last expression as1(2�)N ĝ(0) Z b� �j�j � �� ����F̂ �� + j�j�2 �����2 d� d�:Putting all the pieces together, we conclude the proof of the identity.As a consequence, we see thatZIR2N ZSN�1 b� v � v�jv � v�j � �� g(v�) (F 0 � F )2 dv dv� d�� 12(2�)N ZIRN jF̂ (�)j2�ZSN�1 b� �j�j � �� (ĝ(0)� jĝ(��)j)d�� d� :Then, we use the following result :Lemma 4 Suppose that b satis�es assumption (173). Then, there exists apositive constant Cg depending only on the mass, energy and entropy of gand b such that for j�j � 1,ZS2 b� �j�j � �� (ĝ(0)� jĝ(��)j)d� � Cg j�j� : (182)This lemma is itself a consequence of the two lemmas below.76



Lemma 5 There exists a positive constant C0g, depending only on the mass,energy and entropy of g such that for all � 2 IR3,ĝ(0)� jĝ(�)j � C 0g (j�j2 ^ 1):Proof of lemma 5 : Note �rst that for some � 2 IR,ĝ(0)� jĝ(�)j = ZIR3 g(v) (1� cos(v � � + �)) dv= 2 ZIR3 g(v) sin2�v � � + �2 � dv� 2 sin2 " Zfjvj�r;8p2ZZ;jv��+��2p �j�2 "g g(v) dv� 2 sin2 "�jjgjjL1(IR3) � jjgjjL11(IR3)r � Zjvj�r;9p2ZZ;jv� �j�j+ �j�j�p 2�j�j j�2 "j�j g(v) dv�� 2 sin2 "�jjgjjL1(IR3) � jjgjjL11(IR3)r � supjAj� 4 "j�j (2 r)2 (1+ r j�j� ) ZA g(v) dv�: (183)When j�j � 1, we obtain our lemma withC 0g = 2 sin2 "�jjgjjL1(IR3) � jjgjjL11(IR3)r � supjAj�4 " (2 r)2+ 2"� (2 r)3 ZA g(v) dv�;" > 0 and r > 0 being chosen in such a way that this quantity is positive.When j�j � 1, we put � = "j�j in (183), and setC0g = 2 �2 infj�j�1 ����sin2(� j�j)�2 j�j2 ������jjgjjL1(IR3) � jjgjjL11(IR3)r � supjAj�4 � (2 r)2 (1+ r� ) ZA g(v) dv�;� > 0 and r > 0 being chosen in such a way that this quantity is positive.Lemma 6 There exists a constant K(�), such that ifsin � b(cos�) � K�1+� as � ! 0; � > 0then for all � 2 IR3, j�j � 1,ZS2 b� �j�j � �� (j��j2 ^ 1) d� � K(�)j�j�:77



Proof of lemma 6 :We �rst note that j��j2 = j�j22 �1� �j�j � �� :Passing to spherical coordinates, we �nd for some �0 > 0,ZS2 b( �j�j � �)(j��j2 ^ 1) d� = 2� Z �20 sin � b(cos �)�� j�j22 (1� cos �) ^ 1�d�� �K Z �00  j�j2�22 ^ 1! d��1+� :By the change of variables � ! j�j�, this integral is alsoj�j� Z �00  �22 ^ 1! d��1+� ;so that when j�j � 1, lemma 6 holds withK(�) = K � Z �00 (�22 � 1) d��1+� :6.3.3 Regularity for the spatially homogeneous Boltzmann equa-tion without cuto�Let B be a cross section satisfying assumption (171), and f a solution of(25), (26) given by theorem 1.A straightforward application of Theorem 18 shows that such a solutionsatis�es the smoothness estimatepf 2 L2([0; T ];H�=2loc(IRNv )): (184)If we suppose moreover thatB is smooth (and corresponds to hard potential)with respect to the �rst variable, then it is possible (at least in dimensiontwo) to prove that f lies in Schwartz's space S.78



7 Inhomogeneous Dissipative equations7.1 IntroductionWe now wish to investigate the interaction of the free transport operatorand of the non cuto� Boltzmann operator. Unfortunately, there is at thepresent time no good setting to study the smoothness of the solution of thisequation (the renormalized solutions with a defect measure of Alexandreand Villani (Cf. [5]) do not seem to be regular enough). As a consequence,we turn to simpli�ed models keeping the same features.We begin with the classical linear model of Vlasov-Fokker-Planck with acon�ning potential, which models particles interacting with a thermal bath.This is a linear second order PDE, for which it is possible to use the theoryof H�ormander of hypoellipticity (Cf. [44], [49], [50], [24]). We propose herea direct computation by Fourier transform when the potential is quadratic(this enables to �nd a classical explicit solution in this case), or close toquadratic (then, this computation enables to directly �nd the smoothnessin all variables even when the time tends to in�nity).Then, we introduce a model which is quadratic, but close to linear (inthe sense that the collision operator is a product of a function dependingonly on t and x by a linear operator). We prove that some smoothness inall variables occurs as soon as t > 0.7.2 Vlasov-Fokker-Planck equation with quadratic potentialWe consider in this subsection the Vlasov-Fokker-Planck equation with aquadratic con�ning potential, that is, equation@tf + v � rxf � x � rvf � rv � (rvf + v f) = 0: (185)We perform here a classical computation which enables to obtain theexplicit (Fourier transform of the) solution to this equation, once an initialdatum is given.We �rst write down the Fourier transform in x and v of eq. (185). Wedenote by � and � the corresponding Fourier variables, and by f̂ the Fouriertransform of f . p This equation writes@tf̂ + � � r�f̂ + (� � �) � r�f̂ + j�j2 f̂ = 0: (186)79



We introduce the characteristic di�erential system associated to eq. (186) :_� = �; �(0) = �0; (187)_� = � � �; �(0) = �0; (188)the solution of which is given by(�(t); �(t)) = 2p3e t2 " p32 cos p32 t!� 12 sin p32 t!! �0 + sin p32 t! �0;� sin p32 t! �0 +  p32 cos p32 t!+ 12 sin p32 t!! �0#: (189)Then, the solution of equation (186) satis�esddt f̂(t; �(t); �(t)) = �j�(t)j2 f̂(t; �(t); �(t)); (190)so thatf̂(t; �(t); �(t)) = f̂ (0; �0; �0) exp�16 (j�0j2 + j�0j2 � 4 �0 � �0) et cos(p3 t)+p36 (j�0j2 � j�0j2) et sin(p3 t)+23 (�j�0j2 � j�0j2 + �0 � �0) et + 12 (j�0j2 + j�0j2)�: (191)Noticing now that equations (189) can be solved in the form�0 = e� t2 �� cos p32 t! + p33 sin p32 t!� � � 2 p33 sin p32 t! ��;�0 = e� t2 �2 p33 sin p32 t! � + � cos p32 t! � p33 sin p32 t!� ��:We obtain in this way the �nal explicit form of the Fourier transform ofeq. (185) :f̂(t; �; �) = f̂�0; e� t2 �(cos p32 t!+p33 sin p32 t!) ��2 p33 sin p32 t! ��;80



e� t2 �2 p33 sin p32 t! � + (cos p32 t!� p33 sin p32 t!) ��� eA(t;�;�);whereA(t; �; �) = �� 12 + 23 e�t � 16 e�t cos �p3t�+ p36 e�t sin �p3t�� j�j2+�� 12 + 23 e�t � 16 e�t cos �p3t�� p36 e�t sin �p3t�� j�j2�43 e�t sin p32 t!2 � � �:Then, it is possible (by studying the quadratic form appearing in the previ-ous formula : this is done in lemma 7 below) to prove that f is smooth assoon as t > 0.The idea of the previous computation can be summarized in the followingremark : the Fourier transform changes a linear partial di�erential equationwith constant coe�cients into an ordinary di�erential equation (the Fouriertransform is not taken here with respect to the time variable). It also changesa linear partial di�erential equation with a�ne coe�cients into a �rst orderpartial di�erential equation. Such an equation can then be solved with themethods of characteristics.7.3 Vlasov-Fokker-Planck equation with a potential close toquadraticWe now introduce a con�ning potentialV (x) = jxj22 + �(x); (192)where � 2 H1(IRN).It is not possible to �nd an explicit solution to the corresponding Vlasov-Fokker-Planck equation@tf + v � rxf � rxV (x) � rvf � rv � (rvf + v f) = 0; (193)as in the previous subsection, but we still can obtain an hypoellipticityproperty which is uniform when t!1, using a computation close to whatwe did in the previous subsection.More precisely, we prove the following proposition :81



Proposition 4 Let f 2 C(IR+t ; L1(IRNx � IRNv )) be a solution of eq. (193),with V (x) given by (192). Then, for any t0 > 0, the function f lies in thespace L1([t0;+1);C1b (IRN � IRN )), i.e. has all its derivatives in x and vbounded, uniformly for t � t0 > 0.Proof : We �rst establish a convenient representation formula. Werewrite equation (193) as@tf + v � rxf � x � rvf �rv � (rvf + v f) = r�(x) � rvf; (194)and denote by f̂(t; �; �) = ZIRN�IRN e�i (x��+v��) f(t; x; v) dvdx (195)the Fourier transform of f .Eq. (194) becomes@tf̂ + � � r�f̂ + (� � �) � r�f̂ + j�j2 f̂ = i � � dr� f: (196)We introduce (as in the previous section) the characteristic di�erential sys-tem associated to the �rst-order di�erential part of the left-hand side of (196) :_� = �; (197)_� = � � �; (198)the solution of which is given by the 
owTt(�; �) = 2p3e t2" p32 cos p32 t! � 12 sin p32 t!! � + sin p32 t! �;� sin p32 t! � +  p32 cos p32 t!+ 12 sin p32 t!! �#� [T 1t (�; �); T 2t (�; �)]:The solution of equation (196) can be written under the (semi{explicit)Duhamel form f̂(t; �; �) = f̂0(T�t(�; �)) e�R t0 jT 2��t(�;�)j2 d� (199)82



+ i Z t0 T 2s�t(�; �) dr� f(s; Ts�t(�; �)) e�R ts jT 2��t(�;�)j2 d� ds:After the change of variables � ! t � �; s ! t � s, we end up with theso-called Duhamel representation of f̂ :f̂(t; �; �) = f̂0(T�t(�; �)) e�R t0 jT 2��(�;�)j2 d�+ i Z t0 T 2�s(�; �) dr� f(t � s; T�s(�; �)) e�R s0 jT 2��(�;�)j2 d� ds: (200)We now give two lemmas.Lemma 7 There exists K > 0, such that for any s � 0, �; � 2 IRN , onehas Z s0 jT 2��(�; �)j2d� � K � inf(s; 1)3 j�j2 + inf(s; 1) j�j2�: (201)Proof of Lemma 7 : It is obviously enough to prove the lemma fors 2 [0; s0] for some s0 < 1.But for s 2 [0; s0], we haveZ s0 jT 2��(�; �)j2d� � 43 e�1 Z s0 ���� sin(p32 �) �+  p32 cos(p32 �)� 12 sin(p32 �)! �����2 d�� 23 e�1 �(s� sin(p3 s)p3 ) j�j2+ (1� cos(p3 s) + sin(p3 s)p3 � s) � � �+(12 sin(p3 s)p3 + s + 12 cos(p3 s)� 12) j�j2�= 23 e�1 ��1(s) (s3 j�j2) + 2�2(s) (s2 � � �) + �3(s) (s j�j2)�; (202)where�1(s) = s � sin(p3 s)p3s3 ; �2(s) = 1� cos(p3 s) + sin(p3 s)p3 � s2 s2 ; (203)�3(s) = 12 sin(p3 s)p3 + s + 12 cos(p3 s)� 12s : (204)83



Then, �1(0) = 1, �2(0) = 3=4, �3(0) = 3=2.The eigenvalues of the matrixM(s) =  �1(s) �2(s)�2(s) �3(s) !are strictly positive for s = 0, and by continuity, are bounded below byK > 0 for s 2 [0; s0] if s0 is small enough.For such parameters s, we getZ s0 jT 2��(�; �)j2d� � 23 e�1K (s3 j�j2 + s j�j2); (205)and the lemma is proven.Lemma 8 Let s0 2 [0; 1] andLs0(�; �) = Z s00 (s j�j+ j�j) e�K (s3 j�j2+s j�j2)ds: (206)Then there exists C > 0 (depending only on K) such thatjLs0(�; �)j � C1 + j�j1=3+ j�j : (207)Proof : Thanks to the change of variables u = s j�j2=3 and v = s j�j2,we get Z +10 s j�j e�K (s3 j�j2+s j�j2)ds � Z +10 s j�j e�K s3 j�j2 ds� j�j�1=3 Z +10 u e�K u3 du; (208)and Z +10 j�j e�K (s3 j�j2+s j�j2)ds � Z +10 j�j e�Ks j�j2ds� j�j�1 Z +10 e�K v dv: (209)On the other hand, if we denoteC1 = supu2[0;+1) u3=2 e�K u3 ; C2 = supv2[0;+1) v1=2 e�K v; (210)84



we �nd Z +10 s j�j e�K (s3 j�j2+s j�j2)ds � C1 Z +10 s�1=2 e�K s j�j2 ds� C1 j�j�1 Z +10 v�1=2 e�K v dv; (211)and Z +10 j�j e�K (s3 j�j2+s j�j2)ds � C2 Z +10 s�1=2 e�K s3 j�j2 ds� C2 j�j�1=3 Z +10 u�1=2 e�K u3 du: (212)Grouping estimates (208), (209), (211) and (212), we conclude the proof oflemma 8.End of the proof of Proposition 4 : By mass conservation,supt�0 sup�;�2IRN jf̂(t; �; �)j � kf0kL1(IRN�IRN ): (213)We shall show that ifsupt�0 jf̂(t; �; �)j � Ck(1 + j�j2 + j�j2)k(k 2 IR+), then for any t0 > 0,supt�t0 jf̂(t; �; �)j � C 0k(1 + j�j2 + j�j2)k+ 16 : (214)The conclusion will follow by induction.We �rst note that in view of (213) and lemma 7, estimate (214) holdswith f̂ replaced byA(t; �; �) = f̂0(T�t(�; �)) e�R t0 jT 2��(�;�)j2 d� :Thus, according to the Duhamel representation, we only need to estimateB(t; �; �) = Z t0 T 2�s(�; �) dr� f(t � s; T�s(�; �)) e�R s0 jT 2��(�;�)j2 d� ds: (215)With Ck denoting various constants depending on one another, we havej dr�f(t; �; �)j= ����Z dr�(��)f̂(t; � � ��; �) d������85



� Zj��j� 12 j�j d�� jdr�(��)j Ck(1 + j�j2 + j�j2)k+ Zj��j� 12 j�j d�� jdr�(��)j Ck(1 + j�j2)k� Ck(1 + j�j2 + j�j2)k kdr�kL1+ Ck(1 + j�j2)k(1 + j�j2)k ZIRN (1 + j��j2)kjdr�(��)j d��:Since ZIRN jdr�(��)j(1+ j��j2)k d��� �ZIRN jdr�(��)j2(1 + j��j2)2k+N+1 d���1=2 �ZIRN d��(1 + j��j2)N+1�1=2� Ckk�kH2k+N+2;we �nd supt�0 j dr�f(t; �; �)j � Ck(1 + j�j2 + j�j2)k :Let s0 � inf(1; t0) be an intermediate time that will be chosen later on.We write for t � t0,jB(t; �; �)j � Z t0 jT 2�s(�; �)j j dr� f(t� s; T�s(�; �))j e�R s0 jT 2��(�;�)j2 d� ds� Z ts0 2 e�s=2(sj�j+ j�j) ds Ck e�K(s30j�j3+s0 j�j2)+ Z s00 (sj�j+ j�j) Ck(1 + jT�s(�; �)j2)k e�K(s3j�j2+sj�j2) ds:By continuity of the 
ow t 7! Tt(�; �), and its linearity with respect to�; �, we can choose s0 2 (0; inf(t0; 1)) in such a way that for all s 2 [0; s0],jT�s(�; �)j2 � 12(j�j2+ j�j2):Then, for t � t0, jB(t; �; �)j � Ck (j�j+ j�j) e�K(s30j�j3+s0j�j2)86



+ Ck(1 + j�j2+ j�j2)k Z s00 (sj�j+ j�j)e�K(s3j�j3+sj�j2) ds:The last integral is bounded byZ +10 (sj�j+ j�j)e�K(s3j�j3+sj�j2);and we conclude by Lemma 8.We recall that the hypoellipticity of linear operators of the form @t +v � rx ��v is a standard topic [77], which has been systematically studiedby H�ormander [44] for instance. In particular, his celebrated theorem ofhypoellipticity applies here to show that solutions become immediately C1(and would apply also for much more general linear operators). But we areaware of no study of the uniformity in time of these bounds, whereas theprevious computation easily yields this uniformity.7.4 A Space Inhomogeneous Model withoutCuto� AssumptionWe now consider a space inhomogeneous Boltzmann equation of the form(16). We suppose that the collision operator is singular.We suggest the following strategy to obtain a priori regularity estimateson f (steps 2 and 3 below consisting of regularity lemmas analogous to thecompactness results in [5], [54], [55]) :1] use the entropy production (estimated by the H theorem) to controlfractional derivatives of the number density in the velocity variable;2] apply the Velocity Averaging method (see [38], [34]) to obtain smooth-ness in (t; x; v) on quantities of the formZ f(t; x; w)�(v; w)dw (216)for any smooth test function �; moreover, estimate the norm (in someSobolev or Besov space) of such velocity average in terms of �;3] replace � by a suitable approximation of the Dirac mass at v = w anduse the results of steps 1 and 2 above to �nally obtain some regularity on fitself in the variables (t; x; v). 87



Step 1 above is the result of the study of the previous section. At thepresent stage, it is however very unclear how to apply steps 2 and 3 of thestrategy above to the Boltzmann equation itself. This requires more ideasand probably tremendous technicalities.However, the method above successfully applies to the caricature of theBoltzmann equation described by equations (32) and (34). which we sup-plement with the initial dataf(0; x; v) = f0(x; v) ; (x; v) 2 IT 1 � IT 1 : (217)We introduce the assumption on the cross section � that for some �1; �2 >0, 
 2]1; 3[, �1j�j�
 � �(j�j) � �2j�j�
 ; � 2]� �; �[ : (218)De�nition. Let � satisfy (218) and f0 � 0 2 L1(IT 1 � IT 1). An en-tropic solution of (34), (217) is a function f � 0 2 L1(IR�+ � IT 1 � IT 1) \C(IR+;D0(IT 1 � IT 1)) satisfying (34), (217) in the sense of distributions aswell as the following entropy relation : for all T > 0,12 Z T0 ZIT 1 �f(t; x)�ZZIT 1�IT 1 jf(t; x; v+ �)� f(t; x; v)j2�(�) d�dv�dxdt� 12 ZZIT 1�IT 1 jf0(x; v)j2dxdv � 12 ZZIT 1�IT 1 jf(T; x; v)j2dxdv : (219)Our main result is theTheorem 19 Let � satisfy (218) and f0 � 0 2 L1(IT 1� IT 1). The Cauchyproblem (34), (217) admits an entropic solution f 2 Hs(
)��loc (IR�+�IT 1�IT 1)for all � > 0 with s(
) = 
 � 12 (
 + 1) (
 + 3) : (220)If f0 � R0 a.e. for some R0 > 0, the value in the right hand side of (220)can be replaced by the better regularity indexs(
) = 
 � 12 (
 + 1)2 : (221)88



The proof of Theorem 19 proceeds through steps 1-3 above.We �nally say a few words about the most interesting model, namelythe true inhomogeneous Boltzmann equation without cuto�. Then, the onlyexisting setting is that of renormalized solutions with a defect measure.As explained in Lions [57], a smoothness estimate in the v variable likethe one in Theorem 18, combined with a so-called renormalized formulationof the spatially inhomogeneous equation (16), is enough to prove that solu-tions (or approximate solutions) (fn) of (16) enjoy a property of immediatestrong compacti�cation, in the following sense. If the sequence of initialdata (fn0 )n2IN satis�es only the physically natural boundssupn2IN Z fn0 (x; v)(1 + jxj2 + jvj2 + log fn0 (x; v))dx dv < +1;(and is therefore weakly compact in L1(IRN � IRN )), then for all time t > 0the sequence (fn(t; �; �)) is strongly compact in L1(IRN�IRN ) (i.e., convergesa.e., up to extraction).This property is what remains of the gain of smoothness in all variableswhen renormalized solutions are concerned.The strategy runs as follows : �rst, by the use of a renormalized formu-lation [5] and [33], and velocity-averaging lemmas [38] and [34], one provesthat suitable quantities of the form �(fn)�v��, where �� (� > 0) is a molli�erin the velocity space only, are strongly compact. Then, by truncation argu-ments, the smoothness estimate in v applies out of a set of small measurein (t; x), (where kfn(t; x; �)kL12 may be in�nite, etc.). Out of these partic-ular sets, the velocity smoothness entails that �(fn) �v �� is very close to�(fn), uniformly in n, as � goes to 0, and this is enough to prove strongcompactness of �(fn), which in turn implies pointwise convergence of fn if� is chosen to be one{to{one.References[1] Agoshkov, Spaces of functions with di�erential-di�erence characteris-tics and the smoothness of the solution of the transport equation. Dokl.Acad. Nauk. SSSR, 276, 6 (1984), 1289{1293.89
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