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Abstract

Consider a situation where spatial heterogeneity leads to a cline, a

gradual transition in dominance of two competing species. We first prove,

in the context of a simplified competition-diffusion model, that there exists

a stationary solution showing that the two species coexist in a transition

zone. What happens then if, owing to climate change, the environmental

profile moves with constant speed in space? We show here that, when the

speed with which the environmental condition shifts exceeds the Fisher

invasion speed of the advancing species, an expanding gap will form. We

raise the question of whether such a phenomenon has been or can be

observed.

1 Introduction

In this note we consider two competing species in a one-dimensional domain
characterized by an environmental gradient such that species 1 is favoured far
to the left (corresponding, say, to the South) and species 2 is favoured far to
the right (corresponding to the North). One expects that a cline will form as
a result, with species 1 being replaced gradually by species 2 when one moves
from South to North. We indeed establish this property in the context of a
simple reaction-diffusion model for such a situation. We prove the existence of
a stationary solution of the system showing that the two species coexist in a
transition region.

But what do we expect to see when the environmental conditions themselves
are “on the move”? In particular, what if due to climate change the species-
specific indicators of local suitability are not fixed for a given spatial position x
but are in fact a function of x − ct where t denotes time and c is the speed at
which isolines of environmental quality move up North?

In this short note we show that, in this context of the simple reaction-
diffusion system modelling such a situation, gap formation can occur. By this
we mean the following. The speed at which species 2 is forced to retreat towards
the North is exactly c. An upper bound for the speed with which species 1 can
occupy the region from which species 2 has withdrawn is the Fisher invasion
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speed c0. We show here that whenever c0 < c an ever increasing gap will form
in which species 2 is already brought down to a very low density while species 1
is yet to attain a substantial density. Thus, in particular, we will see in this case
a phase separation such that, in the limit, the two species do not interact.

The underlying reason is an asymmetry in the effect of a moving climate
depending on whether suitable habitat expands or retracts. In the first case, the
invasion speed sets an upper bound for the ability to follow, while in the second
case the speed of retreat is forced by the climate and hence is independent of
dispersal. Our aim is to substantiate this statement in terms of simple estimates
for solutions of a system of two reaction-diffusion equations.

By formulating explicitly the theoretical possibility of gap formation we hope
to trigger ecological awareness such that, perhaps, the phenomenon can be re-
lated to actual observations of shift in competitive balance. Clearly, ecological
reality is far more complex than our simplified description does capture. Here we
focus on the single aspect of a moving competition framework. But many other
phenomena can come into play and deserve to be studied. For instance, one can
imagine that, in addition to climatic conditions, competition involves food and
that the food population will grow to higher than usual levels in the gap. Thus
the phenomenon may take the form of a moving succession of patterns involving
two speeds, c and c0 and possibly other parameters.

In this paper we report a precise theoretical result and ask whether it can be
related to field observations. The aim here is not to survey the manifold aspects
of modelling the impact of climate change on population dynamics. The recent
references [6], [14] provide an entrance to the rapidly growing literature. The
modelling approach of the present paper overlaps with the approach in the
references [3, 7, 8, 11, 15, 16].

In a subsequent work we plan to study the case when c < c0 for which we
prove that coexistence occurs in the form of a joint travelling wave solution.
Here, we already study the existence of stationary solutions for the case c = 0.
More precisely, for 0 ≤ c < c0, we intend to establish in [2] the existence,
uniqueness and global stability of a traveling wave solution u(x−ct), v(x−ct) of
speed c for the system (1)– (2) below. This behavior is illustrated by numerical
simulation in section 5 below (compare Figure ??). Here, we prove the case
c = 0. Thus, this case gives rise to a different behavior from the one we derive
here.

2 Cline formation

We consider the system of two equations:

∂tu(t, x) − d1 ∂xxu(t, x) = u(t, x)
(

r1(x − c t) − u(t, x) − v(t, x)
)

, (1)

∂tv(t, x) − d2 ∂xxv(t, x) = v(t, x)
(

r2(x − c t) − u(t, x) − v(t, x)
)

. (2)

Here, t ∈ R+, x ∈ R, u := u(t, x) and v := v(t, x) are the number densities
of two different species, d1, d2 > 0 are their respective diffusion rates. The
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per capita growth rates (when u = v = 0) r1, r2 : R → R satisfy the following
conditions: r1, r2 are continuous, monotone, with values in [−L, K], and have
the following limits

r1(−∞) = K > 0, r1(+∞) = −L < 0, r2(−∞) = −L, r2(+∞) = K. (3)

Here K, −L represent the asymptotic (when x → ±∞) low density growth rates
of the species.

We begin with a result concerning the situation when c = 0. We show that
in that case, there exists a nontrivial steady state for system (1)–(2), in which
the first species (u) is dominant when x → −∞, and the second species (v) is
dominant when x → +∞.

More precisely, we show the following result.

Theorem 1. We consider the system (1), (2), when c = 0, that is

∂tu(t, x) − d1 ∂xxu(t, x) = u(t, x)
(

r1(x) − u(t, x) − v(t, x)
)

, (4)

∂tv(t, x) − d2 ∂xxv(t, x) = v(t, x)
(

r2(x) − u(t, x) − v(t, x)
)

. (5)

Then, there exists a stationary solution to system (4) – (5), denoted by (U(x), V (x)),
such that 0 ≤ U(x), V (x) ≤ K. Moreover, U is decreasing on R, V is increas-
ing on R, and limx→−∞ U(x) = K, limx→−∞ V (x) = 0, limx→+∞ U(x) = 0,
limx→+∞ V (x) = K.

This theorem is proven in section 4.

In the forthcoming paper (cf. [2]), we shall study the issues related to unique-
ness and global stability for system (4)– (5), and make more precise the asymp-
totic behavior of U and V .

3 Gap formation

We now consider c > 0 a given constant. For the initial value problem we
complement the system (1)– (2) with some suitable initial data

u(0, x) = u0(x), v(0, x) = v0(x), for all x ∈ R. (6)

In the absence of species 2, and if r1 were the constant given by r1(x) ≡ K,
then the classical Fisher – KPP invasion speed of u would be given by

c0 := 2
√

d1 K.

In the present note we focus on the case c > c0, that is, when there is a
fast change of climate. The aim is to provide estimates that characterize the
large time behaviour. Our main result states that in a region of asymptotic
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size (c − c0) t the density of individuals of both species decreases exponentially.
Accordingly we call this region a gap. Thus, there is a phase separation with
widening gap. We now state precisely the result.

Theorem 2. Assume c > c0. Let u0, v0 ∈ L∞(R) (that is, u0 and v0 are
bounded) be initial data such that for all x ∈ R, u0(x) ≥ 0, v0(x) ≥ 0,
u0(x), v0(x) ≤ K and the support of u0 is bounded from above, that is, there
exists R ∈ R such that u0(x) = 0 for all x ≥ R.

Then the unique bounded solution of equations (1) – (2) with the initial con-
dition (6) satisfies for all t ≥ 0, x ∈ R: u(t, x) ≥ 0, v(t, x) ≥ 0, u(t, x), v(t, x) ≤
K. Furthermore, for all c1, c2 satisfying c0 < c1 < c2 < c, and for all constants
b1, b2 ∈ R

∀t ≥ 0, sup
x≥c1 t+b1

u(t, x) ≤ A1 e−α1 t, (7)

∀t ≥ 0, sup
x≤c2 t+b2

v(t, x) ≤ A2 e−α2 t, (8)

where the positive constants A2, α2 > 0 only depend upon K, L, r−1
2 (−L/2), d2,

c, c2, b2 and A1, α1 > 0 only depend upon K, d1, c1, b1, R.

This theorem is proved in section 4.

Remarks.– (i) Actually, the assumption u0(x), v0(x) ≤ K is used only for pre-
sentation convenience, the proof below can be adapted to the more general case
of merely bounded nonnegative initial data.

(ii) The condition that the support of u0 be bounded from above by some R
could also be replaced by the hypothesis of a sufficiently fast exponential decay
for the right tail of u0.

(iii) Lastly, the assumption that −L ≤ r1, r2 ≤ K is not needed, and the
same is true for the assumption that r1, r2 are monotone. We assume it here
to somewhat simplify the argument. However, the result holds only under the
requirement of the limiting conditions (3). This will be further detailed in [2].

(iv) In that paper, we also intend to show that in the present case c0 < c,
then, c0 and c are sharp in the following sense. First for all u0, v0 with u0 6≡ 0,
let γ1 be any real such that γ1 < c0 < c, then,

lim{t→∞;−γ1t≤x≤γ1t}u(t, x) = K ,

Likewise, for all u0, v0 with lim{x→∞}v0 > 0, let γ2 be any real such that
c0 < c < γ2, then,

lim{t→∞; x≥γ2t}v(t, x) = K.

Thus, c is the exact asymptotic speed of retreat of v and c0 is the exact
asymptotic speed of advance of u.
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4 Proof of the theorems

Proof of Theorem 1: We start with a lemma in which we summarize the re-
sults of existence, uniqueness and qualitative behavior for one reaction-diffusion
equation with inhomogeneous coefficients. This type of equations, in higher di-
mension and cylindrical domains, for more general non-linear terms (but that in
the present case would involve some restriction on the parameters), was studied
by F. Hamel in [4, 5].

Lemma 3. Let R := R(x) be a decreasing function from R to R such that
limx→−∞ R(x) = K > 0 and limx→+∞ R(x) = −L < 0 and let d > 0 be given.
We consider the equation

− d ∂xxw(x) = w(x) (R(x) − w(x)). (9)

Then, there exists a unique C2 nonnegative solution (denoted by G(R, d)) of eq.
(9) such that G(R, d)(x) > 0 for some x ∈ R. Moreover x 7→ G(R, d)(x) is
decreasing, and limx→−∞G(R, d)(x) = K, limx→+∞G(R, d)(x) = 0. Finally,
R 7→ G(R, d) is order preserving.

A symmetric result is obtained for the case of an increasing R by using the
transformation x 7→ −x.

Proof of Lemma 3: We first note that Ψ̄ := K is a supersolution. Then,
we build a nontrivial subsolution thanks to the following procedure: we consider

some ε ∈ (0, K/2), and x̄ ∈ R, such that R(x̄) = K
2 +ε. For any x0 ≤ x̄−

√

2d
K

π
2 ,

the function χε,x0
defined by

χε,x0
(x) = ε cos

(

√

K

2d
(x − x0)

)

1
{
√

K

2d
|x−x0|≤π/2}

satisfies, for |x − x0| ≤
√

2d
K

π
2 ,

−d
d2χε,x0

dx2
(x) − χε,x0

(x) (R(x) − χε,x0
(x))

≤ χε,x0
(x)

[

− ε + ε cos

(

√

K

2d
(x − x0)

)

]

≤ 0.

As a consequence, χε,x0
is a (generalized) subsolution, and so is

χε := sup
x0≤x̄−

√
2d

K
π/2

χε,x0
,

which is in fact defined by

χε(x) = ε 1
{x≤x̄−

√
2d

K
π/2}

+ε cos

(

√

K

2d

(

x − x̄ +

√

2d

K

π

2

))

1
{x̄−

√
2d

K
π/2≤x≤x̄}

.
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Then there exists at least one steady solution w to eq. (9) satisfying χε ≤ w ≤
Ψ̄ = K for any ε ∈ (0, K/2). For results related to the comparison principle for
elliptic equations and cooperative systems (and their variants), we refer to [1]
,[10], [12] and [13].

We now show that any nontrivial (nonnegative, and bounded) solution w
to eq. (9) is decreasing. Indeed, we first observe that if x1 < x2 are a resp.
minimum and maximum of w, such that w increases between x1 and x2, and

w(x2) > w(x1), then 0 ≤ − d2w
dx2 (x2) = w(x2) (R(x2) − w(x2)). We get therefore

the estimates w(x2) ≤ R(x2), and, by a similar study, w(x1) ≥ R(x1), so that
R(x2) > R(x1), which is impossible since R is decreasing. Note then that if
w is minimal at some point x0 and then increases (on [x0, +∞)), it admits a

strictly positive limit, and so does d2w
dx2 , which is impossible. Finally, if w admits

a unique maximum at some point x0, then w(x0) < K, and w admits a limit

in [0, K) at point −∞. The quantity d2w
dx2 also admits a limit, which can only

be 0. This ensures that w is concave close to −∞, which is impossible. As a
consequence, w is decreasing on R, and necessarily converges to K at point −∞,
and to 0 at point +∞.

In order to prove uniqueness, we consider an interval [a, b] (b > a) on which
two (C2) solutions w1, w2 ≥ 0 of eq. (9) are such that w1 ≥ w2, and w1(a) =
w2(a), w1(b) = w2(b). Then, we multiply by w1 the equation satisfied by w2,
and by w2 the equation satisfied by w1. Substracting those two equations, we
end up with (for all x ∈ [a, b]),

d

(

w1(x)
∂2w2

∂x2
(x) − w2(x)

∂2w1

∂x2
(x)

)

+ w1(x)w2(x) (w1(x) − w2(x)) = 0.

Integrating on [a, b], we get the identity

dw1(b)

[

∂w1

∂x
(b) − ∂w2

∂x
(b)

]

+ dw1(a)

[

∂w2

∂x
(a) − ∂w1

∂x
(a)

]

=

∫ b

a

w1(x)w2(x) (w1(x) − w2(x)) dx.

In the above identity, the right-hand side is nonnegative, while the left-hand
side is nonpositive. As a consequence, w1 = w2 on [a, b].

Note that the same proof holds when a or b is ±∞, as soon as both w1 and w2

admit limits at those points, as proven above (together with their derivatives).

We can therefore define G(R, d), the unique nontrivial solution of eq. (9).

We now consider two functions R1 and R2 (satisfying the assumptions of the
lemma) such that R1 ≥ R2. Then

d
∂2G(R1, d)

∂x2
(x) + G(R1, d) (R1 − G(R1, d)) = 0,
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d
∂2G(R2, d)

∂x2
(x) + G(R2, d) (R2 − G(R2, d)) = 0,

so that

d
∂2G(R2, d)

∂x2
(x) + G(R2, d) (R1 − G(R2, d)) = G(R2, d) (R1 − R2) ≥ 0.

Then, G(R2, d) is a subsolution to the equation with R1, and (remembering that
K is a supersolution to the same equation) there exists a solution W ≥ G(R2, d).
By uniqueness, this solution W is G(R1, d). Finally G(R1, d) ≥ G(R2, d).

Using the argument above for R1 = R, R2 = R(x + ·), and using the mono-
tonicity of R, we recover the monotonicity of x 7→ G(R, d)(x).

This concludes the proof of Lemma 1.

We now return to the proof of Theorem 1. We define sequences of functions
by the following inductive procedure:

v0 := 0, u0 := G(r1, d1),

v1 := G(r2 − u0, d2), u1 := G(r1 − v1, d1),

...

∀n ≥ 1, vn+1 := G(r2 − un, d2), un+1 := G(r1 − vn+1, d1).

In the definition above, the maximal negative value of the r coefficient is
−L − K instead of −L. The properties of G however remain the same as in
Lemma 1.

The monotonicity properties of G show by induction that for all n ∈ N, un

is decreasing and vn is increasing. They also show that for all n ≥ 0, vn+1 ≥ vn,
un+1 ≤ un.

Then, pointwise, un → U := infp∈N up, and vn → V := supp∈N vp.

The definition of G shows that for all n ≥ 0, un, vn ∈ C2(R), and

−d1
d2un+1

dx2
= un+1 (r1 − un+1 − vn+1),

−d2
d2vn+1

dx2
= vn+1 (r2 − un − vn+1).

Then, the sequences (un)n∈N and (vn)n∈N are bounded in W 2,∞(R). As a
consequence, the convergences un → U and vn → V hold locally uniformly, U
and V are continuous on R, and eq. (4), (5) are satisfied by (U, V ) in the sense
of distributions. Remembering that r1, r2 are continuous on R, we see that in
fact, (U, V ) is a C2 solution to system (4), (5).
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It remains to show that the limits as x → ±∞ of a solution (U, V ) to the
system built as above can be computed. Since U and V are monotone, they
admit limits (denoted by u± and v± as x → ±∞). These limits satisfy

u− (K − u− − v−) = 0, v− (−L − u− − v−) = 0,

u+ (−L − u+ − v+) = 0, v+ (K − u+ − v+) = 0.

Remembering that U is decreasing and V is increasing, u− 6= 0 and v+ 6= 0.
Then

u− + v− = u+ + v+ = K.

Finally,
u+ = v− = 0, u− = v+ = K.

This concludes the proof of Theorem 1.

We now turn to the

Proof of Theorem 2: Let us start with the estimate on the invasion
speed of u. It is a fairly straightforward consequence of the fact that, because
of competition, the invasion speed cannot exceed the Fisher-KPP speed. More
precisely, since r1 ≤ K and u, v ≥ 0, using the comparison principle for parabolic
equations, we first observe that u ≤ u1 where u1 = u1(t, x) is the solution of
the equation

∂tu1 − d1 ∂xxu1 = Ku1, (10)

with
u1(0, x) = u0(x).

Let

0 < ρ =
c0

2d1
=

√

K

d1
.

Thus, ρc0 − ρ2d1 − K = 0 and it follows that

z1(t, x) = Ke−ρ(x−c0t−R)

is a solution of equation (10). In addition, since u0 ≤ K and u0(x) = 0 for all
x ≥ R, we see that u0(x) ≤ z1(0, x) for all x ∈ R. It is then a consequence of
the comparison principle that u(t, x) ≤ u1(t, x) ≤ z1(t, x) from which we derive
that

sup
x≥c1t+b1

u(t, x) ≤ Keρ(R−b1)e−ρ(c1−c0)t.

We have thus proved (7) with α1 = ρ(c1 − c0) and A1 = Keρ(R−b1).

Let us turn next to the estimate on the speed of retraction to the North for
v. Recall that v satisfies equation (2):

∂tv(t, x) − d2 ∂xxv(t, x) = v(t, x)
(

r2(x − c t) − u(t, x) − v(t, x)
)

.
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From the maximum principle we know that v(t, x) ≤ K for all t ≥ 0 and x ∈ R.
Choose some γ such that 0 < γ < L (e.g. pick γ = L/2). Since r2(−∞) = −L
there exists some ξ0 ∈ R such that r2(ξ) ≤ −γ for all ξ ≤ ξ0. Therefore, we get

{

∂tv − d2 ∂xxv + γv ≤ 0, for all t, x such that x ≤ ct + ξ0,

v ≤ K, for all t ≥ 0, x ∈ R.
(11)

We can get a super solution of the first equation in (11) in the following
manner. Define

w(t, x) = K
(

eρ(x−ct−ξ0) + e−mt
)

,

where ρ and m are positive constants chosen such that

0 < m ≤ γ , ρ > 0, −cρ − d2ρ
2 + γ ≥ 0.

With this choice, we get

∂tw − d2 ∂xxw + γw ≥ 0, for all t, x.

Note that on the right end boundary points of the set {(t, x) ; x ≤ ct + ξ0},
namely x = ct + ξ0, we have

v(t, ct + ξ0) ≤ K < w(t, ct + ξ0)

for all t ≥ 0. Gathering these properties, we obtain:











∂t(w − v) − d2 ∂xx(w − v) + γ(w − v) ≥ 0, for all t, x such that x ≤ ct + ξ0,

v(t, ct + ξ0) ≤ K < w(t, ct + ξ0), for all t ≥ 0,

v(0, x) = v0(x) ≤ K < w(0, x) for all x ∈ (−∞, ξ0].

Then, we can apply the maximum principle to the parabolic equation in the
domain {(t, x) ; x ≤ ct + ξ0}. Indeed, for instance, a change of variable (t, x) →
(t, ξ = x−ct−ξ0) transforms the problem into one with a fixed domain and does
not change the equation apart from adding a first order term. Therefore, by the
maximum principle, from the above system of inequalities we infer that v ≤ w
on this set {(t, x) ; x ≤ ct + ξ0}. Choosing t0 ≥ 0 such that c2 t + b2 ≤ ct + ξ0

for all t ≥ t0, we get

∀t ≥ t0, sup
x≤c2 t+b2

v(t, x) ≤ sup
x≤c2 t+b2

K
(

eρ(x−ct−ξ0) + e−mt
)

≤ A2 e−α2 t.

Here, α2 = min{m, ρ(c − c2)} and A2 is explicitly computed. Then, increasing,
if need be, the constant A2 so that A2e

−α2t0 ≥ K, we now get the last estimate
to hold for all t ≥ 0, that is we get formula (8). The proof of Theorem 2 is
thereby complete.
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5 Numerical simulations

We show in this section some numerical simulations that illustrate the move-
ment and expansion of a gap.

We considered the equations (1), (2) with the following data:

d1 = d2 = 0.01,

r2(z) = 0.25 + 0.75 ∗ (z/(1 + |z|)),
r1(z) = r2(−z).

Note that the (asymptotic) classical invasion speed which is also the velocity of
the traveling wave associated with u (in absence of individuals of the species 2,
and without forcing) is c0 = 0.2.

The system (1), (2) is discretized by first replacing the infinite interval R

(for the variable x) by the interval [−L0, L0], with L0 = 50.0, and by imposing
homogeneous Neumann boundary conditions at points −L0 and L0. We then
used a finite differences centered explicit scheme for the parabolic equations
with time step dt = 0.05 and space step dx = 0.05 (that is, 2000 cells are used
and the CFL constant is strictly smaller than 1).

For the simulations, we used the spatially homogeneous initial data u = 0.1,
v = 0.1 and we chose the forcing velocities c = 0.16, c = 0.24, and c = 0.32.

In Fig. 1, we consider the case c = 0.16, and we show the curves for u(t, ·)
(in blue) and v(t, ·) (in red) as a function of the space variable x at times t = 2,
t = 6, t = 10, t = 14. The figure shows that no gap appears between the
domains occupied by the two species, which both travel at velocity c = 0.16.
The numerical evidence supports the existence of a joint traveling wave solution
u(x − ct), v(x − ct) which we intend to prove in [2].

The case c = 0.24 is the object of Fig. 2, and we display again the curves for
u(t, ·) (in blue) and v(t, ·) (in red) as a function of the space variable x at times
t = 2, t = 6, t = 10, t = 14. The picture now exhibits a gap appearing between
the domains occupied by the two species. The advancing one is traveling at its
own velocity c0 = 0.2, while the retreating one travels at the higher velocity
c = 0.24 > c0 = 0.2.

Lastly, we present the case c = 0.32 in Fig. 3. The curves which are rep-
resented are still u(t, ·) (in blue) and v(t, ·) (in red), as a function of the space
variable x at times t = 2, t = 6, t = 10, t = 14. The gap which appears is
now much easier to detect. We recall that the advancing species is traveling at
its own velocity c0 = 0.2, while the retreating one travels at the (much) higher
velocity c = 0.32 > c0 = 0.2.
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Figure 1: Densities of u (blue) and v (red) in function of x when c = 0.16, at
times t = 2, t = 6, t = 10 and t = 14
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Figure 2: Densities of u (blue) and v (red) in function of x when c = 0.24, at
times t = 2, t = 6, t = 10 and t = 14
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Figure 3: Densities of u (blue) and v (red) in function of x when c = 0.32, at
times t = 2, t = 6, t = 10 and t = 14

We now show a figure obtained from the same simulations, in which u(100, ·)
and v(100, ·) are presented in terms of c (between 0 and 0.4) and x. The red
color corresponds to high values of u (on the left) and v (on the right), while
the blue color corresponds to lesser values of u and v.

The figure illustrates the fact that when c < 0.2, no gap appears between
the two species, whereas a gap exists when c > 0.2 (with a width proportional
to c − 0.2). The exact value c = 0.2 is of course only approximately observed
on the figure because of the discretization error, and the asymptotic character
of the formation of the gap.

Note that when c > 0.2, the retraction wave (corresponding to v, on the
right-hand side of the figure) closely follows the forced velocity (c), but the
“free” traveling wave (corresponding to u, on the left-hand side of the figure)
slightly deviates from its theoretical asymptotic velocity (c0 = 0.2).

6 A different geometry

We believe that the appearance of a gap, in which two species that are com-
peting both disappear because of a fast climate change, is a phenomenon which
is robust with respect to the form that the spatial heterogeneity takes. In order
to test this idea, we present a few numerical simulations which correspond to a

12



Figure 4: Densities u and v in terms of x and c (ranging from 0 to 0.4)

different geometry.

We consider a situation in which initially (before the climate change) the
temperature T is a function of the space variable x (for example because to
each point x corresponds an altitude). We also assume that two species (repre-
sented by their number density u := u(t, x) and v := v(t, x)) are in competition
and have a growth rate (denoted by φ1 and φ2) which is temperature-dependent.
Typically, each species is adapted to a certain range of temperatures.

We assume that T (x) becomes T (x) + c t because of the climate change
(the implicit modeling assumption being that the increase of temperature is
homogeneous in space), and we numerically compute the solution of the system:

∂u

∂t
− d1

∂2u

∂x2
= u (φ1(T (x) + c t) − u − v),

∂v

∂t
− d2

∂2v

∂x2
= v (φ2(T (x) + c t) − u − v).

We use the following data in order to produce the figures:

φ1(T ) =







1.0 for T > 0.0,
1.0 + 4.0 T for −0.375 ≤ T ≤ 0.0,

−0.5 for T < −0.375,
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Figure 5: Density of u as a function of t and x

−40

−20

0

20

40 2

4

6

8

10

12

14

0

0.5

1

time

position
−40 −30 −20 −10 0 10 20 30 40
2

4

6

8

10

12

14

position

tim
e

Figure 6: Density of v as a function of t and x

φ2(T ) =







−0.5 for T > 0.125,
1.0 − 4.0 |T + 0.25| for −0.25 ≤ T ≤ 0.125,

1.0 for T < −0.25,

T (x) =
10

3l

(

|x − l

2
| − 3l

10

)

1{|x− l

2
|≤ 3l

10
},

where l = 100 and c = 0.8. Here, the multiplication by 1{|x− l

2
|≤ 3l

10
} means that

T (x) = 0 when |x − l
2 | ≥ 3l

10 .

The panels of Figure 5 represent the same surfaces seen from a different angle,
and show the value of u as a function of t and x. The red color corresponds to
higher values of the function, while the blue color corresponds to lesser values.
The same is shown on Figure 6, but for the value of v. Finally, we show on the
same figure (Figure 7) the values of u and v.

We still observe (especially on Figure 7) the widening of the gap but now
extinction of the species adapted to the coldest region (that is, species 2 with
number density v) occurs at the end of the simulation (which is most clearly
seen in Figure 6). The extension of the gap, in this complex geometry, does not
seem to follow a linear law with respect to time.

It would also be interesting to take into account other effects such as trans-
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Figure 7: Densities of u and v as a function of t and x

port terms by an underlying flow. A system having a certain analogy with
(1)–(2) but with different functions ri from the one studied here and without
shift, is studied in [7]. The model in that paper is about competing populations
in a river and the effect of flow is analyzed.

7 Conclusion

When climatic conditions shape the spatial abundance pattern of closely related
competing species, it is to be expected that climate change will be reflected in
changes of such patterns, as indeed shown in [11]. For a survey of closely related
issues and many references, with the focus on ecosystems in streaming rivers,
we refer the reader to [9]. In [3], it was shown (in a single species context) that
the sign of c − c0 , where c is the speed at which the climate moves and c0 is
the invasion speed into virgin habitat, is of crucial importance if the suitable
habitat consists of a finite patch.

Here we showed the theoretical possibility that a systematic movement of
climatic conditions leads to a moving and widening gap in between regions of
dominance of one and the other competitor. One should expect such gap for-
mation whenever the speed at which a habitat type shifts as a result of climate
change exceeds the speed at which a species can expand its range by disper-
sal. We demonstrated gap formation in the context of a special and somewhat
simple model example, but we think that the presence of a widening gap is a
rather general phenomenon when the forcing speed of climate change is large.

15



This belief is sustained by numerical computations. We wonder whether the
phenomenon has been (or will be) observed in the field.
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