
CONVERGENCE TOWARDSTHE THERMODYNAMICAL EQUILIBRIUML. DESVILLETTESEcole Normale Sup�erieure de CachanCentre de Math�ematiques et leurs Applications61, Avenue du Pr�esident Wilson94235 Cachan CedexFRANCE1 Collision kernels and entropy productionCollision kernels are standard objects of rational mechanics.One of the most important is Boltzmann's kernel of rare�ed gases (Cf.[Ce], [Ch, Co], [Tr, Mu]), de�ned byQ1(f)(v) = Zv�2IR3 Z�2S2 �f(v0)f(v0�)� f(v)f(v�)��B1�jv � v�j; � � v � v�jv � v�j�d�dv�; (1:1)where v0 = v + v�2 + jv � v�j2 �; (1:2)v0� = v + v�2 � jv � v�j2 �; (1:3)B1 is a nonnegative cross section and f � f(v) � 0 is the density of particlesof velocity v 2 IR3.A classical simpli�ed kernel is the so{called Kac's kernel (Cf. [K], [MK]),de�ned byQ2(f)(v) = Zv�2IR Z ��=�� �f(v cos � � v� sin �) f(v sin � + v� cos �)�f(v) f(v�)�B2(j�j) d�2�dv�; (1:4)1



and here v 2 IR, B2 is a nonnegative cross section and f � f(v) � 0 is thedensity of particles of a one{dimensional gas where the mass and energy areconserved but not the momentum.In the context of semiconductors (Cf. [BA, Deg, Ge]), Boltzmann'skernel is replaced (as far as electrons{electrons collisions are concerned) byQ3(f)(v) = Zv�2B Zv02B Zv0�2B �f(v0) f(v0�) (1� f(v))(1� f(v�))�f(v) f(v�) (1� f(v0)) (1� f(v0�))� �("(v) + "(v�) = "(v0) + "(v0�))� �(v + v� � v0 � v0� 2 L�)B3(v; v�; v0; v0�) dv0�dv0dv�; (1:5)where L is the lattice of the semiconductor, B = IR3=L� is the Brillouinzone, " : B ! IR+ is the energy band, f � f(v) 2 [0; 1] is the density ofelectrons with wave number v submitted to the Pauli principle, and B3 is anonnegative cross section satisfying the microreversibility assumption8v; v�; v0; v0� 2 B; B3(v; v�; v0; v0�) = B3(v�; v; v0�; v0) = B3(v0; v0�; v; v�):(1:6)Finally, the Fokker{Planck{Landau kernel of plasma physics is a limitof the kernel Q1 when the collisions become grazing (Cf. [Ars, Bu], [Des 2],[Des, Vi 1]).It readsQ4(f)(v) = divv Zv�2IR3 �jv � v�j2 Id� (v � v�)
 (v � v�)��f(v�)rf(v)� f(v)rf(v�)�B4(jv � v�j) dv�; (1:7)where v 2 IR3, f � f(v) � 0 and B4 is a nonnegative cross section.The classical H{theorem of Boltzmann states that for all f � 0 such thatthe integrals make sense,� Zv Qi(f)(v)Hi(f(v)) dv � 0; (1:8)where Hi(x) = log x for i = 1; 2; 4 and H3(x) = log( x1�x).In other words, the entropy production is nonnegative. Moreover (underthe additional assumption Bi > 0 a.e.), there is equality in inequality (1.8)2



if and only if f 2 Mi, whereMi is the set of Maxwellian (that is, Gaussian)functions of v when i = 1; 4, M2 is the set of centered (that is, of mean 0)Maxwellian functions of v, andM3 is the set of Fermi{Dirac functions of v.The entropy production estimates are quantitative versions of the H{theorem.A �rst kind of such estimates is of the form� Zv Qi(f)(v)Hi(f(v)) dv � �(d(f;Mi)); (1:9)where � is a continuous function such that �(0) = 0, and d(�;Mi) is somedistance to the set Mi. Roughly speaking, such a formula shows how theentropy production can be seen as a distance to the thermodynamical equi-librium.Another kind of entropy production estimate is of the form� Zv Qi(f)(v)Hi(f(v)) dv � ��Zv f(v)Hi(f(v)) dv� Zv f(v)Hi(Mf (v))�;(1:10)whereMf is the function belonging toMi which has the samemass Rv f(v) dv,impulsion (except for i = 2) Rv f(v) v dv and kinetic energy Rv f(v) jvj22 dv asf . Remembering that the entropy Rv f(v)Hi(f(v)) dv is always larger thanRv f(v)Hi(Mf (v)) dv, and that the equality occurs if and only if f = Mf ,we see that this is once again a way of controling the distance to the ther-modynamical equilibrium by the entropy production.In section 2, we recall some of the existing entropy production estimatesfor the kernels Qi; i = 1; ::; 4, and give a simpli�ed proof of one of them inthe case i = 2.Then, we observe that there are two classical situations in which thereis convergence towards the equilibrium in kinetic theory, and the entropyproduction estimates can help to control quantitatively the speed of thisconvergence.In section 3, we brie
y describe the �rst situation, namely the study ofthe limit t!1 in Boltzmann{type equations (and especially in the spatiallyhomogeneous case) and show how to apply at this level the estimates ofsection 2. 3



Finally, in section 4, we investigate another limit in which the thermody-namical equilibrium is reached, namely the Chapman{Enskog asymptoticsof the Boltzmann equation. Once again, the estimates of section 2 are used.2 New proofs of a class of entropy production es-timatesWe give here an entropy production estimate for each kernel Qi; i = 1; ::; 4.Many variants of these estimates can be found, and also many quite di�erentestimates (Cf. [Carl, Carv] for example).Theorem 1: Let i = 1; 2. We suppose that there exists constants bi > 0such that Bi � bi a.e.Then, for all �;D � 0, one can �nd KD; K 0D > 0 such that for allf � f(v) satisfying f(v) � � e�D jvj2 ; (2:1)the following estimate holds:� Zv Qi(f)(v)Hi(f(v)) dv � bi �2KD�S�K 0D inf�2logMi Zv jHi(f(v))� �(v)j e�2D jvj2 dv�; (2:2)with S(x) = x21+jxj .Theorem 2: We suppose that there exists a constant b3 > 0 such thatB3 � b3 a.e.Then, for all � > 0, one can �nd K� > 0 such that for all f � f(v)satisfying � � f(v) � 1� �; (2:3)the following estimate holds:� Zv Q3(f)(v)H3(f(v)) dv � K� inf�2 logM31+logM3 Zv jH3(f(v))� �(v)j dv: (2:4)Theorem 3: We suppose that there exists a constant b4 > 0 such thatB4 > b4 a.e. 4



Then for all f � f(v) � 0, there exists a constant Kf > 0 depending onlyon the mass Rv f(v) dv, energy Rv f(v) jvj22 dv and entropy Rv f(v)H4(f(v)) dv� Zv Q4(f)(v)H4(f(v)) dv � Kf Zv2IR3 �f(v)H4(f(v))�Mf (v)H4(Mf(v))�dv: (2:5)The constant Kf can be computed explicitly.The proof of theorem 2 can be found in [BA, Des, Ge] and that oftheorem 3 in [De, Vi 2]. A variant of theorem 1 was proven in [Des 1] (Cf.also [Wen]).Note that the estimates of theorem 1 and 2 belong to the �rst classdescribed in section 1, whereas the estimate of theorem 3 belongs to thesecond class.We give here a new proof of theorem 1 in the case when i = 2. It is farsimpler than that of [Des 1] for at least two reasons: �rst, only one derivationis performed (instead of 3 in [Des 1]), secondly, the open mapping theoremis not used any more. As a consequence, the constants KD; K 0D becomesexplicit.Proof of theorem 1 (case i = 2): We �rst observe that� Zv Q2(f)(v)H2(f(v)) dv = 14 Zv2IR Zv�2IR Z ��=�� �f(v cos � � v� sin �)�f(v sin � + v� cos �)� f(v) f(v�)�� log(f(v cos � � v� sin �)�f(v sin � + v� cos �))� log(f(v) f(v�))�B2(j�j) d�2�dv�dv: (2:6)This is the standard form of the entropy production for Kac's model.Thanks to the assumptions of theorem 1, we immediately get� Zv Q2(f)(v)H2(f(v)) dv � b2 �24 Zv2IR Zv�2IR e�D (v2+v2�)Z ��=�� �� log f(v cos � � v� sin �) + log f(v sin � + v� cos �)� log f(v)� log f(v�)� d�2�dv�dv; (2:7)5



where �(x) = x (ex � 1): (2:8)But �(x) � e�1 S(jxj); (2:9)so that thanks to the convexity of S, Jensen's inequality yields� Zv Q2(f)(v)H2(f(v)) dv � b2 �2 e�14 D� S� �D Zv2IR Zv�2IR e�D (v2+v2�)���� Z ��=�� [log f(v cos � � v� sin �) + log f(v sin � + v� cos �)]d�2�� log f(v)� log f(v�)����dvdv��: (2:10)But the functionr(v; v�) = Z ��=�� [log f(v cos ��v� sin �)+log f(v sin �+v� cos �)] d�2� (2:11)depends only on v2 + v2�, so that�v� @@v � v @@v��r = 0: (2:12)Then, if we denotek(v; v�) = log f(v) + log f(v�)� r(v; v�); (2:13)one immediately getsv� f 0(v)f(v) � v f 0(v�)f(v�) = v� @k@1(v; v�)� v @k@2(v; v�): (2:14)Integrating (2.14) with respect to v� against the function v� 7! v� e�2D v2� ,one gets f 0(v)f(v) Zv�2IR v2� e�2D v2� dv� � v Zv�2IR v� e�2D v2� f 0(v�)f(v�) dv�= Zv�2IR v2� @k@1(v; v�) e�2Dv2� dv� + Zv�2IR(1� 4Dv2�) e�2D v2� k(v; v�) dv�:(2:15)6



Integrating then (2.15) with respect to v, one can �nd � 2 logM2 such thatH2(f(v))� �(v) = �Zv�2IR v2� e�2Dv2� dv���1[Zv�2IR v2� k(v; v�) e�2Dv2� dv�+ Z v0 Zv�2IR(1� 4Dv2�) e�2D v2� k(u; v�) dv�du]; (2:16)so that (thanks to the monotonicity of x 7! (1+2Dx2) e�2Dx2 when x � 0),Zv2IR jH2(f(v))� �(v)j e�2Dv2 dv � p�2 (2D)� 32�Zv2IR Zv�2IR jk(v; v�)j�v2� e�2D (v2+v2�) dv�dv+Zu2IR Zjvj�juj dv1 + 2Dv2 Zv�2IR(1+2Du2) (1+4Dv2�)�e�2D (u2+v2�)jk(u; v�)j dv�du�� 4p� (2D)� 32 sup(1; D)2 (1 + �p2D) Zv2IR Zv�2IR(1 + v2 + v2�)2�e�2D (v2+v2�) jk(v; v�)j dvdv�� 2 52 e�2p�D� 72 sup(1; D)2 (1 + �p2D) eD� Zv2IR Zv�2IR e�D (v2+v2�) jk(v; v�)j dvdv�; (2:17)and (2.2) holds (for i = 2) with the explicit constantKD = (e �)�1D K0D = 2 32 e�1 D�3=2p� sup(1; D)2 (1+ �p2D ) eD: (2:18)3 Application to the study of the long{time be-haviour in kinetic equationsWe now look to the applications of the estimates of section 2 when one dealswith the long time behaviour of (spatially homogeneous) kinetic equations.The most precise estimate is obtained in the case of the Fokker{Planck{Landau equation and is a consequence of theorem 3. One proves in [Des, Vi7



2] (thm. 7) the following estimate for the speed of convergence towards theequilibrium:Theorem 4: Let fin 2 L1(IR3) be a nonnegative initial datum such thatthe total mass R fin(v) dv is 1 and the total kinetic energy R fin(v) jvj22 dv is32 . Then there exists an explicitely computable constant C depending only onthe initial entropy R fin(v)H3(fin(v)) dv such that if f(t; �) is the (unique)solution of the spatially homogeneous Fokker{Planck{Landau equation@tf(t; v) = Q3(f)(t; v); (3:1)f(0; v) = fin(v); (3:2)with a cross section B3 such that1 � B3(jv � v�j) � K (1 + jv � v�j) (3:3)for some constant K > 0, thenjjf(t; �)�Mfin jjL1(IR3) � C e� t3 : (3:4)Many variants of this theorem can be found in [Des, Vi 2]. It can beconsidered as \almost" optimal in the sense that the coe�cient 13 in theexponential in eq. (3.4) is of the same order of magnitude as the spectralgap in the corresponding linearized equation.The idea of the proof consists in using theorem 3 together with theentropy estimate@t Zv2IR3 f(t; v)H3(f(t; v)) dv = Zv2IR3 Q3(f)(t; v)H3(f(t; v)) dv: (3:5)In the case when i = 1; 2, the entropy production estimates given insection 2 do not take into account the entropy itself (i.-e. they are of the�rst kind). As a consequence, the corresponding estimates of convergencetowards the equilibrium are far worse. One can typically prove that for awell chosen D > 0,jjf(t; �)�Mfin jjL1(IR3;e�D jvj2 dv) = O� 1pt�; (3:6)8



where f(t; �) is the unique solution to the homogeneous equation@tf(t; v) = Qi(f)(t; v); (3:7)f(0; v) = fin(v); (3:8)with a cross section Bi such thatK1 � Bi(jv � v�j) � K2 (1 + jv � v�j) (3:9)for some constants K1; K2 > 0.Note that a Maxwellian lower bound like (2.1) (for a certain �;D > 0depending on the initial datum) is proven (under reasonable assumptionson the cross section B1) in [Plv, Wenn].Estimate (3.6) is very far from optimal and is to be compared to theestimates of [Ark], [Carl, Carv] and [Tosc, Vil], which are based on quitedi�erent approaches and involve di�erent norms.4 Application to the study of the Chapman{EnskogasymptoticsThe Chapman{Enskog asymptotics consists in �nding solutions of the ap-proximated equation (sometimes called the Hilbert expansion at order 2)@f"@t + v � rxf" = 1"Q1(f") +O("2); (4:1)under the form of an asymptotic expansion when "! 0. Because of the 1" infront of the collision kernel, we are once again in a situation in which, when"! 0, there is convergence towards the thermodynamical equilibrium.One can show (at the formal level, like in [Ch, Co], [Ba], or for solutionsde�ned for �nite times (Cf. [Ka, Ma, Ni])) that there existss" = O(1) (4:2)such that f"(t; x; v) = M"(t; x; v)(1+ "q"(t; x; v) + "2s"(t; x; v)) (4:3)is a solution of (4.1). 9



In formula (4.3), M" denotes a Maxwellian function of v,M"(t; x; v) = �"(t; x)(2�T"(t; x))32 e� jv�u"(t;x)j22T"(t;x) ; (4:4)and the macroscopic quantities �"; u"; T" satisfy the Navier-Stokes equationsof compressible perfect monoatomic gases, with a viscosity depending onlyon T" and of order ". The dependance of the viscosity with respect to thetemperature is related to the cross section B1 appearing in Q1. Preciseformulas can be found in [Ba].In formula (4.3), q" is a function of t, x and v�u"pT" whose dependancewith respect to the third variable is �xed (and depends in fact on the crosssection B1). Once again, precise formulas can be found in [Ba].On the other hand, if a solution of (4.1) can be written under the formf"(t; x; v) = M"(t; x; v)(1+ "f1"(t; x; v)); (4:5)where Zv2IR3 f1"(t; x; v)M"(t; x; v) 0BBBBB@ 1v1v2v3jvj21CCCCCA dv = O("); (4:6)M" = O(1); g" = O(1); (4:7)and where M" is a Maxwellian function of v, then it seems classical (at theformal level, Cf. [Des 3] for example) that f" can be written under the form(4.3), (4.4), (with the macroscopic quantities �"; u"; T" satisfying the Navier-Stokes equations as above) so that the Chapman{Enskog asymptotics holds.We show here (at the formal level) thanks to the entropy productionestimates that any solution of (4.1) such that the initial datum f"(0; x; v)does not depend on " (or more generally is in O(1))can also be writtenunder the form (4.3), (4.4). In other words, the whole Chapman{Enskogasymptotics can be recovered from the Hilbert expansion at order 2 underno extra assumptions.According to the remark above, it is enough to prove that (4.1) implies(4.5) { (4.7). 10



We �rst note that thanks to the properties of conservation of the mass,impulsion and energy, we getZx2IR3 Zv2IR3 f"(t; x; v)0BBBBB@ 1v1v2v3jvj21CCCCCA dvdx = Zx2IR3 Zv2IR3 f"(0; x; v)0BBBBB@ 1v1v2v3jvj21CCCCCA dvdx:(4:8)Therefore (since f" � 0), f" = O(1) (4:9)for the L1([0;+1[t;L1(IR3x � IR3v)) norm.Integrating eq. (4.1) against log f", we also getZx2IR3 Zv2IR3 f"H1(f")(t; x; v) dvdx� Zx2IR3 Zv2IR3 f"H1(f")(0; x; v)dvdx= 1" Z ts=0 Zx2IR3 Zv2IR3 Q1(f")H1(f")(s; x; v) dvdxds: (4:9)Thanks to the H-theorem, the right{hand side of (4.9) is nonpositive, sothat the entropy decreases:Zx2IR3 Zv2IR3 f"H1(f")(t; x; v) dvdx� Zx2IR3 Zv2IR3 f"H1(f")(0; x; v) dvdx:(4:10)But it also implies thatZ ts=0 Zx2IR3 Zv2IR3 �Q1(f")H1(f")(s; x; v) dvdxds= O("): (4:10)Then, we use theorem 1 to get the estimatelog f" = m" + O(p"); (4:11)where m" is the logarithm of a Maxwellian and the O(p") is in the topologyof L1loc([0;+1[t�IR3x � IR3v).Note that (4.11) rigorously holds only under the hypothesis that f" isbounded from below by a given Maxwellian (and that the cross sectionB1 is also bounded from below, but this last assumption can be relaxed,Cf. [Wenn]). This seems extremely di�cult to prove, except maybe in thecontext of solutions de�ned on a small interval of time. Therefore, from nowon, we proceed in the computation only at the formal level.11



Thanks to (4.11), we getf" = M1" (1 +p" p"); (4:12)where M1" is a Maxwellian function of v,M1" = O(1); p" = O(1); (4:13)and the O(1) holds in the topology of L1loc([0;+1[t�IR3x�IR3v). Introducingthe ansatz (4.12), (4.13) in (4.1), we get( @@t + v � rx)M1" +p" ( @@t + v � rx)(M1"p")= 1"Q1(M1") + 2p"Q1(M1";M1"p") +Q1(M1"p"): (4:14)In eq. (4.14), Q(a; b) denotes the bilinear symmetric operator associated tothe quadratic operator Q1.But Q1 vanishes on the set of Maxwellians, so thatQ1(M1";M1"p") = O(p"): (4:15)Note however that the O(p") in formula (4.15) is only to be taken in thesense of distributions (in t; x).We know (Cf. [Ce]) that the spectrum of the associated self adjointoperator L" = �M�11" Q(M1";M1" � ) (4:16)is included in the interval [x0;+1[ (with x0 > 0 under assumption (3.9) onB1), except for the eigenvalue 0 which is of order 5 and whose associatedeigenspace is Ker (L") = Vect(1; v1; v2; v3; jvj2): (4:17)Therefore p" = p1" +p" t"; (4:18)where p1" 2 Vect(1; v1; v2; v3; jvj2); (4:19)and p1" = O(1); t" = O(1): (4:20)12



Finally, f" = M1"(1 +p" p1" + " t"): (4:21)But M1" is a Maxwellian function of v, so that it can be written under theform M1"(t; x; v) = �1"(t; x)(2� T1"(t; x))32 e� jv�u1"(t;x)j22 T1"(t;x) : (4:22)We compute then, when��" = O(1); �u" = O(1); �T" = O(1); (4:23)the quantity M2"(v) = �1" +p" ��"(2� T1" + 2�p" �T") 32 e� jv�u1"�p" �u"j22T1"+2p" �T"= M1"(v)�1 +p"�(��"�1" � 32 �T"T1" ) + v � u1"T1" �u" + jv � u1"j22T 21" �T"�� +O("):(4:24)Choosing ��"; �u"; �T" in such a way thatp1" = (��"�1" � 32 �T"T1" ) + v � u1"T1" �u" + jv � u1"j22T 21" �T"; (4:25)and this is possible thanks to (4.19), (4.20), we see that we can getf" = M2"(1 + "g"); (4:26)where M2" = O(1); g" = O(1); (4:27)and M2" is a Maxwellian function of v.Therefore, we obtain (4.5) and (4.7), but not necessarily (4.6). In orderto get this last estimate, we perturb the parameters of the Maxwellian M2"by functions of order of magnitude O("), and we proceed as in (4.24) {(4.26).Finally, we see that the Chapman Enskog expansion (4.3), (4.4) is aconsequence of the Hilbert expansion at order 2 (4.1) (when the initial datumis independant of ").A di�erent asymptotics, namely the one leading from the Boltzmannequation of semiconductors (Cf. [BA, Des, Ge]) to an energy transportmodel, makes use of related arguments (but for the kernel Q3).13
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