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Abstract

We propose here a survey of the results for the Boltzmann equation
which use the Fourier transform. In particular, we introduce various
versions of the averaging lemmas, of the properties of smoothness of
Boltzmann’s kernel, and various other computations.

1 Introduction

1.1 Kinetic equations

We usually denote by “kinetic equations” those equations in which the un-
known is the phase space density

flt,z,v) >0 (1)

of particles which at time ¢ and point # move with velocity v.

Such a modeling is in some situations an alternative to the study of
equations (such as the Navier-Stokes system) in which the unknowns (such
as the usual density p, the mean velocity u or the internal energy e) only
depend on ¢ and z.

The phase space density (1) typically verifies an equation of the form
Ohf+v-Vof =R, (2)

where R often depends on f. The reason for that is that when there is
no interaction between the particles and their surrounding environment (in-
cluding themselves), they will move at a constant velocity and along straight
lines. In other words, for all times t and 7, point = and velocity v, a particle
which at time t sits at point  and move with velocity v will sit at time t 47
at point  + v7 and will keep its velocity v. This entails that

v, f(t—|—T,$—|—UT,U):f(t,$,U), (3)
or, after differentiation with respect to 7,
Ohf+v-Vif=0. (4)

Then, the left-hand side R appears as the contribution of the environment
on the motion of the particles.



Note that formulas like (2) are typical of classical mechanics. When
relativistic or quantum effects must be taken into account, the variable v is
replaced by the momentum p or the wave vector k, and equation (2) becomes

Oif+op)-Vof =R (5)

or

Oif +o(k)-Vof =R (6)
Those are still considered as kinetic equations, as long as the function v is
not constant on some substantial part of the domain of variation of p or k
(this is of course always true in the relativistic context, and in most of the
other situations).

Equations like (5) are also typical of the kinetic formulations of conser-
vation laws.

Note finally that in many situations (e.g. in the study of radiative trans-
fer and in the study of realistic gases, or in the modeling of sprays), the
density f also depends on extra variables (such as the frequency v of the
photons for the radiative transfer, the internal energy I of diatomic gases,
the size r, the temperature # and even sometimes the eccentricity y of the
droplets for the sprays).

The behavior of the solutions of eq. (2) strongly depends on the form of
the term R.

When a given force F'(t,z) acts on the particles (such a force can also
depend on v in specific situations, for example when the particles are charged
and feel the action of a magnetic field, or when the force is the drag force
due to a surrounding gas), the particles will follow the trajectories of the
following system of differential equations :

(1) = o(t), (7)
o(t) = F(t,x(1)), (8)
and the corresponding partial differential equation satisfied by f (that is,

the PDE whose characteristic curves are exactly the solutions of eq. (7),
(8)), is the Vlasov equation

Wf+ov-Vuf+F(t,z) -V, f=0. (9)

In many cases, the force F' is itself related to f (through Poisson’s or
Maxwell’s equations for example). That leads to the classical Vlasov-Poisson
or Vlasov-Maxwell systems.

The equations we wish to investigate in this document are of a different
type. We describe them in the sequel.



1.2 The Boltzmann equation

When the forces acting on the particles are mainly due to the collisions of
the particles between themselves, one is led to write down the Boltzmann
equation. This equation is valid when one is interested in a situation where
the typical dimension of the physical objects under study are of the same
order as the mean free path of the particles (that is, the length of the
trajectory of a typical particle between two collisions). When this is the
case, the gas is said to be rarefied. For gases which are not rarefied, one
has to use the equations of fluid mechanics (such as the compressible or
incompressible Euler or Navier-Stokes systems).

Many features of the Boltzmann equation are related to the hypothesis
that the gas is rarefied. In particular, this assumption implies that the
collisions are binary (that is, the ternary, etc., collisions are neglected), they
are localized in time and space (that is, the size of the region in which the
velocities of the particles vary is small in front of the size of the objects under
study), and no correlations occur between the velocities of the particles
(that is, roughly speaking, collisions do not occur very often, so that the
probability for a particle to encounter a particle which has already interacted
with it (through other particles) is negligeable).

Starting from the general form (2) of kinetic equations, we see thanks to
the property of locality in space and time that

R(t,z,v) = R(f(t,2,"))(v).

It is therefore sufficient to define the effect of R on a function f depending
on v only.

We denote by fz(v1, v2) the joint density of two particles with respective
velocities v; and vy. We see (thanks to the assumption that the collisions
are binary) that we must take into account only two distincts phenomena
which modify the number density of particles with velocity v.

First, because of a possible collision with a particle of velocity wv., a
particle which had v for velocity will end up with a velocity v’ (its partner
in the collision will end up with velocity v.).

Secondly, some particle with a velocity w will encounter a particle with
velocity w, and will end up with a velocity v after the collision (its partner
in the collision will end up with velocity w?).

We now denote by p(vy, vz — vs, v4) the (density of) probability that for
two particles sitting at the same point z at a given time ¢, a collision occurs
and transforms the ingoing velocities vy and vy in the outgoing velocities vs,



vy (we shall see that in the so-called non cutoff case, this quantity is in fact
far from being a probability density, since it is not integrable).

We see that R(f) is the sum of two terms —R™(f) and RY(f) which
respectively correspond to the two phenomena described above.

According to their definition, R~ and RT write

R™(f)(v)= / / fa(v,v) p(v, v — V' v)) doldv'dv,,
and

RY(f)(v) = AA /w/ fo(w,wy) p(w, we — v, wh) dw.dw.dw.

According to the hypothesis that no correlations occur, we can replace

in the previous formula f3(v, vi) by f(v) f(v<) and fo(w, w.) by f(w) f(ws).
Then, R is clearly quadratic as a function of f. As a consequence, we shall
from now on denote it by Q(f, f), and we obtain the formulas

QULN=Q(f.f/)-Q (. f),

/ // (v, v, — V', 0)) doldv'du,,
vx Jul Jug

with

and
QY (f, 1) :// A flw ) plw, we — v, wh) dw dw,dw.

We now introduce the microreversibility assumption
Yoy, vg, 3, V4, p(v1,v2 = v3,v4) = p(v3, va = V1, V).

This assumption is justified by the fact that the motion of two interacting
particles is modeled by ordinary differential equations which are reversible.
We get the formula

= A* /U/ A; (f(v’) JICARSIC) f(v*)) p(v, v — v, v)) dvldv'dv,.

Then, we use the conservation of momentum and kinetic energy in a
collision :

ot = ol (10)
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2t T T (1)
Note that the conservation of kinetic energy holds only in the case of monoatomic
gases. For gases of the real atmosphere such as diatomic nitrogene Ny and
diatomic oxygene O, only the conservation of the total energy holds : one
has to introduce various kinds of internal energy (vibration, rotation) in

order to get a realistic modeling.

ik

As a consequence, the measure p is concentrated on the set defined by
identities (10) and (11). At this point, it is useful to parametrize those
equations.

When we are interested in a two-dimensional situation, the best way to

parametrize seems to use the center of mass reference frame, that is, the

VFUx
2

frame moving with velocity
becomes

. Then, the conservation of energy simply

lv — v |* = [v" = vl|?

Finally, v’ and v, are defined by

2 2
; U+ U, VU — U,
= - R
U* 2 9( 2 )7

where Rg is the rotation of angle 6.

The situation is not so good in dimension N equal or bigger than three.
Then, two different parametrizations are traditionally used. The first one
uses symmetries, and has the advantage of being with respect to v, v.. It
writes

v =0+ ((vs —v) W) w,
vl =v— (v — V) - W) w,
with w varying in the sphere (or half sphere) SV,

We shall however rather use the parametrization which uses the center
of mass reference frame, and which writes

, vH v |v— v
= 12
v 5t o (12)
, vt vl |u—
= - 13

with o varying in the sphere SV-1,



Note that ¢ and w are related by a simple change of variables (Cf. [19]
for example to get a precise formula for the corresponding Jacobian).

The Galilean invariance which holds in the context of binary collisions
entails that the measure p(v, v, — v, v]) can only depend on |v — v.| and

UV—Ux .
fv—vs]

UV—Ux
fv—vs]

o (or -w|, or even |@] in dimension 2).

We now can write down the “final” form of Boltzmann’s collision oper-
ator :

arner= [ [ (e £ - 50 s

U — Uy

><B<|v—v*|7 -O') dodvy, (14)

o= o]
where B is called the cross section (sometimes a slightly different definition
of the cross section is presented, namely B/|v — v.|), and v/, v} are given by
formulas (12), (13).

We shall also use the bilinear form Q(g, f) related to the quadratic form
Q(f, f), and defined by

Qo ne= [ [ (e - 1 g)

Lo O') doduv,. (15)

v = v.]

x B <|v —
Finally, we write down the standard form of the Boltzmann equation :

where @) is given by (14).

For a general exposition of the theory of the Boltzmann equation, we
refer to [23], [25] and [70].

The rigorous derivation of the Boltzmann equation starting from the
dynamics of N particles in interaction is performed in [53] and [22] in the
context of local (in time) solutions or of global (in time) solutions close to
vacuum.



1.3 Cross sections

It is possible to (almost) explicitly compute the cross section B when the
interparticle force is proportional to r=* (with r denoting the interparticle
distance and s > 2). In such a case (and in dimension 3), B writes (with

cosf = 2= . 0)
[u—vs]

B (Jv — vy, co88) = |v — v*|%f b(cos ),

with & a smooth function except at point 1 and

K
sin 0 b(cos ) ~g_o — (17)
ol
with K > 0.
Since zﬂ > 1, the singularity in the angular variable 8 is always non

integrable. Because of the difficulties entailed by this singularity, Grad has
proposed to introduce an angular cutoff near § = 0 (Cf. [42]). It means that
we replace B by a new cross section

B (Jv — v,|,co86) = |v — v*|%f b(cos 8),

with b smooth, or at least such that @ — sin@b(cos8) is integrable near

f=0.

In the sequel, we shall speak of cutoff cross sections (or cutoff potentials)
when B is locally integrable, and of non cutoff cross sections (or non cutoff
potentials) when B has a singularity like in (17).

Note that the decomposition Q = QT — Q~, with

QU= [ [ e s (o= el = ) dod,
(18)

U= [ [ 105w Bl = ) =) dads.
(19)

holds only when the cross section B is integrable (that is, cutoff).

We shall also speak of hard potentials when B — 400 as its first variable
tends to infinity, of soft potentials when B — 0 as its first variable tends
to infinity, and of Maxwellian molecules when B does not depend on the



first variable (what we shall call cutoff Maxwellian molecules in the sequel
is sometimes called pseudo Maxwellian molecules).

Finally, note that the case when s = 2 (that is, the Coulomb potential),
leads to a different equation, namely the Fokker-Planck-Landau equation.

1.4 Basic properties of Boltzmann’s kernel

We shall systematically use in the sequel the so-called pre/post collisional
change of variables (v, vy, 0) — (v', v, o) which ensures that for all functions
f = f(v,v,0' 0L, 0), one has (at the formal level) :

/ / / (v, ve, V' 0l o) dodu.do
RN JRN JgN-1

:/N/N/N f(V' vl v, 0., 0) dodv,do.
R R SN—1

This formula is obvious when one uses the parametrization with € in dimen-
sion two (or, in fact, the parametrization with w in higher dimension). The
proof can be found for example in [19].

We shall also use the change of variables (v,v.,0) — (v.,v,0), which
ensures that for all function f = f(v, v., v/, v}, o), one has (still at the formal

level)
/ / / f(v, v, 0", 0, 0) dodv.dv
RN JRN JSN-1

:/N/ N/N f(U*7U7U:MU/7O') dadv*dv,
R R SN—1

As an immediate consequence of those formulas, we get the following
various weak formulations for Boltzmann’s kernel @ :

[ eun@etdr=[ [ [ (o) -o)

% f(v) f(v.) Bdodv.dv, (20)

[ eunwoewyao=3 [ [ [ (o) + o) - o) - 6(0))
% f(v) f(v) Bdodv.dv, (21)
[euneewa=— [ [ ] (o0 +ot) - o) - ot0))
. ( 7)) F(0l) = F(v) f(v*)) B dodv.dv. (22)

10



Plugging ¢(v) = 1,v;, @ in formula (21), we get the conservation of

mass, momentum and energy at the level of the Boltzmann operator :

1
/ QU (V) ( v) dv = 0. (23)
Y 1

2

Boltzmann’s H-theorem is obtained by plugging ¢ = log f in (22).
Defining the entropy dissipation by

D(f) == [ QU F)(w) log f(v) dv
we get )
pin=1 [ [ [ (e -rere) e

f(W) F(vl)
X log (m) B doduv,dv,

we observe (this is the first part of Boltzmann’s H-theorem) that D(f) > 0.

Then, it is possible to prove (under suitable, but rather weak assumptions
on B and f) that

D(fy=0 <= YoeRY, Q( fv)=0

= Ip>0,T>0,uc R, f(v)= P exp —M .
- ’ ’ (2rT)N 2T

This is the second part of Boltzmann’s H-theorem (Cf. [70]).

1.5 A priori estimates

Since this work is more concerned with the qualitative properties of the
solutions of Boltzmann’s equation than with the existence theory, we shall
only state some basic a priori estimates related to the conservation properties
of the previous section, and only one theorem of existence.

We first introduce the Cauchy problem for the spatially homogneous
Boltzmann equation. That consists in looking for solutions to the full Boltz-
mann equation (16) which only depend on the variables ¢ and v, a compatible
initial datum being given.

11



In other words, it writes
8tf(tvv) = Q(f7 f)(t,?]), (25)

According to the results of the previous subsection, the solutions of this
equation (at least formally) satisfy the conservation of mass, momentum
and energy

1

1
vt >0, /UERN F(t,v) (ﬁf?) dv:/veRN Fin(0) (i) do,  (27)

2 2

and the decay of the entropy (defined by [ f log f dv and not by — [ f log f dv

as in physics)
vz, [ fetoss e des [ DU ds
ve RN 0

< o S (0) 08 fin (0} (25)

Then, it is easy to show (still at the formal level) that as soon as the
initial datum has finite mass, energy and entropy (in the two next formu-
las, f log f is replaced by f|log f|, so that only nonnegative quantities are
considered : this does not lead to any difficulties), that is when

K. = / Fin(0) (14 |02 + |Tog fin (v)]) dv < o0, (29)
veERN

there exists for all 7' > 0 a constant C'r > 0 (only depending on Kj;,) such
that

T
sup / £t v) (1—|—|v|2—|—|logf(t,v)|)dv—|—/ D(f)(s) ds < Cr. (30)
te[0, 7]/ ve RN 0

In the sequel, we shall use the following (now classical) theorem of existence,
proven in [8], [9] and [40]:
Theorem 1 Let B be a (nonnegative) cross section satisfying (for x € IR

and 0 € [0,7]),

sin 6 B(z, cos ) < K (1+ [])]6]7"77,

12



for some K > 0 and v < 2 (that is, cutoff or non cutoff hard potentials or
Mazwellian molecules).

Let also f;, be a (nonnegative) measurable function from IR to IR such
that K;, < +oo (K, is defined by (29)).

Then, there exists a solution f = f(t,v) lying in L= (IRy; LY (IRN)) and
C(IRy; D'(IRN)) to eq. (25) written in the weak form (Cf. eq. (21)) for all
test functions ¢ € D(IRN),

o[ seoyowdo=g [ [ ] (s +ew)

—o(vy) — (b(v)) f(t,v) f(t,ve) Bdodv.dv.

This solution can be constructed in such a way that the conservations of
mass, momentum and energy and the decrease of the entropy hold.

1.6 Simplified models

In the sequel, we shall be led to consider various simplifications of Boltz-
mann’s kernel, which we now describe.

The first one is the so-called Kac’s operator (Cf. [47]). It acts on func-
tions of a one-dimensional variable (v € IR) and writes

Qf, HHlv) = /IR/O27r (f(v cosf — v, sin ) f(v sin 8 + v, cosf)

~(0) 7o) ) 310 dode. (31)

for some nonnegative cross section 3. We shall conserve for this model the
terminology on cross sections that we adopted for the Boltzmann equation.
That is, it is said to be cutoff if 3 is integrable, and non cutoff if 5(0) ~y_0
|6]=t=, for v €]0, 2].

Mass and energy, but not momentum, are conserved for this operator.
The H theorem is also valid except that in the second part of the theo-
rem, the set of all Maxwellians must be replaced by the set of centered
Maxwellians. As we shall see in the sequel, this operator is very close to the
Boltzmann operator for Maxwellian molecules when it is restricted to the
radially symmetric functions.

13



The second model that we shall introduce is even simpler. It acts on
functions of a periodic variable (v € T'), and writes

1/2

QU N = |

—-1/2

[ 5w+ 0) £ = 0) = 1) 7] 5010 dbav’. - (32)

This operator is close to a linear operator in the sense that (at the formal
level)

1/2

sy [ (fo+0) - 0)) soh s, (33)

—-1/2

QU N = |

ﬂ"l
It is associated to a spatially inhomogeneous equation which writes
O f(t, z,v) + cos(2mv) 0. f(t, z,v) = Q(f, f)(t,z,v), (34)

where the unknown is the number density f = f(t,x,v). Here, t > 0 is the
time variable, the position variable is € II'', and v € II'* parametrizes the
velocity cos(27v) of the particles. This model was introduced in [30].

Finally we introduce the classical linear Fokker-Planck operator

QUN(w) =V - (Vf+uvf),

and the corresponding (confined) linear Vlasov-Fokker-Planck equation (some-
times also called kinetic Fokker-Planck equation)

ef+v-Vof —=VoV(2) -Vof = V- (Vof +0f), (35)

where V is the confining potential. Here z and v vary in IRY, and the
equation models the motion of a particle in a thermal bath.

1.7 The Fourier transform in the context of the Boltzmann
equation

For a given function f: RN — IR, we define its Fourier transform f (some-
times also denoted by F f) by the formula

Fo= [ e fda.

With this definition, the inversion formula writes
fla)y = @n)™ [ e fe)ae
RN

14



and Plancherel’s formula becomes
| Jford=enY [ i@,
RN RN

We shall also use the relationship between derivatives and moments. De-
noting by a a multiindex of INY, we have

0uf (§) = (i)™ J(©),
and . )
(—iz)> (&) = 0a f(E).
In the sequel, we shall use the Fourier transform with respect to various
variables (¢ and z, z and v, v only, etc.). We shall therefore systemati-

cally recall which variables are concerned and what are the name of the
corresponding Fourier variables.

Like for other PDEs, the Fourier transform is useful in many ways in
the context of the Boltzmann equation. For example, it enables to obtain
explicit solutions in some situations (typically, in the case of Maxwellian
molecules, which somehow plays a role in the theory of the Boltzmann equa-
tion analogous to that played in the theory of PDEs by the linear equations
with constant coefficients, Cf. [15] and [16] ). It is also extremely useful for
the study of the smoothness of the solutions, as we shall see repeatedly in
the sequel.

We recall that the large |£| behavior of f(f) is related to the smoothness
of f. This link is best seen in the context of Sobolev spaces based on LZ.
Precisely, for all s € IV, the norms

(> [ oswra)”

|| <s

and
(/RN FOP O+ 1€ d5)1/2

are equivalent and define the same space H*(IR").
So are the norms

(fotpars f, M0 )"

(/BN FOPF A+ 1€ d§)1/27

for the space H*(IRV) with s €]0, 1].

and

15



1.8 Some notations for spaces of functions

In addition to the norms of H?® defined above, that is

1/2

ey = ([ QP 1+ 177 a¢)

we introduce for 0 < s < N/2 the homogeneous Sobolev space HSA(BN)
of functions f of L2N/(N=25)(JRN) such that f € L} (IRN) and |¢]°F(€) €
LZ(BéV). Its norm is given by

R 1/2
- = (] FEOPIEa) (36)

We shall also use for p > 1, ¢ > 0, the weighted space L{;(BN) embedded
with the norm

1/p
gy = ([ @PQ+Tla0) (37)
vEIRN
and for k € IV the Sobolev spaces
W (IRN) = {f € L7(RY), Vae NV, |a] <k, ||0af| g (mm < +oo},
embedded with the norm

U llwroe(rry = Y 1100 fll oo (my-

|| <k

2 Averaging Lemmas

2.1 Introduction

Averaging lemmas are designed for the study of the regularity of the solu-
tions of kinetic (transport) equations of type

Of(t,w,v)+v-Vaof(t,a,v)=g(t 2,v) (38)
or of the (space independant) type
v-Vl,f(x,v)Ig(x,v). (39)

Because of the hyperbolicity of the operators v-V, and d;+v -V, (their
respective symbols are (with obvious notations) iv-& and i 7+t v- ), there

16



is no hope that the solution f of eq. (38) (or eq. (39)) be smoother than
the right-hand side ¢. In fact, for any f (that is, as singular as one wants),
f(z — vt,v) is a (weak) solution of eq. (38) with g = 0.

However, the set of £ (different from 0) such that v - é—| = 0 varies when
v varies, so that when one takes averages in v of f (weak) solution of eq.
(38) (or eq. (39)), there is some hope of getting a function (of ¢, 2) smoother
than g¢.

Unfortunately, though eq. (38) has a very simple explicit solution,
namely

ft,z,v) :f(O,x—vt,v)—l—/tg(s,x—v(t—s),v) ds,
0

it seems very difficult to prove such a gain of smoothness by using this
formula without Fourier transform.

The use of the Fourier transform, on the other hand, enables to obtain
this gain of smoothness. This was first observed in [39], [38] and [1].

In the next two subsections, we give two proofs using the Fourier trans-
form, but in a very different way. In the first one, better adapted to a steady
equation, or to a situation in which one needs smoothness in the time vari-
able, the Fourier transform is taken with respect to ¢t and z. In the second
one, better adapted to situations where smoothness in the time variable is
not required, the Fourier transform is taken with respect to z and v.

2.2 Use of the Fourier Transform in z or ¢, x

We begin here by recalling the proof of [38] in the case of the steady equa-
tion, when the averaging function ¢ is L>° (and compactly supported). We
give estimates which are fully explicit, but not necessarily optimal in some
respects. In particular, sums of norms instead of products appear in the
right-hand sides of our estimates.

Theorem 2 Let f = f(z,v) be a function of L*(IRN x IRN) such that
g =v-Vf also lies in L2(IRN x IRN). Then, for all function ¢ in L°(IRN)
with its support included in [—R, R]Y, the following estimate holds :

2

|, feooa

< N=L1 4112 2
e, < 2 161y (11

17



gl ) ) (10)

Proof: We denote by f the Fourier transform of f in the z variable only,
and by £ the corresponding Fourier variable. Then, (&, v) =i (v-§) f(f7 v).

The idea is to consider separately those v € IR" such that |v- é—|| is large

and those such that |v - é—|| is small.

The computation gives (for some function 6 = §(£) which will be chosen

later on)
‘/ E, dv <2‘/ (&,v) ¢p(v) dv
lo- |f||>5

-|-2{/|U |€||<5 ) o(v) dv2
_Qr/|u 1 Jo-¢ F(€,0) 6(v) dv +2‘/|U ||< ) ¢(v) dv
: é /|v~|§—||26 ||;b-(%||22 w /JRN

filzs €l o -
+2 o) 2o [ 1f(€ ) dv
RN

£
v |§||§5

2

9(&,v)Pdo

dv )
— §(&,0) P dv

|€|2 ||¢||Loo RN (QRN 12/

RN

2|62 <, (26) 2R)N ! /BN FEv)P dv

4(23)N—1||¢||%00(RN) (@/B a& v |2dv+5/ |2dv)

We conclude by taking 6(|¢]) = é—|
Note that a different choice of ¢ would enable to obtain at the end a
product of norms of f and ¢ instead of a sum of such norms. [J

This result can be extended in many ways. We give here the proof of
two useful such extensions.
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The first one enables to treat the case of kinetic equations with right-
hand sides including derivatives in the v variable (first-order derivatives
as in Vlasov, or second-order derivatives as in Landau, but also fractional
derivatives such as in the non cutoff Boltzmann equation). The second one
enables to treat space-dependant equations. Of course those two extensions
can be combined in a single theorem, but we shall not write down such
a theorem in this work, since we wish to present only typical proofs, not
optimal results.

We begin with the theorem adapted to the Vlasov equation. The esti-
mate given here is almost explicit (that is, explicit up to a numerical constant
which can be estimated). With respect to the previous theorem, It needs

more derivatives of the averaging functions ¢. The proof is very close to
that of [34].

Theorem 3 Let f = f(x,v) be a function of L*(IRN x IRN) such that
g =v-V.f is of the form g = 0Xh, where h € L*(IRN x IRV) and 90X
denotes any derivative in the v variable of order K. Then, for all function ¢
in W22 (RN with its support included in [— R, R]N, the following estimate
holds (for some constant Cx > 0) :

2
S CK RN_I ||¢| |%/VK,<>0(RN)

H/RN f(v) é(v)dv

H1/2(K+1) (RY)
(TR [ A— (a1

Proof: We still denote by f the Fourier transform of f in the z variable
only, and by £ the corresponding Fourier variable.

Moreover, we introduce (for 6 = §(£) to be chosen later) a cutoff function
xs of D(IR) which takes its values in [0, 1], has its support in [—2§,24],
and satisfies xs(z) = 1 for @ € [—4,5]. We still use the identity ¢(&,v) =

i(v-8) f(§v).

We compute :

2

‘/RN f(& ) 6(v) alv2 < 2{/1RN f(&,v) Xs(v-|§—|) é(v) do

2

2 §
w2 [ flen (1= xsto- ) o) de
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K
aof w2 [ EHED (o e ae

<2 [ den wsteg

<2| / ) m(v-@ o(v) do

2

£ Pop _ Q@ 751% v
£ Y cng| [ iten() 070w i) 0%000)

PrQ+R=K

(with obvious notations)

<2 o) dv [ If(E )P

o er1 <28
" 5 0% L [ ol
ProtR=K W22 |v - £|2R+2 RN ,
N-1 2 A 9
<$6QRY ol [ 1€ 0P
5-2P

+ Z CP,Q (QR)N_I |€|2 ||8Q¢||%°O(RN)
P+Q+R=K

dv1 / ~ 2
X — h(&,v)|?d
/|U1|Z5 |v1|2R+2 RN | (f U)| v

< Cie RV (16l gy [ 17 0 a0

5—2P—2R—1

+ > T”a%”%wm/RN|’3<€7v>|2dv).

P+Q+R=K
Choosing
1
5= €[,

the previous computation yields the estimate

[ ievswal

<(ler = [ 1feora+ = [ b o).

S<K

< CK RN_I ||¢| |%/VK,<>0(RN)

This in turn enables us to write down the estimate

[ 1gm
l¢1>1

2
df S CK RN_I ||¢||%/VK,<>0(RN)

| Fie) ooy do
RN
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([ eopavac e [ [l e o dud ).

S<K

Since on the other hand, it is easy to estimate

[ lgm
lgl<1

by the L? norm of f, we conclude the proof. [J

2

dg

| Jie) ooy do
RN

We now treat the second extension of theorem 2. This is the case when
f, which also depends on ¢, satisfies eq. (38) on IR x RN x IRN. Tt enables
to get smoothness of the averages in v of f in both variables ¢ and x. The
proof is close to that of [38]. In order to use such a result in the context of
the study of the Cauchy problem for a partial differential equation, one has
in general to use techniques of truncation, etc., in the time variable. Those
technicalities can sometimes be avoided when one uses the results of next
chapter.

Theorem 4 Let f = f(t,z,v) be a function of L*(IR x RN x IRN) such
that g = O f +v-Vof liesin L>(IR x RN x IRN). Then, for all function ¢ in
L (IRN) with support included in [—R, R}V, the following estimate holds :

2

| oo do < AJ612 gy (2R)N 2 (54 14 R

H2(RxRY)
+12 B+ 8 8 (11 Bagge o) 19 gy ) (42)

Proof: We now denote by f the Fourier transform of f in the ¢ and
x variable only, and by 7 and £ the corresponding Fourier variables. The
relation between f and ¢ is now g(7,&,v) =i (74 v &) f(1,&,v).

We compute (for any 6)

2 2

<4 ‘1|§|§1,|7|22R/IR MCN”) dv

[ s otan R

2

t4 r1|s|31,|7|szR/RN f(r.&v) o(v) dv

2

il [ deoma
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g(r, & v)
+4 {1|g|21 /|T+U.£|25 7@-(7_ o6 P(v) dv

dv
2 ~ 2
< 4 Ljg1< 2 Ol o (mYy </IUISR m) (/BN 19(7, &, v)] dv)
st ([ dv) ([, Vg oka)
4 L1 |27 () rvetsolcn ™ o | (16 0]y

dv
g nr) o7
+ |g|21||¢||L (RN) i tve|ss ol<R |7+ v - €2 RN|9(7'5U)| v

We now observe that

. / dv 2RrR)N )
[€1<1,|7[>2R W<k |T+0-E2 %|T|2 _R2? [€1<1,|7[>2R)

Ligj<1,|rl<2r /l <n dv < 2R)N Li¢1<1pr<2rs

5
Ligp>1 / dv < RN 1 >1,|7|<5+R|¢]>
Y i ei<s ol [¢] elznIIsorRe

. / dv < (2R)N-! / dw .
>1 = T2 >1
21 S veizspign [T+ v - €2 €2 Jhut gy - i< Jwl? €2

1 1
N-1
< (2R) (%ls%slm + 1|T|22lelm) Ligi>1-

Then,

2
d¢ dr

[] L (mri)] [ fremowa
<[ [ (nvia) | [, feenow i
L P | [ R otw e
L (1) [ [t o)) o

<[/ (ir1+1)| [, Frevr oty

22

2
d¢ dr

2
d¢ dr

2
d¢ dr

2
d¢ dr




d¢ dr

+f /|g|21,|7|§m|5|<1+23> 4 ( | Fre oo af
+//|s|21,|7|zzms| <|T| - |5|) ‘/BN f(r.6. ) o) |
<Allol gy RN [ (|T|+1){%1M22R b2y
A [ e oRaos [ lat g opakdcar
+ 4|17 ooy (2BR)Y // 1+QR)|5|{|€| 5|1€|}

x{/B (&, 0) 2 dv—l—/ ok dv}dgdr

110l ) 21) // o

I7|>2R,[¢|>1

x{/B (&, 0) 2 dv—l—/ ok dv}dgdr

Note finally that 6 = 1 yields the theorem. []

d¢ dr

Many more extensions of the previous results can be found in the works
of [36], [37], [35], [12], [58], [64] and [52]. Among those extensions, one can
write down results in L? instead of L? (those are obtained by interpolation
techniques), one can replace v by a(v), where a is any function satisfying a
non degeneracy condition, and finally one can introduce in the right-hand
side of the equation derivatives in t, z of order strictly less than one.

2.3 Use of the Fourier Transform in z,v

We now introduce a different way of looking at averaging lemmas. We are
interested in this section only in the time-dependant case, but we don’t try
to get regularity in the ¢ variable. As a consequence, the results we shall get
are more adapted to solutions of the transport equation which are defined
on a time interval [0, 77, for which the initial datum is given.

Though the results are weaker than those of the previous section, the
proofs turn out to be more easily extendable in the case of discretized in
time equations.
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The idea used here consists in writing down the Fourier transform in z
and v of the free transport operator, instead of its Fourier transform in ¢
and z. This procedure was used in particular by Golse (Cf. [37]) and by
P.-L. Lions and Perthame (Cf. [59]).

As we noticed previously, the interest of this method lies in the fact
that it yields results when some discretization in time is in order. Such a
situation is described in [31]. In this work, the operator splitting technique
between the free transport part and the collisional part of the Boltzmann
equation is studied, in the framework of renormalized solutions. We give in
next subsection another example of dicretization in time.

The proof given here is inspired of [20]. We denote by L? — w the weak
topology of L2.

Theorem 5 Let f € C([0,T], L*(IRY x IRY) — w) solve eq. (38) for some
g € L]0, T[xIRY x IRY). We denote fo = f(0,-). Then, for any 1 €
CfO(BN), the average quantity

pute) = [ fita ) o) do (43)

lies in L*(]0, T[, H'/*(IRY)), and for all s > (N —1)/2,

loullzgo ey < e ([ [ 1o 0P [ (14 o) dods

+///[oj]ijijRN(U(t’x’v)P—l_|g(t’x’v)|2)|¢(”)|2(1‘|‘|U|2)dedacd(t).)
44

Proof: Let us denote f(t,f, v) the Fourier transform of f in the z vari-
able, and F f(t,&,n) the Fourier transform of f in the z, v variables. Then,
(38) yields R R

Of+iv-&f=3g. (45)

Solving this equation in the sense of distributions, we get

o~

. ~ to
fgo =g o+ [ G- se s @9
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Multiplying (46) by 1 (v), we obtain

— . e £ . o~
Flt, €. 0)b(v) = e S (€, v) + / eTIVE Gt — 5. €, v)ds,  (47)

and after integration in v,

py(t, &) = F(forp) (€, t€) + /Ot Flgp)t = s,&, s)ds. (48)

This type of formula with double Fourier transform evaluated at (&, ££)
was used in [37]. For a.e. & € RN, we estimate this quantity thanks to
Cauchy—Schwarz inequality, and get

Pt OF < 20 F () (&P +20 [ IFg)e- 5650 Pds. (49)

Integrating this estimate on ]0, 7], and using the variable 7 =t — s, we
obtain

/ Pult,€)2dt < 2/ Flfor) (&, 1) dt

221 [0 [ 176 s Pards

Tlel g 2 T|£|
< 2 [Mirdoeosras I [ [ rae 5e|5|>|dr(d5so)

Let us now state a very classical trace lemma.

Lemma 1 Let ¢ € H*(IRY) with s > (N —1)/2. Then, for any o € RY
such that |o| = 1,

I16(z0)lr2cemy < Cvs [11d = A83)* 28| 2 (y)- (51)

For each integral in z, we use this lemma and Plancherel’s identity. We get
for a.e. &,

T CnN s o
[ e oPde< =22 [ (R o) (1410 do
0 El Joemy

C s
|]g| /fO/eRN‘g¢t€7 ‘ (1 + |v|*)* dvdr.
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Then,

[ ipordsas o ([ [ ol e

< (o) doda+ [ [ (62, 0) P [0(0) P (1+]0f?)? dodar.
[0,T]x RN x RN
O

2.4 Time discretization

We use here the techniques of the previous subsection to get averaging lem-
mas adapted to a time discretization of eq. (38). More precisely, we present
the Euler implicit scheme and the second-order Crank-Nicolson scheme cor-
responding to the free transport equation (that is, eq. (38) with ¢ = 0).
The results of this subsection are extracted from [20].

Note that another example of time discretization is presented in [20]. It
concerns the convergence of the operator splitting method for the Boltzmann
equation in the renormalized framework (Cf. [31]). Let us also mention
that there exists another method to prove the convergence of the splitting
algorithm, which does not use averaging lemmas, see [72].

Finally, we underline the fact that the results of this subsection belong
to the general class of the so-called “averaging lemmas at the limit”. Those
are designed to prove the convergence of the numerical schemes towards the
solutions of the kinetic equations. They can concern other variables than ¢.

We introduce implicit methods for solving the free transport equation
O:f +v-V,f = 0. The distribution function f is approximated by f™ at
time nAt (At > 0, n € IN). We treat the cases of the Euler implicit scheme

fn—l—l fn

At +v- fon+1 =0, (52)

and of the second-order Crank-Nicolson scheme

fn—l—l fn fn fn—l—l

— —s— =0 (53)
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The initial datum f;,, = f° is assumed to belong to L?(IRY x IRY). Then
/™ is uniformly bounded in L?, 1/ 2 (ry xmyy < HfOHLZ’(JRivagV)- For any
test function 1 € C®(IRY), we define the averages

pie) = [ Flaoeede e LR, (54)
We begin with an easy computation for the Euler implicit scheme.

Theorem 6 For the Euler implicit scheme (52), pj € HY2(IRN) for any
n > 1, and for any s > (N —1)/2,

ALY 5o vy < Cnll (@)L 102117 e ) 1N 2 e ey
n=1
(55)

Proof : We denote by f or by F [ the Fourier transform of f with
respect to the z variable, and by £ the corresponding Fourier variable.

The solution f™*1 of (52) is given in terms of f™ by

a,v) = / e f"(x — Atsv,v) ds, (56)
0
and we easily deduce by induction that for any n > 1,

i v) = [0 e 0 fO(x — Atsv, v) ds,

(n—1)!

fn(€7 ) fOO —s s"_l —iAt5u~£f0(€7v) ds (57)

Then, for a.e. &€ € RN, the Fourier transform py of the average in v of f,

F(€) = [ (&, W( ) dv

= J T F () (E AtsE) d >
According to the Cauchy-Schwarz inequality,
or < [T e s [T e SR A s, (59
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and since the first integral has value 1,

NZ%H%(W<AUb(n1€*5yNHWW@Awﬂms
= |g| JoT\F ()€, 2 |£|)|2dz
< C f e [P R [(0) (4 (o2 2 oy,
(60)
by the same estimate as in Theorem 5. The result (55) follows by integration
with respect to the variable &. [

We now turn to the Crank-Nicolson scheme, and propose a very different

type of estimate.

Theorem 7 For the Crank-Nicolson scheme (53), the following compact-
ness estimate for averages in time holds. For any R > 0,

/|£|>R

where m € IN, (Xn)o<n<m are arbitrary complex numbers, and

2
e AB
A 36| de < Cy (AP 4 2V Iy (61

n=0

A= Z |Xn_Xn—|—1|‘|‘|Xm|7 B:AtZ|Xn| (62)

n=0

represent respectively the total variation and the L' norm of x.
Proof : We use the same notations as in the proof of theorem 6.
The solution f"*1 of (53) is given in terms of f™ by

PP ) = 2 5 e e = B, 0) ds = [ (o, 0),

R ] (62)
Therefore, for any n > 0, we obtain by induction
(& v) = (%) P& ), (64)

and




Let us now introduce the angle § €] — =, 7| defined by

1—2'%1}-5_ _ip
1—|—i%v-€

9

or equivalently 6 = 2 Arctg( v-&). Then,

MY = [ e v i,

n=0

m
= At Z Yne .
n=0

Using Abel’s transform, we get

2(0) = ATTT (v — Xutt) (z;;o e-“@) At g e

lp(8)] < |si1?(t€A/2)|'

Now, since sin(6/2) = &L v - & /1/1 4+ (5L v - £)2, we obtain

2A

AtA
PO < AtA+ Zg

9

(70)

But we can also use the trivial estimate |¢(6)| < B, and combined with (70)

this yields
2A
lp(0)] < At A+ min <—| 5|7B) )
U .

Now, coming back to (67) we get for a.e. £ € RV

‘Atixnﬁm)‘ < /RN|f0<av>|2dv JECERGIE

n=0

< 2/ o) dv [At2A2 /RN 16(0) |2 dv

+/RN min? (%,B) |¢(v)|2dv].

The last integral can be computed,

.o 24 2
Rlen <| i )|¢( )|* dv
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_ u:o_oommZ (%73) (/ 10 (um—l—v)|2dv’) du

5 . 2A
< O 9014+ 10P) 2 gy [ min? (WB) o

8AB

= O ) O+ o) P iy e

Finally, estimate (72) gives for any s > (N —1)/2

‘At Z Xnﬁz
n=0

< 2/ o)[2 dv (WHLQ oy A A?

AB
+cN,su¢<v><1+|v|2>5/2u%oo<mm), (74)

and (61) follows by integration in &. [

Let us now emphasize the big difference between the two schemes de-
scribed above. Using the implicit scheme (52), we immediately see that for

n>1, f"+Atv-V,f" € L;U. Therefore, according to [38], Py € H;/Q.
However, in general p% ¢ H'/? (for example, take for fO a tensor product).
Then, in an estimate like (61), we only get a term in 1/R (a term in At
appears if the sum starts at n = 0).

For the Crank-Nicolson scheme (53), the situation is very different since
there is time reversibility, as in the continuous case (the L? norm of f™ is
constant). When f© varies in L?, f™ also varies in L%, and thus p, only lies
in L2 (for a given n). Compactness only occurs for averages in time, and
we must have a term in At in (61). However, the situation here is worse
than in the continuous case, since we can only estimate an average in time
with respect to a smooth function y(¢) (of bounded variation), whereas in
the continuous case, an L? function is enough. Note that this regularity of
X is really needed. There is no inequality like (61) with the L? norm in time
instead of the average with respect to x. This can be seen by writing (65)
as

~n _ 7 —nd g é 1 + tan2 %
= e i Pl g g ™5 7 ) A

Then by Parseval’s formula

d.
(75)

Aty @)1

nel
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¢ ,) ,1—|—tan2%

r A 9 9

:QWAt/HZ_W /7J/€£Lf0¢(§,mtan§m—l—v Aiie] de
_ > o €N P14 (BHE u)?
_zﬂ/u:_oo A/egLfo¢(€7um+v)dv g

and it is impossible to control the term in A#?|].

3 Regularity of Q7
3.1 Introduction

We recall the general form of the positive part Q of the Boltzmann operator
(18),

O (F. P (v) = // f<v—;v*_|v—2v*|g)f<v—;v*_l_|v—2v*|g) (76)

vx€RN
O.esN—l
x B <|v — vyl, i -O') dodv,,
o= v.]

where B is the cross section.

The classical assumption of angular cutoff of Grad (Cf. [42]) that B is
integrable will always be made in this section.

The properties of QT with the assumption of angular cutoff of Grad
(without this assumption, Q% is not defined even for very smooth functions
f) have first been investigated by P.-L. Lions in [54], [55]. In this work, it
is proven that if B is a very smooth function with support avoiding certain
points, then

HQJF(fv f)HH(N—l)ﬁ(jRUN) <C HfHLl(JRgV) HfHL?(JRgV) (77)
for any f € L'n L2(IRY).

The proof of this estimate used the theory of Fourier integral operators.
The very restricting conditions on B were not a serious inconvenience since in
the application to the inhomogeneous Boltzmann equation, only the strong
compactness in L! of Q7 (f) was used, and not the estimate itself, so that
these assumptions could be relaxed by a suitable approximation of B.
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An extension of this work to the case of the relativistic Boltzmann kernel
can be found in [6].

Then, a simplified proof of (77) was given by Wennberg (Cf. [78] and
[79]) with the help of the regularizing properties of the (generalized) Radon
transform. The hypothesis on B were considerably diminished, so that for

—5

example forces in =% with angular cutoff and s > 9 were included.

We intend here to give a yet simplified proof of (77)-like estimates, using
only elementary properties of the Fourier transform. Moreover, we prove
that the estimate holds for a large class of cross sections B, including all
hard potentials with cutoff (that is when s > 5).

One of the drawbacks of the results here given is that instead of having
a L' norm times a L? norm in the right-hand side of (77), we only get a
L? norm to the square. The proofs of this section are extracted from [19].
They are also close of that of [60].

3.2 A simplified situation

We begin with the simplest possible cross section, that is B = 1. We only
treat here the three-dimensional case for the sake of simplicity (the two-
dimensional case is in fact slightly more involved because some part of the
computation cannot be written down explicitly).

Our theorem writes :

Theorem 8 For any ¢ > 0, there exists a constant C. only depending on &

such that for any f € L1(IR®) N L(23+6)/2(B3), QT (f) € HY(IR?) with

1Q* (. Ny < Co I, - (79)

Proof: We note first that for all f € L{(IR*) N L(23+6)/2(B3), the kernel
QT (f, f) lies in L'(IR?).

Therefore, we can compute the Fourier transform of Q% (f, f),

U@ = [ erer (-t

v,ux ER3
0'65'2
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X f (v—l— U + v - U*|O') dodvduv, (79)

2 2
— /// e—iﬁ.(v+v*—|v—u*|cr)/2f(v)f(v*) dodvdv,,
UW*ERS
oces2

according to the pre-post collisional change of variables.

We then note that

, +
/ ellv=vlot/2 4o = o7 / etlv=ulléle/2 gy,
c€eS? =

sin (5 [v — v [€])

=87
v — v [¢]

Thus we obtain

in(Llo—
Q"’(f, f)(f) — 87 // e—ig.(u+u*)/2f(v)f(v*)81n(|2 |U |U|*€|||5|) dvdv,.
v — U
v,ux €IR3
(80)
Using the variables
z:v—;?}*, w=v— v, (81)

we get
QHJ ) =57 //RSXJRS e[z w/2) f(z = w/2)

sin(Elel )

dwd
Bl
_ 87 W w sin(g[wl[€])
=T Rsf(+2)f( 2)7|w| dw.

According to Cauchy-Schwarz’s inequality and Plancherel’s identity,

dw
s |w|? (14 |w[)1+e

| e ieF i@ P <oan [
Rr? R

w

) /JR3 /R3 70+ %ﬁ( = PNOPAE (14 [w]) ¥ dw
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<C. /BS /BS A S = D) (1 o)+

scs/ / F0)2 F(0)2 (14 |0 — v.])1+ dvdo,
R JR?

< 4
> Cs HfHL%1+a

and the proof is complete. [J

)2

3.3 General cutoff cross sections

We now turn to the general case, that is when cutoff hard potentials (or
Maxwellian molecules) are considered (note that assumption (82) below is
satisfied only by potentials gently cutoff).

The proof, extracted from [19], follows the same lines as that of the pre-
vious section, but is slightly more involved. We still only consider dimension
three.

Theorem 9 Let B be a continuous cross section from 0, 00[x[—1, 1] to IR,
admitting a continuous derivative in the second variable. We assume that
B satisfies the estimate :

Ve >0, Vuel|-1,1], ‘B(x,u) < Kp(l+z). (82

0B
+| Gt

Then, for any € > 0, there exists a constant C. only depending on ¢ such

that for any f € Li(IR®) N L(23+6)/2(B3), QT (f, f) € H'(IR?) with

+ . - 2
Q™ (f, f)HHl(R3) <C:Kp HfHL%e)J,E)/z' (83)

Proof : We first note that since |B(z,u)| < Kp(1+z), the integral (76)
defining Q*(f, f) is absolutely convergent for a.e. v. Moreover, Q¥ (f, f) €
LY(IR?), and

IQ¥(f, Pller < 47 Kn 1712, (51)

Therefore, we can compute the Fourier transform of Q*(f, f),

U@ = [ eer (e oty p (i Lol

v, v €EIR?
0'65'2

(85)
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x B <|v — s, |v—7v* : O') dodvdu,
/l]_

+|

/// e—i£~(’U+’U*_|’U—’U*|U)/2f(v)f(v*) B <|U _ U*|7 % . U) do‘dvdv*7
U — Uy

v,ux €IR3
0'65'2

according to the pre-post collisional change of variables. Thus we obtain

QHINE© = [ I (o) f(0) Do = 0. dvdo., (56)

v,ux €IR3

where for any w, ¢ € IR3\{0}

D(w,€) = / ellvlot/2p <| |%-a) do (87)

ocES?

_ [ ez’|w||s|u/2/27r
u=-—1 =0
2
B |w|, u —I—\/l—u2¢1— = ﬂ) cos | dedu,
|€| |w] |€| |w]

with spherical coordinates and

§
=0 - (88)
i
Integrating by parts, we get
+1 9etlwlfélu/2
Dl = - [ 2
S S I

B SO R R A
S (H o mﬁ% (371 S”)
0B ?
S (| |, |€| ] —I-\/ ¢ |€| m) Cosc,o) do du

< 9rB _ ____ 9xB 5> =
T ene 2" <'w' e |w|) a2 ('w" €] |w|)’ (89)
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and therefore

dr +1 |
D, O] € (1l + |w|)/_1 <1+ )du

T
+r—— KB (1 + [w])
[w|[¢]

< %TKB(H 1]wl).

Coming back to (86) and using the variables

U+ U,
2 b

z = W=V — Uy,

we get

JE—

QRN = [ WH(w.D(w.€)du.

where

W& = [ w25 - wf2) ds

z€R?

(93)

is a Wigner-type transform of f. Then, according to Cauchy-Schwarz’s

inequality, we get for any € > 0

QFTN@f < [ WP 1+ ) d
weR?
dw

X / |D(w75)|ZW

weIR3
72

< C.
Sk

we IR?

Finally, using Plancherel’s identity, we obtain
2 _|_/\ 2

€12 [+ (7, N ©)]

£eiR?

dg

<y [ [ WP dg| (14 ) do

weIR? \éelR?
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— C.K%(27)° / / (2 4 w/2) f(= = w/2)[2 d= | (1 + |w])* dw
weER? \z€IR3

= KB [ 1@ S0 (o = o) dud,
v,ux ER3

< y: 171
< CRBEDUfIL,

and the proof is complete. [J

Note that assumption (82) can be relaxed (in order to treat (not too)
soft potentials for example). The estimate is then not as good as in the
previous theorem (Cf. [19] for more details).

3.4 Propagation of Singularities for the spatially homoge-
neous Boltzmann equation

The results obtained in the previous subsections can be directly applied to
the study of the propagation of singularities for the spatially homogeneous
Boltzmann equation.

This is due to the fact that as soon as the cross section is cutoff, the
Boltzmann operator () can be written under the form

Q(f7f) :Q+(f7f) _fo7
where Q% is defined by (18) and

with
z
Az) = /crESN_l B(z,— - 0)do.

el

As a consequence, a solution of (25), (26) can be written under the
“Duhamel” or mild form

£ = fwesn (- [ (A niryir)

Q@ e (- [ nmar) s (96)
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Let us look for example at cross sections like
B(e,u) = |o|* b(u),

where o €]0, 1] and b is of class C'! on [~1,1] (that is, typical cutoff hard
potentials).

We consider solutions of (25), (26) which lie in L°°(IRy; L2(IRYN)) for
some large s (such solutions are known to exist as soon as the initial datum
also lie in the same space).

Then, for all s,7 > 0, (A« f)(7) € HN/Z—W(BN) and Q1 (f, f)(s) €

loc

HWN=D/2(RN). According to formula (96), we see that for all ¢ > 0, and
p< (N -1)/2

fin € HE (IRY) = f(@t) € HE (IRM).

loc loc

This can be seen as a theorem of propagation of singularities. As can be
deduced from formula (96), the singularities of the initial datum are prop-
agated (in a trivial way : they stay at the same position in the space of
velocities) and decrease exponentially fast. Such a behavior is confirmed by
numerical simulations.

4 Propagation of Singularities for the spatially in-
homogeneous Boltzmann equation

4.1 Introduction

In this section, we investigate the smoothness (more precisely, the lack of
smoothness, that is, the singularities) of the solution of the full cutoff Boltz-
mann equation (16).

In the sequel, we shall in fact limit ourselves to cross sections B which
satisfy the following assumption:
Assumption 1. The nonnegative cross section B lies in W (IR, x

[—1,1]).

We denote as in the previous section

Az) = /creSN—l B(z,— - 0) do,

]

and

QU.N =Q (£ )~ fLF.
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Note that the classical cross sections of (cutoff) Maxwellian molecules
or (cutoff) regularized soft potentials satisfy this assumption. The case
of (cutoff) hard potentials, which do not satisfy assumption 1 because of
the large relative velocities, is briefly discussed in a remark at the end of
section 2.

In this section, we shall deal with solutions of the full Boltzmann equa-
tion (16), for which many kinds of solutions exist.

Global renormalized solutions have been proven to exist for a large class
of initial data by DiPerna and P.-L. Lions in [33] (Cf. also [54] and [55]).
Global solutions (in the whole space) close to the equilibrium have been
studied by Imai and Nishida in [46] and Ukai and Asano in [71]. Finally,
global solutions for small initial data were introduced by Kaniel and Shinbrot
(Cf. [48]) and studied by Bellomo and Toscani (Cf. [11]), Goudon (Cf. [41]),
Hamdache (Cf. [43]), lllner and Shinbrot (Cf. [45]), Mischler and Perthame
(Cf. [61]), Polewczak (Cf. [65]) and Toscani (Cf. [68]).

In our study of how the singularities of the initial datum are propagated
by the Boltzmann equation, we need some smoothness (basically, we need
that f be L°° with some decay in z, v), and we shall therefore concentrate on
the framework of small initial data, where such estimates are available. We
think that our work is likely to extend to solutions close to the equilibrium,
but we shall not investigate this case.

We consider only the dimension three for the sake of simplicity.

We recall here one of the theorems of existence of such small solutions.
We use a formulation adapted to our study, which is inspired from [61].

Theorem 10 Let B be a cross section satisfying assumption 1 and f ,, be
an initial datum such that, for all z,v € IR® x IR?,

_ 1
0< fulae) < (1 1Al=) " exp (= 5P +10). @7
Then there exists a global distributional solution f to Boltzmann equation
(16) with initial datum f .., such that, for all T > 0, t € [0,T] and xz,v €
R? x IR?,
1
0 flt,a,0) < Crexp (= (e — ot + [oP) ) i= Malta, ), (98)

where Cr is a constant only depending on T and || A||f.
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We now state the main result of this section. It concerns the form of
the singularities of the solution of the Boltzmann equation (in our setting),
and is extracted from [21]. An analogous result in a different setting can be

found in [7].

Theorem 11 Let B be a cross section satisfying assumption 1 and f ,, be
an initial datum such that (97) holds. Then we can write, for all (t,z,v) €
Ry x IR? x IR?,

fltyz,v) = f (e —vt) D1t 2, 0) + 2t 2, v),

where T'1,Ty € H%, (R4 x IR® x IR?) for all o €]0,1/25].

This theorem shows that the singularities of the initial datum (that is,
for example, the points around which f, is in L? but not in H® for any
s > 0) are propagated with the free flow, and decrease exponentially fast
(since in fact I'; has an exponential decay).

In particular, an z-dependant version of the result of subsection 3.4
holds. Namely, for all £ > 0 and s < 1/25,

ft) e HY(IR° x R®) <= [, € H (R’ xR’).

The proof of theorem 11 uses the regularizing properties of the kernel Q@
presented in the previous section. We recall that they were first studied by
P.-L. Lions in [58], and extended by Wennberg in [78], [79], by Bouchut and
Desvillettes in [19], and by Lu in [60]. We also recall that those properties are
exactly what is needed to give the form of the singularities of the solutions
to the spatially homogeneous cutoff Boltzmann equation (this is the result
of subsection 3.4). In order to conclude in our inhomogeneous setting, we
also have to use the averaging lemmas of Golse, P.-L. Lions, Perthame and
Sentis (Cf. [38]), in the form of theorem 5.

Proof : We briefly sketch the proof of theorem 11 before detailing it.
The main idea is the following: we write down the Duhamel form of the
solution of the Boltzmann equation (as in the spatially homogeneous case),
also called the mild exponential form. For (¢,z,v) € IRy x IR® x IR, we
have

flt,z,v) = fin(ac—vt,v)exp(—/oth(U,x—v(t—a),v)da)
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+ [ [t s - vt =5).0) (99)
X exp (— /:Lf(a,x —v(t—0),v) da)]ds.

We are going to prove that both Lf and QT (f, f) liein L% _(IRy; HY, (IR® X
IR?)) for any o €]0,1/25][.

We now begin to give a detailed proof. Next subsection is devoted to
the study of the regularity of L f.

4.2 Regularity of Lf

Denoting by Br the ball of radius R and center 0 in IR®, we prove the
following intermediate result :

Proposition 1 Suppose that B satisfies assumption 1 and that f ., is such
that (97) holds. Then, for any T > 0 and R > 0, there exists K1 g > 0 such
that

WL 2o, 19: 2 (BrxBR)y) < KT,R | Al (R2)-

Proof : Let us choose T > 0. Since L f is the convolution with respect

to v by A, we obviously have that, under assumption 1, Lf € L*([0,T]; X

IR2; Hll({f(ﬂ%g)) (in fact, Lf lies in L2([0, T, x IR3; W (IR?))) and satisfies

loc
L f 120, 07x Brtr /2 (85)) < KT | Allwe (o).

It remains to prove that Lf € L?([0,T]; x IR2; Hl/z(Bi)).

loc

Let us define the function T\, 0 < A < 1/2, by T\ (v.) = e~***, and study
the following quantity

HLfH%%[O,T],:XR%;H1/2(Ri)) (100)

2
/t,v/x,h

dh
/ A(v —v) (f(t,z + h,ve) — f(t,2,v.))dv,| de—=dvdt.
We want to use theorem 5, which we here recall under the form :

|
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Lemma 2 Let f € C([0,T]; L3(IR3 X IR}.)) solve the equation
Of+uv.-Vof=g in 10, T[xIR® x IR?,

Jor some g € L*([0,T] x IR® x IR®).
Then, for any v € D(IR?), the average quantity defined by

py(f)(t, x) = / [t 2, v) B(v,) du.

vx EIR3

belongs to L*([0,T]; Hl/z(ﬂ%3)) and satisfies, for any s > 1,

leb(f)"%2([03];}11/2(133)) <Cs [/ | £(0, @, U*)|2|¢(U*)|2(1 + |U*|2)de*d95

WU

+ l9(t; 2, v) Pl (o) [P (1 + |vu] ) docdadt]

1,2,v%

where C is a constant only depending on s.

Using lemma 2, eq. (100) becomes, for any s > 1 and any open ball Br
of IR?,

LW 0, 79035, 10122
")
< 4
- /’UEBR PA@=ITy (T/\

2

dv
L2([0,T;H/?(R®))

<o [ ] 1ZEpap P PO+ el e
’UEBR T U T/\ (U*)
I 2
+ 757967U*|(87,“|‘ U Vx) Ty

X |A(v — v ) |?| T (v F(1 + |v*|2)5dv*dwdt] dv

< Crs My SNl o (o) (101)
2 2

R gy 0+ 0505 )

I N2 (re x Re) Tl r2(jo, 1< REx R?)

where C'g s is a constant and

My, = sup |Tx(va) (1 ]us]?)*?). (102)

vx €IR3
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Note that, since we have (97), the following estimate holds :

0 < Lul@0) o e -1l
Tx(v)

where k is an absolute constant, so that (recall that 0 < A < 1/2) we can
find a constant C'y > 0 such that

Hfi“ < Chy. (103)
I L2 (Rre x R?)
Moreover, we have
fl_ QT Nl | |fLS]
V)= < . 104
‘(@—I—v Vor| < o (104)
It is clear, by (98), that
|f(t,z,v) Lf(t,z,v)] < My (t,z,v) LMy(t, z,v)
T/\(U) - T/\(U)
< O} @2m) Y| Al oo e Tl O-DIE,
Hence there exists a constant C'y such that
L
‘ JL] <Ch (105)
Ty lz2(jo, 1< REx R?)
It is also clear that, for (¢, z,v) € [0,T] x IR®> x IR?,
QT (£, )t 2, v)] 1 / / /
= t,x, ) f(t,z,v,) Bdoduv,
T3(0) T2 | T )
o QF (Mg, Mr)(t, 2, 0)
N Ty (v)
_ My(t,z,v) LMy (t,z,v)
- Tx(v) ’
so that N
HM <Ch (106)
T L2([0,T]x R3x IR?)
Taking (105)—(106) into account, (104) implies that
H(at toov) L <Ch (107)
T llz2(o,11x R x R?)
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Then, using (103) and (107) in (101), we get
HLfH%fz([o,T]tijg;H1/2(Bg)) < CSCAQMA,SQHAH%OO-
Recalling that Lf € L%([0,T]; x IR; Hﬁﬁf(ﬂ%i)), we finally obtain that
Lf € L*([0,T]; HY2(IRS x R?)), (108)
which ends the proof of proposition 1. [J

We now turn to the more complicated term Q¥ (f, f).

4.3 Regularity of Q*(f, f)

Studying Q1 (f, f), a new difficulty arises when we try to prove that this
term is (somewhat) smooth in z,v. Namely, QT (f, f) itself cannot easily be
expressed in terms of averages in v of f, whereas it was possible for L f in
the previous section.

However, its own averages in v (that is, for ¢ smooth, quantities like
L, QT (f, f)(t,z,v) ((v) dv) can be expressed in terms of averages in v of f.
More precisely, they are integrals with respect to an auxiliary parameter of
such averages in v.

Therefore, the strategy of proof is now the following : in a first step,
we show that averages in v of QT (f, f) are somewhat smooth in z, and we
keep track of the averaging function ¢ in the estimate which expresses this
smoothness. Then, in a second step, we approximate Q* (f, f) by Q1 ([, f)*.
(., where (. is a smoothing family of functions. The quantity Q¥ (f, f) *, (.
is (somewhat) smooth in z according to the first step. It simply remains to
use the properties of smoothness in v of Q¥ (f, f) (that is, the results of the
previous section) to control the difference between Q¥ (f, f) and QT (f, f) *,
(., and to optimize the parameter ¢.

We begin with the first part of this program.

4.3.1 Study of the averages (in velocity) of Q*(f, f)
This part is devoted to the proof of the
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Proposition 2 Let ¢ € D(IR?), B satisfying assumption 1, and f ,, such
that (97) holds. Then we have, for any T > 0 and h € IR>,

/t,x

where Kt is a constant that depends on T (more precisely on the constant
Cr in (98) and on || Bllw1, (R, x[o,1]))-

A[Q-I—(ﬁ Ntz +hv)— QY (S, =, v)]C(v)dv‘zdxdt

< K7 (|Gl e ey 1B, (109)

Proof: Let ¢ € D(IR}). We have

| @t do= [ )l Be(dododv. (110
R? v

YUk, O

By changing pre/post collisional variables, eq. (110) becomes

/RS QF(f, f)(v) C(v) dv:A f(v)f(v*)/UBC(v’) dodv.dv.  (111)

sUx
Let us set

Z(v,v.) = /U B((W)do, (112)

which depends neither on ¢ nor on = and belongs to L™ (IR® x IR*). As a
matter of fact, we have

1 Z]| Lo (re x rey < AT || B Lo (re x 52) IC]| oo (r2) -

Note that we still cannot directly express the quantity [ Q1 (f, f)(v)((v)dv
in terms of averages in v of f, because Z is not a tensor product. As a
consequence, we approximate Z by (integrals) of such tensor product.

This is done by taking a mollifying sequence (t.).>¢ of functions of v.
Thanks to (111), we get

[ Qrunwce a= [ g [ 2w

) W

Xt (v — w) e (Vi — w*)dw*dw) dv.dv

[ s | [ @) - 2w

)
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X e (v — W) (v — wi)dw,dw|dv,dv. (113)

We name [y (respectively I3) the first (respectively second) integral in (113).
They are functions of t € IRy and x € IR°.

e Estimate on Iy.

The integral I; can be rewritten as
Iy = / Z(w, wy) pll/a(_w)(f) (t, @) pll!a(_w*)(f) (t, 2) dw.dw,

where py(f) denotes the average quantity of f with respect to .

Let us study the norm |[741y — Ii[lz2(jo,77x 2y, for b € IR®, with the
notation t,g(z) = g(x + h).

The following equality holds :

/ |Th]1 —Il|2d$dt

t7

/t,x

[zl (D4 Do, (D)t 4 1)

2

P (=) () (& 2) Py (o) () (@) Jdwidw)| dadt.

We immediately get

/ i —Il|2dgcdt§CHZH%OO(Rngg)/ dtdx
t,x z

)

/ww*

)

‘(lowa(_w)(f) (tv T+ h) - pwa(_w)(f) (tv x))plba('—w*)(f) (tv T+ h)
+ Py (=) () ) (P (cmwn) () (8 7+ 1) = Py, (cmany () (8 96))‘dw*dw

<N goarey | [ et | [ [ = W)y () 012)

2

X Th,o%(._w*)(f)(t,x)‘dw*dw dadt

+ dtdz

t,x

/w,w*‘((“ = 1d)py,(—wn ()¢, 2)
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2

p¢5(._w)(f)(t,x)‘dw*dw dxdt].

In the previous inequality, the two terms can be similarly treated. For
example, let us study the second one, which we name .J.

1= [ ([ peedierin)

([ 60 10y )0 )

< Cr /m (/w* ‘((Th — 1d)py, (—wn ()L, x)‘dw*)z dadt,

where C'r is the constant in (98). Let us choose 0 < § < A < 1/2. Using the
notation T’ as in subsection 4.2, we have

J < Cr (/ e_€|w*|2dw*)

X (/mw*((rh - Id),ol/,a(._w*)(f))z(t7 x)e€|w*|2dw*dxdt)

2

<CT9|h|/ dw, ol HIO —w*)TA(j]:/\)

Then, thanks to the averaging lemma (lemma 2), we obtain

2([0,THV2(R?))

J S CT,@,s|h| dw* €|w*|2

l Lottt o = w020+ oo
TA (vi)?
/ 2
+ (O 4 v - Vo) ) (8, 2, v4)
1,2,v% T/\

X Ve (v — W) Tr (0:)2 (1 + |0a]?) dvndadt| .

Let us take care of the term with f;, (the other one is treated in the same
way thanks to (107)). We notice that, for any w. € B(v,¢),

e€|w*|2 < 62€|v*|2e2€ 2
We thus have

[t [ LR o P00 e et

Ty (vy)
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<. f L o) o200 )

X (/ e€|w*|2¢5(1}* — w*)de*) dv.dz
wy EB(va,e)

in w U* 5 £
<. fT To—o(0)” (L4 [02]2) 262 || 22 dv.da
A U*

M
T\

o ("M p5)’

L2(R* < R?)
for 0 < e < 1.

Note that we have used that HQ#EH%Q < 7% and My_g is defined by
(102).

Hence we get, thanks to (103),
J < ===
and finally
Imndy = TillEoqo,myxrey < Coasll 2117 oo (e xcrey 1 (114)
e Estimate on I5.

Let us now study the norm ||7 12— 12|12 ({0, 77x r?), With the same notation
7, as before. We successively have

| Tnlz — 12"%2([0,T]><R3) :/ dtdx

t,x

/ (f(t,x{—h,v)f(t,x—l—h,m)
—f(t,z,v) f(t,z,v,))

2

X (A w(Z(v, Vy) — Z(w, wy)) . (v — w)th. (v, — w*)dw*dw) dv,dv

s Wk

2
< CNZ ey ([ Nwlbelw)du)

x /txdtdx(/w (r+ 1)t 2,0) £t 2, 0 dvdo) (115)

)

48



Thanks to (98), the second integral term is bounded by a constant K7 > 0.
Hence there exists a constant C'r > 0 such that

HThI? - 12"%2([071“])(]33) <Cr HZH%/VI,OO(RSXRS)gz- (116)
e Fistimate on the average quantity.
Under assumption 1, the following inequality clearly holds :

1 Zllwoe (re x rey < ClICH W (r2)s (117)

where (' is a constant depending on T" and || Bl (R, x[-1,1))- Conse-
quently, using (113)-(117), we get, for h € IR?,

/t,x

that gives (109), if we choose £ = |h|'/5.
Thus, we conclude the proof of proposition 2. [J

A[Q*(ﬁ Atz +hv) = QT (f, /i, z,v)]¢(v) dvfdxdt

< K1 [IKlyrco ey (7 + 77[A1),

4.3.2 Study of Q*(/, f)

We turn back to the proof of our theorem.

Let us once again choose a mollifying sequence (15)5s0 of functions of
v. We obviously have, for all § > 0,

Q+(f7f):(Q+(f7f)_¢5*UQ+(f7f))+¢5*vQ+(f7f)‘

Note that, thanks to (109), for any & € IR® and § > 0,

/t,x

/w[qﬁ(f, Ht,z+hw) — QY (f, £t =, w)]vs(v — w)dw‘zdmt

< C 15 (v = .00 ey [P
< C8% |h)0. (118)

On the other hand, we know that thanks to the regularizing properties
of QT (theorem 9), and thanks to the fact that f € L>([0,T] x Bg; L2(IR3))
(for all s, R > 0), QT (f, f) € L>=([0,T] x Br; H'(IR>)) and therefore

1QT (£, ) = ¥s %0 QT (f, Nl L2011 x8rx ) < CF. (119)
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Using again the translations 7, in the variable z (h € IR?), and assuming
that |h| < 1, we successively have

2
/(f )E[0,T]x Brx B ‘ThQJr(fvf)—QJ’(ﬁf)‘ dvdzdt

SC[/t ‘(Q—l—(fmf)_¢5*UQ+(f7f))(t7$7v)‘2dvdxdt
+ . (Th(¢5 *y Q+(f7 f)) — V5 *y Q+(f7 f))(t7 z, U)‘zdvd$dt:|

< Cp (8% + [H]*/7579), (120)

thanks to (118)—(119).

Then for a good choice of § (that is, & = |h|*/?%) in (120), we find the
following estimate :

1/2
(/T/ / IThQ+(f7f)—Q*(.ﬁf)lzdvdwdt) < Clhp,
0 J(Br),”(Br),

which ensures that Q*(f, f) € L?([0,T] x (Br),; H*((Br),)), for any 0 <
a < 1/25.
Besides, we know that QT (f, f) € L?([0,T] x (Br),; H' ((Br),))-
Then, by a standard interpolation result, we can state that for all o €
10, 1/25],
QF(f, f) € L*([0,T); HY, (IR® x 1)) (121)

loc

4.4 Conclusion

Let us now conclude the proof of theorem 11. Note that if we use the notation
f#(t,z,v) = f(t,z+vt,v), formula (99) is (at least formally) easily rewritten
as

f#(t,x,v) = exp(—/Oth#(U,x,v)dU)x
(Fuo+ [ [eru e (122)

X exp (/OS Lf#(o,2,v) da)] ds).

In (122), we name FE; the first exponential term and Fy the whole integral
term with Q7.
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We first notice that since Lf has the same H/% smoothness in both
variables # and v, it is clear that Lf# € L%([0,T]; H IIZZ(B3 x IR?)). In the
same way, QT (f, f)# lies in L2([0,T]; HS,, (IR® x IR®)) for all a €]0,1/25[.

Besides, we have, for any h € L2([0,T]; H*(Br x Br)), R > 0, a €

10,1/25],

INTAL

Using (123) with h = Lf#, we immediately obtain that for any ¢ € [0, T],

2 2
sonareaxsny = T2 qo e axsRy- (123)

[ 1#(0)do € 20,7 I < ).
0

Its time derivative is exactly Lf# which also lies in L2([0,77; HIIZE(BS X
IR?)). Consequently, we have proven that

/ Lf#(0)do € HY, (Ry: HY2 (R x B%) ¢ H\2(IRy x R® x IR?).

Since 2 — e” is a bounded C'* function on [—T max L f, T'max L f], we
can conclude that F; belongs to HIIZE(B+ x IR? x IR3).

Then, we notice that Fs is the integral of the product of two terms which
are both in A = L*([0,T); H, (IR? x IR*)) N L (R4 x IR® x IR?) for all
« €]0,1/25[. The previous vector space A is in fact an algebra, so F; is the
integral of a term that lies in A. Using once again (123), we find that £
belongs to HY, (IRy x IR® x IR?) for all a €]0,1/25].

Since Fy and FE5 are obviously in A, F1 = F; and Fg = F; x FEy lie
in A too, so that both quantities belong to HY, (IRy x IR® x IR?) for all

a €]0, 1/25[.

Finally, from (122) back to the standard formulation, we obtain (99)
with the required smoothness on both I'y and I's, because I'y and I'y have
the same smoothness in the three variables ¢, z and v. [

In this proof, we have only considered cross sections B lying in the space
Wheo (R4 x [—1,1]), which covers the case of (cutoff) Maxwellian molecules
and (cutoff) regularized soft potentials.

We briefly explain here how to transform the proof to get a result in the
case of hard potentials (with angular cutoff) or hard spheres.
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Note first that the solutions of [61], which have an exponential decay in
both & and v, are replaced by solutions with an algebraic decay in at least
one of the variables, like those of [11] or [65]. Then, throughout the proof,
if the algebraic decay concerns the variable v, the function T) is replaced
by Sy(ve) = (1+ |v*|2)_%. The estimate on %{’f) becomes then more
intricate (but is still valid).

Then, one has to replace the estimates in W15 by estimates in €%
(except for hard spheres) because the cross sections of hard potentials are
only Holder continuous, not Lipschitz continuous.

Finally, the L estimates must be replaced by weighted L™ estimates
because the cross sections of hard potentials (and hard spheres) tend to
infinity when |v — v,| tends to infinity. At the end, the exponent in the
Sobolev space is less than 1/25 (and may be very small for hard potentials
close to Maxwellian molecules, because of the bad smoothness of the cross
section for small relative velocities).

The situation for true soft potentials (that is, when one keeps the true
singularity of the cross section for small relative velocities) is not so good,
and one probably needs to find new estimates to prove a result of smoothness
in such a case.

Finally, when one considers a cross section without cutoff, or the Landau
kernel, a very different behaviour is expected, and will be described in the
sequel.

5 The Fourier transform of the Boltzmann opera-
tor with Maxwellian molecules and applications

5.1 Introduction

Up to now, we have used the Fourier transform Q(f, f) of Boltzmann’s kernel
Q(f, f), but we have only written it in terms of f itself and not in terms of

f.

In this section, we shall use a formula, written down by Bobylev in [13],

S I

[16], which enables to express directly Q(f, f) (or QT (f, f)) in terms of f.
This formula is computed in subsection 5.2.

However, this formula is easily tractable only for a special kind of cross
sections, namely the Maxwellian molecules. We recall that in our terminol-
ogy, it means that B depends only on the second variable. As a consequence,
many results are valid only for that particular type of cross sections, and
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many others, whose validity is larger, are more easily proven in the case of
Maxwellian molecules.

_In subsection 5.2, we write down Bobylev’s identity, which expresses
Q(f, f) in terms of f Then, in the remaining subsections, we treat only
the case of Maxwellian molecules, and give at the same time results which
are only valid for this cross section (study of explicit and eternal solutions,
uniqueness in the non cutoff case) and results which have a larger validity,
but which can be proven more easily when Maxwellian molecules are consid-
ered (a new proof of the regularization properties of QT (f, f), and the study
of the smoothness of the solutions of the non cutoff spatially homogeneous
Boltzmann equation).

5.2 Bobylev’s identity

We write down here the proof of an identity due to Bobylev, which enables
to obtain a simple expression of the Fourier transform of Boltzmann collision
operator (or even, separately, its positive and negative part) in terms of the
Fourier transform of f. The proof is extracted from [15].

Theorem 12 We consider Boltzmann’s kernel () in the case when B does
not depend on |v — v :

U — Uy

QN = [ [ {oth 1) = ot s po(E= ) do

Then, the following formulas hold (f or F [ both denote the Fourier trans-
form of f in the variable v) :

Flotwne= [ o(g-e)aefetio. o

Flownlo= [, (g o)iwiei. o)

In the previous formulas, we have used the shorthand notation

_ 4o e _ E=ldo

& 5 5 (126)
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Proof: We perform here the calculation of the Fourier transform of the
gain term in a general Boltzmann collision operator :

v

@ = [ [ Bl =) glel) ) dod,

First of all, for any test-function ¢(v), holds

[ @@ neewa= [ Bl ) o)
X g(vi) f(v) (v} dvdv. do .

Plugging ¢(v) = =" in this identity, we get

FIQ* (9. N = [ 9(0.) F0)

JR2N x SN-1

U — Ux _utvs o _clv—vs]
><B<|v—v*|,ﬁ-a)e T e S du du, do .
v — U

A key remark by Bobylev is that

— ool
/ B<|U_U*|7w.g) i el 3
GN-1 |U-— UA

= B <|U_U*|7£'U) e_ilg_lg.(v_v*)d(f.
SV-1 N

This is a consequence of the general equality

/ F(k-a,ﬁ-a)da:/ F(l-o,k-o)do, (| =k =1
gN—1

SgN—1
(due to the existence of an isometry on S™V~1 exchanging ¢ and k).

Thus,

FIQHg e = |

R2N><SN_1

o02) £0) B (Jo = vul. -0

X e_ig'vt;* e~ el 5 gy dv, do
vt =
[y 80 £ B (0=l ) 7 oo,
S SN—

where £T and £~ are defined by (126).
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By the Fourier inversion formula, this is also

ﬁ /wasN_l {/RQN g(n) f(n) B <|v ~ o, é_| . U)

U iU g —iv-ET —ive-E” dn, dn }dv dv, do

_ —<2;>N /RQNXsN_l a(n.) F ()

[/ B <|U — v, 5 . U) piva(me=€7) piv-(n=€%) oo, dv*] do dn dn, .
R2N €]

By the change of variables ¢ = v — v,,

/ B <|v — i . O') e (me—€7) giv-(n=€%) ) dv,
RN €]

:/ / B<|q|7£.g) (it (k=€ =68) =i (=€) g
RV JRY N

— V2B (1 — 1. S e
= (726 (I = € g0 ) ol =€ = ]

where § is the Dirac measure, and B(|E|,COS€) = [p~ B(lq],cos8)e™17¢ dq
denotes the Fourier transform of B in the relative velocity variable.

Thus the Fourier transform of Q% (g, f) is given by

1 Sl ) F : o€
GrIVTE fo gy 0T E =) =3 o ) dn.do.

Writing &, = 1, — €7, we find in the end

FIQH0 N = Griss e gu 16 HEIFEF =)

x B <|5*|, é—| : a) dé, do . (127)

In the particular case considered here (that is, when B(|z|,cos8) =
b(cos#)), we have

B(|&.], cos8) = (2m)NV/25[¢. = 0]b(cosh),
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and as a consequence

FIQ o D6 = [, a1 () do

The formula for F[Q™ (g, f)](£) is then easily obtained by the same kind of

computations (but much simpler). [

We now write down a simpler form of the Fourier transform of Boltz-
mann’s kernel (in the case of Maxwellian molecules) for functions which are
radially symmetric (or, equivalently, for functions the Fourier transform of
which is radially symmetric). We observe that

|£| “fC
€77 = Ifl2 ;P = |€|277
so that if we define 6 by
£
cos(20) = — - o,
20 =1

we obtain

€71 =[] cos® 0, |€T]F = [¢] sin® 6.
Then, the Fourier transform of Boltzmann’s kernel (in the case of Maxwellian
molecules) for functions which are radially symmetric writes (with £ € IR)

/2 .

FIQH 0. IO = [ 9l sind) J(¢ cost) s(loy b, (125)
/2 .

FIQT 0. VO = [ 5(0) J(€) 510 o, (129

where

3(161) = sin(216]) blcos(26))

(in dimension 3). Remember that f and § are even functions of & in the
previous formulas.

Those formulas are sometimes called the Fourier transform of Kac’s op-
erator, since its corresponds to taking the Fourier transform in (31), that is,
when v € IR and

Qlg, f(v // { (vsin @ 4+ wcos ) f(vcosf — wsin )

— g(w) £ () (1) dwds. (130)
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5.3 Explicit and eternal solutions of Boltzmann’s equation
with Maxwellian molecules

Using formulas (128) and (129) and making the change of variables

52

5 s = cos?#,

X

together with the change of function

o(t,x) = f(t,€),
Boltzmann’s equation for radially symmetric functions writes

1

0olta) = [ {o(t.s0)ott, (1 92) = 60,0 o0, ) b G5y ds, - (131)

s=0
where (G is related to b.

The systematic study of this equation was made by Bobylev and Cer-
cignani. The results of this subsection are extracted from their articles [17]
and [18].

First, we look for solutions to (131) of the form

Bt ) = €7 go(w e,
for a, A € IR.

The equation satisfied by ¢q is

220 = [ {oos0) du((1 = ) — 0(0) 60(0) } ) s, (132)

We see that ¢o(y) = (1 +y) e™¥ is a solution to eq. (132) as soon as

A:%/()ls(l—s)G(s)ds.

As a consequence, we obtain solutions ¢ to eq. (131) of the form

bt x) = e 2% (1 4+ z e M) exp ( -z 6_2/\t).
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Those in turn lead to the following formula for the Fourier transform of the
Boltzmann equation :

p o 1 _ 1 _
Flt.) = P (1 S e exp (- gl ).
The well-known BKW mode (Cf. [13], [14] and [51]) is then recovered by

taking the inverse Fourier transform of the previous formula (with a = %,
and in dimension 3):

ft,v) = (27 (1 — e M) =3/ (1 t3 (16__:—At) (1 —|Ue|:f - 3))

Xexp(—%).

This has long been the only (up to some transformations) known nonneg-
ative (nontrivial) explicit solution to the (spatially homogeneous) Boltzmann
equation.

However, Bobylev and Cercignani recently discovered (Cf. [17]) new
nonnegative explicit solutions in the particular case when G' = 1.
We only write here the simplest one. It is given by the formula

0 we

L 5 _
flt,v)=2"27"2¢ 75/0 o2 du . (133)
e

This solution is said to be eternal. This means that it is defined and

nonnegative for all times t € IR.

This does not contradict the conjecture that all eternal (nonnegative)
solutions with finite mass and energy of the (spatially homogeneous) Boltz-
mann equation are trivial (that is, Maxwellian). The reason for that is that
the solution given by (133) has infinite energy.

In fact, Bobylev and Cercignani recently made a significant step towards
this conjecture by proving the following result (Cf. [18]) :
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Theorem 13 Let f be a radially symmetric nonnegative eternal solution of
the Boltzmann equation with Mazwellian molecules such that all its moments
of even order

mat) = [ gt o) oo
RN
are finite for allt € IR. Then, f is a (constant) Mazwellian.
Proof : We can suppose that mg = 1 and m; = N without loss of

generality (this is possible thanks to a multiplication and dilatation of f).
Then, we want to prove that

2

f(t,v) = @2r) N 2e 2,

We now use the Fourier transform of f and keep the notations (¢, s, 7, etc.)
of this subsection. For the sake of simplicity, we write down the proof only
in the case when G' = 1.

The equation satisfied by ¢ is (131). The same equation is satisfied by
1 defined by
U(t,x) = €e” ot z),

that is

Or(t, ) :/

s=0

1

{w, s2) (1, (1— s)a) — (L, 0) i, x)}G(s) ds. (134)

According to the definition of ¥, we simply want to prove that for all ¢t € IR,
x € Ry, Y(t,z)=1.

Then, writing (with the convention that the derivatives concern the sec-
ond variable)

o0 )
sty =3 00,
n=0 '

+oo i (n)
wt) =y LD
n=0 :

we see that for all n > 2,

8t¢(n) (t,0) = A, ¢(”) (t,0) = Z n_'

1Al
pta=npgeltn—1] P ¢
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1

« $®)(t,0) W)(t,())/ & (1= 5)7 ds, (135)

0

with A\, = % — 1.
We now suppose that we do not have ¢(0,2) = 1 (that is, f is not a
Maxwellian initially), so that there exists p € IN, such that ¥{)(0,0) = 0

fori=1,..,p— 1, and ) (0,0) # 0.

Then, thanks to (135), it is clear (by induction) that for all ¢ € IR,
P (t,0)=0fori=1,..,p—1. Again by induction, for all t € IR, () (t,0) =
eMitp(D(0,0) for i = p,..,2p— 1, and

B, ¥")(0,0)?

Bp ¢(p) (07 0)2 62/\p7,‘
2, — Az

¢t 0) = |9 1(0,0) I ,
P Ap

| s

with

B, = ((;]')))2' /01 sP (1 - s)Pds.

Then, we observe that 2\, < Ay, so that

Bp ¢(p)(07 0)2 €2Apt

B, < 0.

Because
P(x) = e " P(a),
one has for all n € IN

S0 = T S (C1) O, 0),

e a!b!
so that ,
P 2p)! _
S (t,0) =" W (1)~ Oz, 0)
= 15!
2p—1
— pz: (2])())"1)' (_1)2p—b 62/\bt
b=p (2p_ ) :
By v®(0,0)*] 1,0, Bpv®(0,0)* 5y
_|_[ 2r)(0, 0 _p—’] 2pt TP AT 20t
EUL iy vl | Ny — Aoy

When t — —o0, the dominant term in the previous formula is the term in
e?Mvt and it is strictly negative.
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This means that there exists a time 7' (negative and large enough in
absolute value) such that ¢(?)(T)0) is negative.

We now recall that expanding
; i|k| = LK
Fit k) = [ e (e, 0) da = o, )

in power series, we get for all n € IV,

(n) 1)y

27 p! omn

so that the assumption that f be nonnegative entails the nonnegativity of
$27) (t,0) for all t € IR and p € IN, and we have a contradiction. Then, f is
initially a Maxwellian and (thanks to a standard theorem of uniqueness), it
will remain a Maxwellian for all times.

We also notice that in the computation above, there is no need that the
power series (of ¢ or 1) converge, nor is it compulsory for the equation on
¢ to be defined for all time : those are only used at the formal level to write
equations on the moments of f, and could be removed from the proof. []

Note that the only other known result concerning the eternal solutions
of some spatially homogeneous kinetic equation is the result by Villani (Cf.
[76]) for the Fokker-Planck-Landau equation.

5.4 Uniqueness for Boltzmann’s equation with Maxwellian
molecules without angular cutoff

We present here a result of stability of the (cutoff or non cutoff) spatially
homogeneous Boltzmann equation with Maxwellian molecules in a weak
norm due to Toscani and Villani (Cf. [69]).

In the non cutoff case, no other proof of uniqueness is known.

First, we define by
dz(f,g) = sup M

EeRN |€|2 7

a distance between functions f,g € LL(IRY) such that

1 1 1
/RNf(v) (i) d”:/RNg(v) (&) dv = (NO/Q)-
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Note that for such functions f, g, the quantity dz(f, g) is indeed finite.

Then, the following property holds :

Theorem 14 Let B be a cross section verifying B(x,u) = b(u) (that is,
of Mazwellian molecules type) with |sin@|b(cosf) < K |8|71=7 and K > 0,
v < 2 (in other words, cutoff or non cutoff).

Then, for all (nonnegative) energy-conserving solutions f, g of the spa-
tially homogeneous Boltzmann equation (25) with respective initial data f;,
and g;, satisfying

1

/BN fin(v) (|Uv|2) dv:/RNgm(v) (é) dv,

2

(such solutions are known to exist thanks to theorem 1), one has the relation

vt Z 07 d?(f(t7 ')7g(t7 )) S dQ(fznvgzn)

Proof : We can impose (up to a translation, a dilatation and a multi-
plication) that

1 L .
/Bme(U) (&) dv:/RNgin(U) (&) " (NO/Q)‘

2 2

Then, thanks to the identites (124) and (125), we see that f and g satisfy

V>0,  f(t,0)=g(t,0) =1,

so that
ot = [, (e Fen - F9) b () do
oae) = [, (a3 -a0)b (7)o
and

~(Fo-a0) s (<) an
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But
) Jer) — g€ a(&h)

< 1f(eh)] rf(f_) — g€ | 1€

& EERAGE
L SEN) =gty et
#late) | |)5+|§( ) ||5|L
F&) = 4O (1€ + 1€
S T I T )
. f(€)|€—|2§](5)"
EeRY

Then, denoting h(§) = f(£|)£—|2§(£)7 we obtain

—1

one) < [ | IMlsim = 1(©)] () do

Supposing momentarily that b is integrable (cutoff assumption), we imme-
diately get that dy(f, g) = supgc gy [2(&)| decreases with ¢.

Since this estimate does not depend on b, it also holds in the non cutoff
case (this is easily obtained by imposing a cutoff depending on a parameter
such that, when this parameter goes to 0, the cutoff cross section converges
to the non cutoff one). O

Note that the previous estimate immediately implies a property of unique-
ness (as we already pointed out, such a property can easily be obtained
without the Fourier transform in the cutoff case, but the proof above is the
only one up to now in the non cutoff case).

5.5 Alternative proof for the properties of Q%

We now propose a proof of the smoothing properties of QT which uses
Bobylev’s identity and which is therefore particularly simple when Maxwel-
lian molecules are considered. The assumption and the conclusion are close
to that of theorems 8 and 9, but are not exactly the same.

We shall use the following formula to compute some integrals on the
sphere SV=1 (N > 2). It deals with functions which only depend on one
component: for any function 3 defined on | — 1, 1],

27T(N_1)/2

[, Bl deo = F(NiT—l)/_l B — YN qy. (136)
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We now state our result. The proof is close to the one used in [19] :

Theorem 15 Assume that
be L*(]— 1,1, (1 — u>)N=3/2qy). (137)
Then for any f € L2(IRN), Qt(f) € HN-D/2(IRN) and

1QF (Nl grv=n 2y < ON 1Bl 21 ap0—e2y 5207200 | 172 vy (138)

Proof : We know that

QF(f, 1)) = / f(g _2|5|U) f(g +2|€|U) b <£ a) do.  (139)

€]
UESN_l

We have by Cauchy-Schwarz’s inequality

2

oGl s [P0 F (D) a
ocesh-1
X / ‘b <|§—| : O') 2 do, (140)

UESN_l

and the last integral can be computed by (136),

/ ‘b <|§—| - a) Yo = %L b2 — «) N2 gy, (141)
sESN-1
Thin7 ,
[ R
ceSN-1
:UESZV—l r:/|£| _% f<€ _Qrg) f<€+2rg) 2 drdo
< | B ()] e
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= [ )] e

[n]> €|
Therefore, ,
| i@t e
EERY
<ox I (5 ”)Hf(“”)HVf(“”)\dfd
EneR
<Oy [ FONTG0 0710 dpad
A ueRN
< ON | fllp2(mvy o fll L2 (m)-
0

As we shall see in the sequel, it is possible to extend this proof to non
Maxwellian molecules cross sections.

5.6 Gain of smoothness for Kac equation without angular
cutoff

In this subsection, we investigate the smoothness of the solutions of the
spatially homogeneous Boltzmann equation when the cutoff assumption of
Grad is not made. The result is quite different from that of the cutoff case,
since we shall in fact prove that an immediate effect of smoothing occurs,
as in the heat equation.

In order to put into evidence this effect, we investigate here the simplest
nontrivial model, that is Kac’s equation (defined by (130)) or, equivalenty,
Boltzmann’s equation with Maxwellian molecules in a radially symmetric
context.

We shall even restrict our attention to a typical non cutoff cross section,
that is
B(18]) = |sin 8] 72 cos 01 g < /s (142)

rather than try to give general conditions.

We state a theorem which was first proven in [26]. The proof given here
is however extracted from [29].
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Theorem 16 We consider Kac’s operator Q) defined by (130), together with
the cross section (142).
Then, for all measurable even initial datum f* > 0 a.e. on IR satisfying

B(fn) = [ (1402 +[log 7)) fdv < +o0, (143)

the Cauchy problem

8tf(tvv) :Q(f7 f)(t,?]), f(ov) = fin (144)
has an a.e. even nonnegative solution f such that
sup/ (14 02 + [log f(t,v)]) f(t, v) dv < +o0. (145)
t>0 JIR

In addition, for all 7 > 0,

fe Lig([r, oo, HZ(IR,)) . (146)

Proof: We admit the existence of an even a.e. nonnegative solution to
eq. (144) such that the conservation of mass and energy holds, and such
that the entropy decreases. Moreover, we shall write down the estimates on
f as if it were smooth. In order to justify all our computations, we should
in fact write them on the solution of an approximated problem. We shall
not do that here for the sake of simplicity.

According to formulas (128) and (129), we see that

/2

Flatg MO = [ [até sin6) 7€ cos0) - 9(0) fie)| slol) as

=—7/2

Then, for all o > 0,

| Flw M@ HOId = A+ B, (147)

with

A= //—w/4[ (Ecosb) (fsin@)f(f)

— +4(0) (1f(€ )|2-|-|f(56050)|2)] €12 | sin 8]~ cos 0 dOdE (148)
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and

2/ /_W4 <|f §eos )| — IA(€)|2) |€[2 | sin 6]~ cos 0 dBdE .

(149)
Changing variables by £ cos 8 — ( shows that
|B| = OPIC1*[(cos )2 — 1]] sin 0] 2 cos 6d6
_7r/
< E, / o) dv |11, (150)
with /4
E, = %/_ /4[(COS 0)~2* — 1] |sinf|"% cos 0 df < +c0. (151)
The most important estimate is the one concerning A:
1 A e 2
A=t [0 (1H0F + 1gcoss))
RJ—7/4
0
5(0) — |§(€sin 0)]) €2 =27 d6d
X (9(0) = |g(&sin O)]) [¢] o W%
——/ / (0) — [§(Esin B)]) [€]2 |sin 6] cos 8 dbdE  (152)
—7r/4

(since g > 0 a.e., §(0) = gllps > 19(6)] for all € € ).

We now use the change of variables (£, 8) — (&, &sin 6) (this is where the
special form (142) of the cross section helps) and get
_udg

R ;
<=1 [ [ gt (1 contun)) dedu (151pursre = VEISI) . (15

As a consequences of estimates (150) and (153), we see that

d

~ 1] ) 7€) Ple+

|, FIQU 1€ HO 16 46 < ~Coall gasnse + Dyl Flge (159)

where 'y , and D, , are nonnegative constants depending only on o > 0

and I(g) (defined in (143)).
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We now take the Fourier transform (in v) to both sides of (144) and mul-
tiply the resulting equation by f(t,f)|€|2CY (remember that f is real because
f is even).

We know that thanks to estimate (154),

d
T Olira < =Crall {O)llgasrse + Drall f )l - (155)

Here, C'y, and Dy, only depend on « because the evolution semigroup of
144) conserves the mass and energy of f and decreases the H function.
g

Using an interpolation of H® between H®1t'/2 and H=? for d large
enough (typically d > 1/2 so that L} C¢ H~% estimate (155) becomes (for
some Sq, Ko, Ly > 0),

d - s
Nl < =Ko [ F@OIE" + Lo (156)
Then, using a Gronwall type inequality, we see that for all a,ty, T > 0,

sup (1)l < +oo.
to<t<T
Note that the method used here is very close to that of Nash for the parabolic
equations.

The proof described in this subsetcion applies to the 3D homogeneous
(non radially symmetric) Boltzmann equation for Maxwell molecules with-
out angular cutoff: for all a.e. nonnegative measurable initial data with finite
mass, energy and entropy, the number density f satisfies f(¢,-) € C°°(IR?)
for all £ > 0. This is partly proven (in 2D) in [28].

6 Extensions in the case of other cross sections

6.1 Introduction

One could think that though somehow complicated, the formula giving the
Fourier transform of Q(f, f) in terms of the Fourier transform of f when
the cross section is not that of Maxwellian molecules will enable to extend
the results of the previous section.

However, it turns out that this idea is hard to put in application. Among
the rare works using this formula, one can quote [27] and [66].
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In fact, in order to extend the theorems of the previous section, it seems
a better idea to find estimates in the standard space in which appears the
cross section of Maxwellian molecules, and only then, to take the Fourier
transform.

In this section, we present two applications of this vague idea. The first
one enables to extend the proof of the regularity properties of QT obtained
in the previous section. The second one deals with the non cutoff spatially
homogeneous Boltzmann equation.

Finally, we conclude this introduction by pointing out the analogy be-
tween the role of the Maxwellian molecules (with respect to other cross
sections) and the role of the linear PDEs with constant coefficients (with
respect to the linear PDEs with variable coefficients). The ideas developed
in this section have their origin in this analogy.

6.2 Properties of Q7

We now propose an extension of the result of subsection 5.5 in the case of
hard potentials. We obtain a result which is close to that of theorem 9, but
still with an assumption and a conclusion slightly different. The theorem
and its proof are extracted from [19].

We shall make on the cross section the following assumption :

Assumption 2 : We suppose that B takes the form

B<|U_U*|7M g):b1(|v—v*|)b2<v_v* U), (157)

oo [y

where by and by are functions defined on 0, co[ and | — 1, 1] respectively, and
satisfy for some K > 0, ap > 0,

Yo >0, |by(e)| < Ky (1+2), (158)

and

by e L3 = 1,1[, (1 — u?)N=3/2qy). (159)

Then, the following result holds :
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Theorem 17 Under assumption 2, for any f € L%+ab(BN), QY (f. f) €
HW=D/2(RN), and there exists a constant Cy > 0 such that

1QF (F, Nl grev-n 2y < O K Hb2\’L2(1_1,1[,(1_u2)(N—3)/2du)HfH%er%(RN)-
(160)

Proof : We first define the operator Q% for functions of two variables
F(vi,v), v1,v2 € RN by

QT (F)(v) = // F(Uzv*—|U_2U*|a,vzv*+|v_2v*|a) (161)

v« ERN
O.esN—l

X by (w . O') dodv,.

o= o]

Then, theorem 17 is the direct consequence of the following proposition :

Proposition 3 For the linear operator (161), we have
(i) If by € L'(]—1,1[, (1 — u®)N=3)/2du), then for any F € L'(IRN x IRN),
QT (F) € L'(IRYN) and

27T(N_1)/2
QT (F)l vy < Tl)HbQHLl(]—1,1[,(1—u2)(N—3)/2du) 1N 21 (rY xR

R e

(162)
(ii) If by € L*(] = 1,1[, (1 — u®)\N=3/2qu), then for any F € L*(IRN x
RN such that (vy — v)F € L*(IRYN x IRN), the integral (161) is absolutely
convergent for a.e. v, QT (F) € HWN-D/2(IRN) and

1QF () rv—v 2y < ON 11021l 2= 1,10, (1-w2) (=) /240

1/2 1/2

XNFIE (w2 = o) Pl (163)

Let us postpone the proof of Proposition 3 and deduce Theorem 17.
Proof of Theorem 17. Let us define

F(v1,v2) = f(v1) f(v2) by (Joz — v1])- (164)
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Then, it is clear that Q1 (f, f) = Q1 (F). Now, by (158) we have
[E'(v1, v2)| < |f(00)[]f (02) [Kp(1 + [vg — vi])*®

|
< ol Fo0) 1 (o) |1+ or] + [o]) (165)
< Ky | (L or))™ Fon) (L4 Jeal) F(v2)].

Therefore,
1Pl < Kol fll7y o IFlze < Kol fl17s, (166)

and since
[(vg = 1) F'(v1, v2)| < |or]|[F (01, va)| + |v2| [ F(v1, v2)]
< K| (L Jon ) o o) | (1 foal)e f(v2)]

+ K| (L+ o) S (01)| | (1 + Jozl) 2 (v2)

9

we also have

[(v = v) Fll2 < 2K3([ fllzz, [1f1lz (167)

2 .
14 ay,

Now since by € L? by (159), we can apply Proposition 3 (ii), and we obtain
that QT (f, f) = Q*(F) € HN=Y/2 and

- 3/2 1/2
1@ (s Mo < O oallze K U715, 1A, (1689)
and (160) follows since HfHLZb < HfHLz{+ . O
]

Proof of Proposition 3. Estimate (i) is easy, and we only prove (ii).

By a computation similar to that of subsection 5.2, we get

0TI ) — / ﬁ(€—|€|07€+|5|0) b2<5 . )dg, (169)

— 0
2 2 i
UESN_l

Then, the computation closely follows that of theorem 15.

We have by Cauchy-Schwarz’s inequality

el s [ (RN EEEN [ fs(& )

UESN_l UESN_l

and the last integral can be computed by (136).
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Then,
2

UGSZH ﬁ(5—2|5|o75+2|5|a) "
< [ PEFEEY|r-v8) (2 450)| s

[n]> €|

where Vlﬁ and Vzﬁ are the gradients of F with respect to the first and
second variables. Therefore,

| e ]

geRN CTESN_l

2
do

p(Ele £+ lle)

< 2N 27N Fll g2 sy [| (02 = 1) Fllp2(m « my.»

and together with (170), we obtain (163). [J

6.3 Gain of smoothness in the non cutoff case
6.3.1 Introduction and presentation of the estimate

As specified in the general introduction of this section, we shall not try here
to use the formula which gives the Fourier transform of Q(f, f) in terms
of the Fourier transform of f for non Maxwellian molecules. Instead, we
shall choose a quantity (the entropy dissipation) which is monotonous with
respect to the cross section, so that it is possible to estimate it in terms
of the same quantity for Maxwellian molecules. Then, a computation close
to that of subsection 5.6 yields an estimate of regularity (typically, some
Sobolev norm of 1/f can be estimated by the entropy dissipation).

In this subsection, we consider only the dimension three, and we take a
cross section B which satisfy the two following assumption (for all z > 0,

§e€l0,r7]):
Ko 077" < sinf B(z,cosf) < Ky (1+ |z]) 6|71, (171)
for some Ko, K7 > 0 and v €]0, 2.

This is a typical assumption of non cutoff hard potentials (including
Maxwellian molecules), except that usually for hard potentials, the cross
section takes the value 0 for z = 0. This last difficulty leads to tremendous
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technicalities but can be overcome. We shall not present those difficulties
here. This subsection presents works which are included in [4]. In this
reference can be found a much more complete overview of the problems
tackled here.

We shall prove here the following estimate :
Theorem 18 Under assumption (171) on the cross section, one has

D(f) 2 el I — callFI1s- (172)

for some constants ¢; and ¢z which may depend on Ky, v and (only) on the
mass, entropy and energy of f.

6.3.2 Proof of the estimate

First we use the monotonicity of D with respect to the cross section B in
order to replace B by b= b({=% - o) defined by

fv—vs]

sin @ b(cosd) = Ko |0~ . (173)

Dy == [ (FD ) =50 ) og £(0) Bdvde.da (174)

v

oo (0D 160 = 10 1) ) g g b do. (175)
R2N w §N—1

Then, we rewrite D(f) using the standard pre/post collisional change of
variables :

D(f)z—/

R

N Nt (f(vi)f(v’)—f(v*) f(v)) log f(v) bdvdv, do (176)
xS

> / Fon) £) tog 2 b do do, do
R2N><SN_1

ity
_ SO o e
[ ann, 10000 (10 low 5 = )+ (61 ) batvded

+/R2NXSN_1 Flos) (F(0) = £(o')) bdvdo, do .

73



This decomposition splits D( f) into two parts, the first of which is signed
and retains all the smoothness control. As for the second, it involves strong
cancellations due to the presence of the term f(v) — f(v').

Under our assumptions on the cross-section, a general lemma (called
cancellation lemma) of [4] gives a bound for the second term on the right,

[ 70 (F) = £ bdvdv.do < 111
For the first term, we use the inequality
xlogg—w—l—yz (Ve —)?,

which can be proven easily using the fact that it is homogeneous of degree
one.

Hence

D)+ eallflEy = [ £ G500 = /1) bdvdvado. (177

From now on, we let

and we use the notation F’ for F'(v').
Then we use the following result (written in an arbitrary dimension N) :

Lemma 3 The following Plancherel-type identity holds for arbitrary func-
tions g € L'(IRN), F € L*(IR") :

! 2 U= Us .
/JR2N /SN_l g(ve) (F' = F)*b <|v -y O') dvdv, do (178)

= b [ o OO R a0 e

£
N

—H(EVPEN ) = G PENF©)] b(= - o) de do,

with the notations of (126).
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Proof of Lemma 3 :
Expanding the quadratic term in (178) gives three terms,

F'? —2FF 4+ F?. (179)

From now on, we denote by @, ( and @Q;") Boltzmann’s operator (and
its positive part) with the cross section b (that of Maxwellian molecules).

We begin with the middle term. By the pre/post collisional change of
variables and Parseval’s identity,

/b(v_v* -O') g(vy) F'F dv dv, do :/QZ’(g,F)FdU

o= o]

_ ﬁ/?[@j(g,m]ﬁg.

Then, we invoke Bobylev’s identity (124) and deduce that

/b ( i -O') g(vi) F'F dvdv, do

o= o]

(2;)N/b<|§—|'0) JEF(ENF(€)de do .

Of course, this expression is also equal to its own complex conjugate. This
shows how to compute the cross-products in (178).

Next, we note that, since [¢n_1 b(k - o) do does not depend on the unit
vector k,

/b (Lvn-g) g(v) F?dvdv,do = / do /g(v*) dv, /F2 dv (180)

|v — v

_ ﬁ/b (é_| .a) 3(0) |[F2(€) dode,

where we have applied the usual Plancherel identity.

For the term involving F'*, we first make the change of variables (v, v.) —
(v — vy, v.), and then v — v’ to obtain

//g(v*)b(% - 0) ‘T_U*F(U+2|U|U)‘2dvdadv* (181)
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2]\7—1
= //g(v*)b(lb(vlv U))T)Q|T_U*F(v’)|2dv’da dv, ,
g g

where
v 2
(v o) = 2<m-a) -1,

and 7_,, F' = F(v. + -).
Because |F(mpF)| = |F(F)|, and using the fact that [qn_1 b(k - 0)do

does not depend on k, we obtain

ﬁ/gw*)(/W(&a))%m(f)mgdg)dv*.
G

Finally we note that the inner integral does not depend on w,, so that,
reversing the change of variables, we can rewrite the last expression as

a0 [0 (i) [ (F5)

Putting all the pieces together, we conclude the proof of the identity. [J

2
d¢ do.

As a consequence, we see that

/ / b(v—v* -O') g(v.) (F' = F)? dvdv, do
R2N Jgn—1 |U—U*|

> 53 fo PO [0 (é—| ) 30) -

Then, we use the following result :

3¢ ) do | de.

Lemma 4 Suppose that b satisfies assumption (173). Then, there exists a
positive constant C'y depending only on the mass, energy and entropy of g
and b such that for |&| > 1,

[o(-e) @o-

This lemma is itself a consequence of the two lemmas below.

9 do = Cy )" (182)
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Lemma 5 There exists a positive constant C’;, depending only on the mass,
energy and entropy of g such that for all £ € IR?,

9(0) = 19(&)] = C5 (€ A1),
Proof of lemma 5 : Note first that for some 8 € IR,

30 = 13(9)| = [ 9(0) (1= cos(v- £ +6)) dv

= Q/ng(v) sin? (Uf;_ 0) dv

>2 sinze/ g
{|’U|ST’,V})EZ,|’U~£+€—2])7r|225}

. gllz (e
> 2 i { gl - 2~ [ o))
r |U|§T,3PEZ,|U~m+m—p ﬁ|§2|§_|
5 gl L1 (me)
> 2sin”eq [lgllprey — ————— — sup / g(v)dvp. (183)
r A

A< (2r)2 (42

When [£| > 1, we obtain our lemma with
gl me
C’;:Qsinzs{HgHLl(IRs) _ L) sup / g(v) dv},
r |Al<de(2r)2428(2r)2 /A

€ > 0 and r > 0 being chosen in such a way that this quantity is positive.
When [£| < 1, we put § = 5 in (183), and set

l€]
a2
R el
Co=20 0 [T e
oz
gl - —HED - s [ gy a],
" |A[<48 (2r)? (1+3) /A4

§ > 0 and r > 0 being chosen in such a way that this quantity is positive. []

Lemma 6 There exists a constant K(v), such that if

K
01—|—1/

sin 0 b(cosf) ~ as 6 —0, v>0

then for all € € IR?, €] > 1,

Lo (o) g anao = K oer
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Proof of lemma 6 :
We first note that
_ €7 £
P= (1= 0.
=5y

Passing to spherical coordinates, we find for some 6y > 0,

/52 b(é_|-g)(|§_|2A l)do =27 /02 sin 0 b(cos )

X [g(l —cosf) A 1] do

o (lePer \ df
>r K 1 .
o [ ()

By the change of variables 8 — [£|6, this integral is also

J o6\ df
|5|/0 AR TR

so that when [£] > 1, lemma 6 holds with

b @2 dé

mm:KﬂA(g—mﬁg.

O

6.3.3 Regularity for the spatially homogeneous Boltzmann equa-
tion without cutoff

Let B be a cross section satisfying assumption (171), and f a solution of
(25), (26) given by theorem 1.

A straightforward application of Theorem 18 shows that such a solution
satisfies the smoothness estimate

VT e L0, T} Hy 2 (IR)Y)). (184)

loc

If we suppose moreover that B is smooth (and corresponds to hard potential)
with respect to the first variable, then it is possible (at least in dimension
two) to prove that f lies in Schwartz’s space S.
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7 Inhomogeneous Dissipative equations

7.1 Introduction

We now wish to investigate the interaction of the free transport operator
and of the non cutoff Boltzmann operator. Unfortunately, there is at the
present time no good setting to study the smoothness of the solution of this
equation (the renormalized solutions with a defect measure of Alexandre
and Villani (Cf. [5]) do not seem to be regular enough). As a consequence,
we turn to simplified models keeping the same features.

We begin with the classical linear model of Vlasov-Fokker-Planck with a
confining potential, which models particles interacting with a thermal bath.
This is a linear second order PDE, for which it is possible to use the theory
of Hérmander of hypoellipticity (Cf. [44], [49], [50], [24]). We propose here
a direct computation by Fourier transform when the potential is quadratic
(this enables to find a classical explicit solution in this case), or close to
quadratic (then, this computation enables to directly find the smoothness
in all variables even when the time tends to infinity).

Then, we introduce a model which is quadratic, but close to linear (in
the sense that the collision operator is a product of a function depending
only on ¢ and z by a linear operator). We prove that some smoothness in
all variables occurs as soon as ¢t > 0.

7.2 Vlasov-Fokker-Planck equation with quadratic potential

We consider in this subsection the Vlasov-Fokker-Planck equation with a
quadratic confining potential, that is, equation

Wf+v-Vuf—a-V,f=V, - (Vuof+vf)=0. (185)

We perform here a classical computation which enables to obtain the
explicit (Fourier transform of the) solution to this equation, once an initial
datum is given.

We first write down the Fourier transform in 2 and v of eq. (185). We
denote by &€ and 7 the corresponding Fourier variables, and by f the Fourier
transform of f. p This equation writes

Of+n-Vef+n—8 -V, f+n*f=o0. (186)
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We introduce the characteristic differential system associated to eq. (186) :

n=n-¢&  n(0) =, (188)

the solution of which is given by

(€. n0) = 2t [(ﬁ (?t) - Liin (%)) 0 sin (@) -

—sin (% ) &+ (ﬁ cos (?t) + %sin (?t)) 770] . (189)

Then, the solution of equation (186) satisfies

& FEW00) = =IO F,60) (1), (190)

so that
f(t7€(t)7 U(t)) = f(ovgov 770) exp (é (|770|2 + |€0|2 - 450 ' 770) et COS(\/gt)

B (el = ol (V)

g (ol = ol o mo) 4 5 (& + ). (19)

Noticing now that equations (189) can be solved in the form

o = e 3 ([Cos (ﬁt) + ? sin (ﬁt) ] §—2 @ sin (ﬁt) 77)7

2 2 3 2

o = e 3 (2 ? sin (?t) §+ [Cos (?t) - ? sin (?t) ] 77).

We obtain in this way the final explicit form of the Fourier transform of

eq. (185) :
((Cos (?t)—l—? sin (?t))f—? ? sin (?t) 77),

80

Wl

fle.em=f|o.e



e"3 (2 ﬁ sin (ﬁt) &+ (cos (Tt) - ? sin (ﬁ )) 77) eAtEm)
where
A(t, & m) = (— % + %e_t - ée_t cos (\/gt) + ?e_t sin (\/gt) ) €|

-|_< - 1—|— Sl - ée_t cos (\/gt) - ?64 sin (\/gt) ) In|?

—%e_t sin ﬁt 2 ¢
3 2 7

Then, it is possible (by studying the quadratic form appearing in the previ-
ous formula : this is done in lemma 7 below) to prove that f is smooth as
soon as t > 0.

The idea of the previous computation can be summarized in the following
remark : the Fourier transform changes a linear partial differential equation
with constant coefficients into an ordinary differential equation (the Fourier
transform is not taken here with respect to the time variable). It also changes
a linear partial differential equation with affine coefficients into a first order
partial differential equation. Such an equation can then be solved with the
methods of characteristics.

7.3 Vlasov-Fokker-Planck equation with a potential close to
quadratic

We now introduce a confining potential

|2

V(z) = =+ (), (192)
where ® € H**(IRN).

It is not possible to find an explicit solution to the corresponding Vlasov-
Fokker-Planck equation

8tf +v- fo - VxV($) : vvf - vv ' (va + Uf) = 07 (193)

as in the previous subsection, but we still can obtain an hypoellipticity
property which is uniform when ¢ — oo, using a computation close to what
we did in the previous subsection.

More precisely, we prove the following proposition :
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Proposition 4 Let f € C(IR}, L' (IRY x IRY)) be a solution of eq. (193),
with V(z) given by (192). Then, for any ty > 0, the function f lies in the
space L ([tg, +00); C2(IRN x IRN)), i.e. has all its derivatives in x and v
bounded, uniformly fort > tg > 0.

Proof : We first establish a convenient representation formula. We
rewrite equation (193) as

Wf+ov-Vuf—a-V,f=V,-(Vof+vf)=Vo(z) - V,f, (194)

and denote by

figm=[ e f i 0) dvda (195)
RN xRN
the Fourier transform of f.
Eq. (194) becomes
Of+n-Vef + (=8 -Vof + ' f=in-Vor. (196)

We introduce (as in the previous section) the characteristic differential sys-
tem associated to the first-order differential part of the left-hand side of (196) :

£=m, (197)

n=mn-4 (198)

the solution of which is given by the flow

Ti(&m) = %e% [(? cos (?t) — %sin (?t)) &+ sin (?t) 7,

—sin (?t) £+ (? cos (?t) + %Siﬂ (?t)) 77]

= [T} (&, n), TA(E, ).

The solution of equation (196) can be written under the (semi-explicit)
Duhamel form

Ft €m) = fo(Tos(€,m)) e Jo To-lemP do (199)
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‘|‘i/Othz—t(gvn)vji)\f(&Ts_t(f?n)) f | o 777| do ds.

After the change of variables ¢ — ¢ — 0,5 — t — s, we end up with the
so-called Duhamel representation of f :

f(tv 57 77) = fO (T—t(€7 77)) e_fot |T30(§777)|2 do

¢ . s
i / T2,(60) VO f(t — 5, Ty (€, m)) € Jo P27 g5 (200
0
We now give two lemmas.

Lemma 7 There exists K > 0, such that for any s > 0, &, € RN, one
has

/ T2, (¢, n)[do > K (inf(s, 12 [€]2 + inf(s, 1) |77|2). (201)

Proof of Lemma 7 : It is obviously enough to prove the lemma for
s € [0, sg] for some sg < 1.

But for s € [0, sg], we have

4 5
/| nPdo > = /
3 0

Vi VB 13\ P
(7 cos (0 >‘§Sm<7">)” do
2 sin(v/3s), |y sin(v/3 s)
2 3€ ((S—T)H +(1—COS(\/§5)‘|‘T—S)5'77
+<§L<f§8> Fot Seos(V9) ~ D Inl)
= 2 (an(s) (PP + 2aas) () + aale) (I, (202
where
5 — ol 1 — cos(v/3s) + 2n0/39)
al(s):Tﬁ, as(s) = ( 2)52 V3 . (203)
1sin(V3s) | oy 1eog s)—1
as(s) = —L2 +athoos(v3s) 2 (204)




Then, a1(0) =1, a3(0) = 3/4, a3(0) = 3/2.

The eigenvalues of the matrix

o= (22 )

az(s) as(s

are strictly positive for s = 0, and by continuity, are bounded below by
K > 0 for s € [0, sg] if so is small enough.

For such parameters s, we get

s 2
[P de = S e i (5P IR + sl (205)
0
and the lemma is proven. []

Lemma 8 Let sy € [0, 1] and

Lu(m = [ (slel+ In) e X7+ g (206)

Then there exists C' > 0 (depending only on K ) such that

C

R 207
< T (207)

|L50 (57 77)

Proof : Thanks to the change of variables u = s|¢|*/? and v = s|n|?,
we get

/ e e RGP s g < / s R I g
0 0
+oo Kb
< |€|_1/3/ we ™" du, (208)
0

and

+oo . +oo .
/0 || e K ° P +s1nl*) g g S/o | e K= gs

+oo K
< Inl‘l/ eV dv. (209)
0
On the other hand, if we denote
Cy= sup u?/? e_K“S, Cy= sup o/2e Kv (210)
u€[0,4c0) vE[D,+00)
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we find

+oo " +oo "
/0 s|¢| e K G |£|2+5|77|2)d5§01/0 /2 ~K sl g

+oo -
<Cyln|™! /0 v 2K g, (211)

and

+ i + )
/ - | e (e 1nP) g < 02/ T /2 K SR g
0 0

+oo .
<Oy |g|—1/3/0 w2 ey, (212)

Grouping estimates (208), (209), (211) and (212), we conclude the proof of
lemma 8. [J
End of the proof of Proposition 4 : By mass conservation,

sup sup |f(&,& )| < [[follor (ry «mry- (213)
t20 ¢ne RN

We shall show that if

A Y
su t, ¢, <
R SIS e Ty
(k € IRT), then for any ¢y > 0,
R '
sup | f(t,&,n)| < k . 214
suplf(t & m)l < F R+ )+ (214)

The conclusion will follow by induction.

We first note that in view of (213) and lemma 7, estimate (214) holds
with f replaced by

At,&,n) = fo(T_i (€, ) e—fot T2, (&m) P do

Thus, according to the Duhamel representation, we only need to estimate
¢ o .
Bt = [ T2(Em VB At = s () o EAF T s 215)
0

With (', denoting various constants depending on one another, we have
VOS]l = | [ TR0, — € de.
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C
(14 &%+ [n]?)*

S o
dé |IVO ()| ————
+/|£*|z§|£| Slve )|(1+|77|2)’“

C
L+ (€2 + [n?)

AV AL
F [ HIERIRRE ) .

< de, [V (€,
_/ls*ls%m SIVeEl

7Vl L

=

C
(L4 [EBE+ [n?)

_I_

Since

[ IFBE 0+ e de.
RN

. 1/2 d¢ 1/2
2 2\ 2k+N+1 o ag
< | FREra e e U [ o

< Cil|®| gor+ v+,

we find
C

(L4 €2+ Im[H)F

Let sop <inf(1,%o) be an intermediate time that will be chosen later on.

sup [V f(t, & n)| <
>0

We write for ¢ > 1,

! == 72 2
IB(t,€.m)| g/o T2, (€. VB f(t — 5, To(€, )| e o T2 EMEdo g

1
< [ 22 sl + [nl) ds €y R ol
50

S0 Ck _K(s3e? 2
+/ (s[€] 4 [n]) e K IEP+slnl) g,
0 L+ T (& )

By continuity of the flow ¢ — T}(£, ), and its linearity with respect to
&, m, we can choose sg € (0,inf(tp, 1)) in such a way that for all s € [0, s¢],

(1<% + |12

N | —

T_s(&m)* >
Then, for t > tg,

IB(t,&, )| < C (1€] + |n]) e~ K dlel +solnl®)

86



Cy
(14 [n|? + [¢]2)k

The last integral is bounded by

_I_

7 Golel + Iy T g,
0

[ Gl e rter i),
0

and we conclude by Lemma 8. [J

We recall that the hypoellipticity of linear operators of the form d; +
v-V,; — A, is a standard topic [77], which has been systematically studied
by Hérmander [44] for instance. In particular, his celebrated theorem of
hypoellipticity applies here to show that solutions become immediately €'
(and would apply also for much more general linear operators). But we are
aware of no study of the uniformity in time of these bounds, whereas the
previous computation easily yields this uniformity.

7.4 A Space Inhomogeneous Model without
Cutoff Assumption

We now consider a space inhomogeneous Boltzmann equation of the form
(16). We suppose that the collision operator is singular.

We suggest the following strategy to obtain a priori regularity estimates
on f (steps 2 and 3 below consisting of regularity lemmas analogous to the
compactness results in [5], [54], [55]) :

1] use the entropy production (estimated by the H theorem) to control
fractional derivatives of the number density in the velocity variable;

2] apply the Velocity Averaging method (see [38], [34]) to obtain smooth-
ness in (¢, z,v) on quantities of the form

/f(t,x,w)x(v,w)dw (216)

for any smooth test function x; moreover, estimate the norm (in some
Sobolev or Besov space) of such velocity average in terms of x;

3] replace y by a suitable approximation of the Dirac mass at v = w and
use the results of steps 1 and 2 above to finally obtain some regularity on f
itself in the variables (¢, z,v).
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Step 1 above is the result of the study of the previous section. At the
present stage, it is however very unclear how to apply steps 2 and 3 of the
strategy above to the Boltzmann equation itself. This requires more ideas
and probably tremendous technicalities.

However, the method above successfully applies to the caricature of the
Boltzmann equation described by equations (32) and (34). which we sup-
plement with the initial data

F(0,z,v) = folz,v), (z,0)e It x . (217)

We introduce the assumption on the cross section 3 that for some 3¢, 59 >
0,7 €1, 3[,

P01 < B0l < Bal0]™, O €] —m,x[ (218)
Definition. Let § satisfy (218) and fo > 0 € L(I' x ). An en-
tropic solution of (34), (217) is a function f > 0 € L>(IR; x I'' x ') N

C(IRT;D'(IM' x IT')) satisfying (34), (217) in the sense of distributions as
well as the following entropy relation : for all T > 0,

%/OT/W Pt @) <//1r1x1r1 f(t, a0+ 0) — f(t,2,0)[?3(60) dedv) dudt

1 1
< —// | fo(a, v)|? dadv — —// (T, e, 0)Pdado.  (219)
2 JJmixm 2 S«

Our main result is the

Theorem 19 Let 3 satisfy (218) and fo > 0 € L= (It x I'Y). The Cauchy

problem (34), (217) admits an entropic solution f € H;O(z)_e(ﬂ%j_ x I x 't
for all € > 0 with

_ 71
S Tensyoan g (220)

If fo > Ro a.e. for some Ry > 0, the value in the right hand side of (220)
can be replaced by the better regularity index

s(7) = =L

=TT (221)
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The proof of Theorem 19 proceeds through steps 1-3 above.

We finally say a few words about the most interesting model, namely
the true inhomogeneous Boltzmann equation without cutoff. Then, the only
existing setting is that of renormalized solutions with a defect measure.

As explained in Lions [57], a smoothness estimate in the v variable like
the one in Theorem 18, combined with a so-called renormalized formulation
of the spatially inhomogeneous equation (16), is enough to prove that solu-
tions (or approximate solutions) (f,) of (16) enjoy a property of immediate
strong compactification, in the following sense. If the sequence of initial
data (f§).ev satisfies only the physically natural bounds

sup [ 3 (e, o) (L4 Jof? + [of? + log f§ (2, v) da do < e,
nelN

(and is therefore weakly compact in L*(IRY x IRN)), then for all time ¢ > 0
the sequence (f™(t,,-)) is strongly compact in L'(IRN x IRV) (i.e., converges
a.e., up to extraction).

This property is what remains of the gain of smoothness in all variables
when renormalized solutions are concerned.

The strategy runs as follows : first, by the use of a renormalized formu-
lation [5] and [33], and velocity-averaging lemmas [38] and [34], one proves
that suitable quantities of the form B(f™)*,¢s, where ¢5 (6 > 0) is a mollifier
in the velocity space only, are strongly compact. Then, by truncation argu-
ments, the smoothness estimate in v applies out of a set of small measure
in (t,z), (where || f"(¢,2,-)||;1 may be infinite, etc.). Out of these partic-
ular sets, the velocity smoothness entails that §(f") , ¢s is very close to
B(f"), uniformly in n, as § goes to 0, and this is enough to prove strong
compactness of 3(f™), which in turn implies pointwise convergence of f™ if
[ is chosen to be one—to—one.
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