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1 Collision kernels and entropy production

Collision kernels are standard objects of rational mechanics.
One of the most important is Boltzmann’s kernel of rarefied gases (Cf.

[Ce], [Ch, Co], [Tr, Mu]), defined by
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By is a nonnegative cross section and f = f(v) > 0 is the density of particles
of velocity v € IR>.

A classical simplified kernel is the so—called Kac’s kernel (Cf. [K], [MK]),
defined by
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and here v € IR, By is a nonnegative cross section and f = f(v) > 0 is the
density of particles of a one—dimensional gas where the mass and energy are
conserved but not the momentum.

In the context of semiconductors (Cf. [BA, Deg, Ge]), Boltzmann’s
kernel is replaced (as far as electrons—electrons collisions are concerned) by
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—f(v) fo) (1= F(0) (1 - f(vi))} 8(e(v) +e(v.) = 2(v') +2(el))
X 8(v+ v — v — vl € L*) Bs(v, v, v, 0)) dvldv'du., (1.5)

where L is the lattice of the semiconductor, B = IR?/L* is the Brillouin
zone, £ : B — IRT is the energy band, f = f(v) € [0,1] is the density of
electrons with wave number v submitted to the Pauli principle, and Bs is a
nonnegative cross section satisfying the microreversibility assumption

Yo, v, v, vl € B, B3 (v, vs, v, vL) = Bs(vs, v, vl 0") = Bs(v/, vl v, v.).
(1.6)
Finally, the Fokker—Planck—Landau kernel of plasma physics is a limit
of the kernel ()1 when the collisions become grazing (Cf. [Ars, Bu], [Des 2],

[Des, Vi 1]).
It reads
Qe =div, [ {lo-vl1a- (=)o @- )}
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where v € IR?, f = f(v) > 0 and By is a nonnegative cross section.

The classical H-theorem of Boltzmann states that for all f > 0 such that
the integrals make sense,

- [ QN Hir) dvz 0, (1.8
where H;(z) =logx for i = 1,2,4 and H3(z) = log(7%;).

In other words, the entropy production is nonnegative. Moreover (under
the additional assumption B; > 0 a.e.), there is equality in inequality (1.8)



if and only if f € M, where M, is the set of Maxwellian (that is, Gaussian)
functions of v when ¢ = 1,4, M3 is the set of centered (that is, of mean 0)
Maxwellian functions of v, and M3 is the set of Fermi-Dirac functions of v.

The entropy production estimates are quantitative versions of the H—
theorem.
A first kind of such estimates is of the form

- / Qi) (v) Hi(f(v)) dv > d(d(f, My)), (1.9)

where ¢ is a continuous function such that ¢(0) = 0, and d(-, M;) is some
distance to the set M;. Roughly speaking, such a formula shows how the
entropy production can be seen as a distance to the thermodynamical equi-
librium.

Another kind of entropy production estimate is of the form

- [@nw Hi(f(v))de(b(Af(v) () do~ [ 10 HZ»(Mf(U)))
(1.10)

where M is the function belonging to M; which has the same mass [, f(v) dv,

impulsion (except for ¢ = 2) [, f(v)vdv and kinetic energy [, f(v) @ dv as

f.

Remembering that the entropy [, f(v) H;(f(v)) dv is always larger than
[, f(v) H;(My(v)) dv, and that the equality occurs if and only if f = My,
we see that this is once again a way of controling the distance to the ther-
modynamical equilibrium by the entropy production.

In section 2, we recall some of the existing entropy production estimates
for the kernels @);, ¢ = 1,..,4, and give a simplified proof of one of them in
the case i = 2.

Then, we observe that there are two classical situations in which there
is convergence towards the equilibrium in kinetic theory, and the entropy
production estimates can help to control quantitatively the speed of this
convergence.

In section 3, we briefly describe the first situation, namely the study of
the limit ¢ — oo in Boltzmann-type equations (and especially in the spatially
homogeneous case) and show how to apply at this level the estimates of
section 2.



Finally, in section 4, we investigate another limit in which the thermody-
namical equilibrium is reached, namely the Chapman—Enskog asymptotics
of the Boltzmann equation. Once again, the estimates of section 2 are used.

2 New proofs of a class of entropy production es-
timates

We give here an entropy production estimate for each kernel @;,¢ =1, .., 4.
Many variants of these estimates can be found, and also many quite different
estimates (Cf. [Carl, Carv] for example).

Theorem 1: Lett=1,2. We suppose that there exists constants b; > 0
such that B; > b; a.e.
Then, for all 6,D > 0, one can find Kp, K}, > 0 such that for all
f = f(v) satisfying
f(v) >8P IF (2.1)

the following estimate holds:
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Theorem 2: We suppose that there exists a constant bs > 0 such that
B3 Z b3 a.e.
Then, for all 3 > 0, one can find Kg > 0 such that for all f = f(v)
satisfying
B< o) <1, (23

the following estimate holds:
- [ Qun) Haf@) o= Ko inf, [ |Ha(F(0) = po)] v, (24)

log M3
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Theorem 3: We suppose that there exists a constant by > 0 such that
By > by a.e.



Then for all f = f(v) > 0, there exists a constant K; > 0 depending only
on the mass [ f(v)dv, energy [, f(v ) PE 4v and entropy [, f(v) Ha(f(v)) dv

- [ sy oz & [ o) miw)

— M (v) H4(Mf(v))} dv. (2.5)

The constant Ky can be computed explicitly.

The proof of theorem 2 can be found in [BA, Des, Ge] and that of
theorem 3 in [De, Vi 2]. A variant of theorem 1 was proven in [Des 1] (Cf.
also [Wen]).

Note that the estimates of theorem 1 and 2 belong to the first class
described in section 1, whereas the estimate of theorem 3 belongs to the
second class.

We give here a new proof of theorem 1 in the case when ¢ = 2. It is far
simpler than that of [Des 1] for at least two reasons: first, only one derivation
is performed (instead of 3 in [Des 1]), secondly, the open mapping theorem
is not used any more. As a consequence, the constants Kp, K}, becomes
explicit.

Proof of theorem 1 (case i = 2): We first observe that

- [@une matondo=1 [ [ [T e coss - o sing

X f(v sin @ + v, cos ) — f(v) f(v*)}{log(f(v cosf — v, sin 0)

X f(v sin @ + v, cosB)) — log(f(v) f(v ))} By(]6]) ﬁdv*dv (2.6)

This is the standard form of the entropy production for Kac’s model.
Thanks to the assumptions of theorem 1, we immediately get

e aoyizn® [ [ v
vERR ’U*ER
/ <logf(v cosf — v, sin 0) + log f(v sin 6 4 v, cos )
f=—m
do
—log f(v) — log f(v*)) Q—dv*dv, (2.7)
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where

Az) =z (" = 1). (2.8)

But
Az) > et S(|z|), (2.9)

so that thanks to the convexity of .5, Jensen’s inequality yields

/Q2 ())dv>b262——5< /UGR/U*GR D (v +2)

T do
/ [log f(v cos @ — v, sin @) + log f(v sin @ + v, cos 0)]2—
O=—m

T

—log f(v) — log f(v.)

dvdv*) . (2.10)

But the function

T dé
r(v,v.) = / [log f(v cos@—wv, sinf)+log f(v sin §+v, cos 0)] (2.11)
4
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depends only on v? + v2, so that

(m % v ai*)r —0. (2.12)
Then, if we denote
(v, 0.) = log f(v) + log f(v.) — (v, v.), (2.13)
one immediately gets
o ]}'((:)) o J}'((::)) _— g’f (v, v.) — g’; (v, v.). (2.14)
—2Du;i7

Integrating (2.14) with respect to v, against the function v, — v.e
one gets

! !
v v
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Integrating then (2.15) with respect to v, one can find g € log M3 such that

-1
Hz(f(v)) - Iu(v) - (/ UZ 6_2sz dv*) [/ U’% k(?]7 U*) 6_2sz dU*
vs €EIR v« ER

+/ / (1—4Dv2)e 2P k(u, v.) do.dul, (2.16)
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so that (thanks to the monotonicity of  — (142 D 2) e=2P** when & > 0),
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and (2.2) holds (for i = 2) with the explicit constant
D—3/2 T

Kp=(er)™'D K} 2236_1 sup(1, D 214+ e’ (218

3 Application to the study of the long—time be-
haviour in kinetic equations

We now look to the applications of the estimates of section 2 when one deals
with the long time behaviour of (spatially homogeneous) kinetic equations.

The most precise estimate is obtained in the case of the Fokker—Planck—
Landau equation and is a consequence of theorem 3. One proves in [Des, Vi



2] (thm. 7) the following estimate for the speed of convergence towards the
equilibrium:

Theorem 4: Let f;, € L1(IR®) be a nonnegative initial datum such that

the total mass [ fi,(v)dv is 1 and the total kinetic energy [ fin(v) @ dv is
%. Then there exists an explicitely computable constant C' depending only on
the initial entropy [ fin(v) Hs(fin(v)) dv such that if f(t,-) is the (unique)

solution of the spatially homogeneous Fokker—Planck—Landau equation
8tf(t7 U) = Q3(f) (tv U)7 (31)
£(0,v) = fin(v), (3.2)

with a cross section Bs such that
1< Bs(lv—w) < K1+ |v—uv) (3.3)

for some constant K > 0, then

t

f () = Mg, |l rey < Cem5. (3.4)

Many variants of this theorem can be found in [Des, Vi 2]. It can be
considered as “almost” optimal in the sense that the coefficient % in the
exponential in eq. (3.4) is of the same order of magnitude as the spectral
gap in the corresponding linearized equation.

The idea of the proof consists in using theorem 3 together with the
entropy estimate

Ii2 AeJRS f(t,v) Ha(f(t,v)) dv= Qs(f)(t,v) Hs(f(t,v))dv.  (3.5)

veIR?

In the case when ¢ = 1,2, the entropy production estimates given in
section 2 do not take into account the entropy itself (i.-e. they are of the
first kind). As a consequence, the corresponding estimates of convergence
towards the equilibrium are far worse. One can typically prove that for a
well chosen D > 0,

1
St -) = Mfin||L1(R37e—D W2 gy) = O (%)7 (3.6)



where f(t,-) is the unique solution to the homogeneous equation
8tf(t7 U) = Ql(f) (tv U)7 (37)
£(0,v) = fin(v), (3.8)

with a cross section B; such that
Ky < Bi(Jlv—wv]) < Ko (14 |v—wv.]) (3.9)

for some constants Ky, Ko > 0.

Note that a Maxwellian lower bound like (2.1) (for a certain §, D > 0
depending on the initial datum) is proven (under reasonable assumptions
on the cross section By) in [Plv, Wenn].

Estimate (3.6) is very far from optimal and is to be compared to the
estimates of [Ark], [Carl, Carv] and [Tosc, Vil], which are based on quite
different approaches and involve different norms.

4 Application to the study of the Chapman—Enskog
asymptotics

The Chapman—Enskog asymptotics consists in finding solutions of the ap-
proximated equation (sometimes called the Hilbert expansion at order 2)

0/
ot

FoVafe = QU +OE), (4.1)

under the form of an asymptotic expansion when € — 0. Because of the % in
front of the collision kernel, we are once again in a situation in which, when
€ — 0, there is convergence towards the thermodynamical equilibrium.

One can show (at the formal level, like in [Ch, Co], [Ba], or for solutions
defined for finite times (Cf. [Ka, Ma, Ni])) that there exists

se =0(1) (4.2)
such that
felt,z,v) = Mo (t, 2, 0)(1+eq-(t, 2, v) + ezss(t, z,v)) (4.3)

is a solution of (4.1).



In formula (4.3), M. denotes a Maxwellian function of v,

(1, _lv—ue(t,2)|?
M. (t,x,v) = &e Telta) (4.4)

(27 Ta(t, 2))?

and the macroscopic quantities p., u., T. satisfy the Navier-Stokes equations
of compressible perfect monoatomic gases, with a viscosity depending only
on T, and of order . The dependance of the viscosity with respect to the
temperature is related to the cross section By appearing in (). Precise
formulas can be found in [Ba].

In formula (4.3), ¢. is a function of ¢, x and ‘7

whose dependance

with respect to the third variable is fixed (and depends in fact on the cross
section Bp). Once again, precise formulas can be found in [Ba].

On the other hand, if a solution of (4.1) can be written under the form

f(t @, 0) = Mo(t 2, 0) (1 + € f1e (¢, 2, v)), (4.5)
where

1

U1
/ Frelty 2, 0) Mo(t,2,0) | w2 | do=0(e), (4.6)

veEIR? U3

|v]?
Ms = 0(1)7 Ge = 0(1)7 (47)

and where M. is a Maxwellian function of v, then it seems classical (at the
formal level, Cf. [Des 3] for example) that f. can be written under the form
(4.3), (4.4), (with the macroscopic quantities p, u., T satisfying the Navier-
Stokes equations as above) so that the Chapman—Enskog asymptotics holds.

We show here (at the formal level) thanks to the entropy production
estimates that any solution of (4.1) such that the initial datum f.(0,z,v)
does not depend on £ (or more generally is in O(1))can also be written
under the form (4.3), (4.4). In other words, the whole Chapman-Enskog
asymptotics can be recovered from the Hilbert expansion at order 2 under
no extra assumptions.

According to the remark above, it is enough to prove that (4.1) implies

(4.5) — (4.7).
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We first note that thanks to the properties of conservation of the mass,
impulsion and energy, we get

1 1
U1 U1
/ / fet,z,v) | ve | doda :/ / fe(0,2,v) | vy | dvda.
z€R? JveR? Vs zeR® JueR? vs
Els Els
Therefore (since f. > 0),
fe=0(1) (4.9)

for the L°([0, +ools; L' (IR3 x IR2)) norm.
Integrating eq. (4.1) against log f., we also get

/QUGRS AGRS fe Hi(fo)(t, 2, v) dvdx — /erR3 AGRS f- Hi(f)(0,2,v) dvdz

- é/;o /l,eRg) Ve R? Q1(fe) Hi(f:) (s, z,v) dvdzds. (4.9)

Thanks to the H-theorem, the right-hand side of (4.9) is nonpositive, so
that the entropy decreases:

/ / fe Hi(f)(t, 2z, v) dvda < / fe Hi(f2)(0,2,v) dvdz.
rzelR? JvelR3 rzelR? JyelR?

(4.10)
But it also implies that

t
[ [ @ i) s e ) dvdeds =O). (4.10)
s=0 JreR3 JvelR?
Then, we use theorem 1 to get the estimate

log f- = me + O(V2), (4.11)

where m. is the logarithm of a Maxwellian and the O(/2) is in the topology
of Llloc([o’ +oo[ix RS x IR3).

Note that (4.11) rigorously holds only under the hypothesis that f. is
bounded from below by a given Maxwellian (and that the cross section
By is also bounded from below, but this last assumption can be relaxed,
Cf. [Wenn]). This seems extremely difficult to prove, except maybe in the
context of solutions defined on a small interval of time. Therefore, from now
on, we proceed in the computation only at the formal level.
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Thanks to (4.11), we get

fe= M (1+ Ve pe), (4.12)

where M. is a Maxwellian function of v,
M. =0(1),  p-=0(1), (4.13)
and the O(1) holds in the topology of Llloc([o’ +oo[sx IR x IR?). Introducing

the ansatz (4.12), (4.13) in (4.1), we get

Jd Jd
(@ + v Vi) M + \/g(% +v - V) (Micpe)
= 2Qu(My) + %Q1<M15, Mip) +Qi(Mips).  (414)

In eq. (4.14), Q(a,b) denotes the bilinear symmetric operator associated to
the quadratic operator 2.
But ()1 vanishes on the set of Maxwellians, so that

Qu(Mie, Mycp.) = O(Ve). (4.15)

Note however that the O(y/2) in formula (4.15) is only to be taken in the
sense of distributions (in ¢, z).

We know (Cf. [Ce]) that the spectrum of the associated self adjoint
operator

Lf = M Q(My., M. -) (4.16)

is included in the interval [z, 400 (with 29 > 0 under assumption (3.9) on
By), except for the eigenvalue 0 which is of order 5 and whose associated
eigenspace is

Ker (LF) = Vect(1, vy, v, vs, [v]?). (4.17)
Therefore
pe =p=+ Vel (4.18)
where
p1e € Vect(1, vy, vg, v3, [v]?), (4.19)
and
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Finally,
fs = M15(1‘|'\/C:p15‘|'€ts)- (421)

But M. is a Maxwellian function of v, so that it can be written under the
form

(1 _lmmena)
Myt z,0) = — 2= iRt (4.22)
(27 Ti(t,x))?
We compute then, when
dp. = O(1), du. = O(1), 0. = O(1), (4.23)
the quantity
lv—u E—\/Eéu5|2
MQE(U) — pls‘I’\/g(sps 36_W
(27 Ty + 2w\ 01:)2
dp. 34T, U — Ule |v — uy.|? )}
= M. 1 - = Sty + ———— 9T, O(e).
! (U){ + \/g<(,015 2 Tls) + Tls vet 2T125 + (g)
(4.24)
Choosing dp., du.,dT. in such a way that
5,05 3 5T5 U — Ule |U — u16|2
.= A B B LY ST Ll L ¥ 4.25
P (,015 2 Tls) + Tls vet 2T126 ( )
and this is possible thanks to (4.19), (4.20), we see that we can get
fs = M25(1 + €96)7 (426)
where
M, = O(1), g- = O(1), (4.27)

and M. is a Maxwellian function of v.

Therefore, we obtain (4.5) and (4.7), but not necessarily (4.6). In order
to get this last estimate, we perturb the parameters of the Maxwellian M,
by functions of order of magnitude O(e), and we proceed as in (4.24) —
(4.26).

Finally, we see that the Chapman Enskog expansion (4.3), (4.4) is a
consequence of the Hilbert expansion at order 2 (4.1) (when the initial datum
is independant of ¢).

A different asymptotics, namely the one leading from the Boltzmann
equation of semiconductors (Cf. [BA, Des, Ge]) to an energy transport
model, makes use of related arguments (but for the kernel Q3).
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