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Abstract

A predator-prey system involving cross-diffusion is obtained at the formal level as a singular limit
of a four-species reaction-diffusion system, following the approach proposed in the context of ODEs
in [S. Geritz, M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional
response, Journal of Theoretical Biology 314 (2012) 106-108]. Part of this derivation can be made
rigorous. The possibility of appearance of Turing patterns for this cross-diffusion system is studied,
and compared to what happens when standard diffusion terms replace the cross diffusion terms.

1 Introduction

1.1 General presentation

The Beddington-DeAngelis functional response appearing in many works on predator-prey systems [8,
18, 6] can be directly obtained starting from modeling considerations (competition between predators,
etc.) [4, 11, 3, 1]. It can also come out of a systematic process in which one starts with a system of
more than two equations with simple reaction terms, and performs one or more limits.

These limits have been widely studied at the level of ODEs (see for instance [19, 15, 17] and
references therein), but less at the level of (reaction-diffusion) PDEs. Such a study at the level of PDEs
was performed in [10]. There, one starts with three reaction-diffusion equations, the unknown being the
density of preys, and the density of two classes of predators, respectively called handling and searching
predators. In this paper, it was possible to show the rigorous convergence of the solutions of this system,
when some parameter tends to 0, towards the solutions of a predator-prey system involving cross-
diffusion in the predator equation, and Holling II or Beddington-DeAngelis-like functional responses.
A study of patterns of Turing type arising in the limiting systems was also performed there.

In the present paper, we are interested in a situation in which one starts with a system of four
reaction-diffusion equations, where the reaction terms are taken from [15], and one then performs the
singular perturbation analysis which was performed at the level of ODEs in [15]. The main difference
with what happens in [10] is that cross diffusion terms appear in both predators and prey equations at
the end (thus forming a so-called non triangular system of cross diffusion), making the analysis more
difficult.

1.2 Description of the model

Following [15], in addition to the division of the predator population (of density Y ) into so-called
searchers (of density S) and handlers (of density H), we divide the prey population (of density X) in
active prey (of density P ), typically foraging and prone to predation, and invulnerable prey (of density
R), typically constituted of individuals who have found a refuge.

1



Denoting t the time variable and x the space variable, the densities P := P (t, x) ≥ 0, R := R(t, x) ≥
0, S := S(t, x) ≥ 0, H := H(t, x) ≥ 0 are supposed to satisfy the following system (with X = P + R
and Y = S +H): 

∂tP − dP∆xP = rP

(
1− X

n

)
− aPS − 1

ε

(
bPY − 1

τ
R

)
,

∂tR− dR∆xR = rR

(
1− X

n

)
+

1

ε

(
bPY − 1

τ
R

)
,

∂tS − dS∆xS =
1

η

(
−aSP +

1

h
H

)
+ ΓH − µS,

∂tH − dH∆xH =
1

η

(
aSP − 1

h
H

)
− µH.

(1)

Here, r > 0 represents a growth coefficient in a logistic growth term for the prey, and n > 0 is the
corresponding carrying capacity, while aS P (with a > 0) is the rate at which searching predators
capture vulnerable prey. The coefficients Γ > 0 and µ > 0 appear in the terms ΓH representing the
birth of (searching) predators and µS, µH, the terms representing the death of predators.

Prey switches from vulnerable to invulnerable (and vice-versa) status with a rate 1
ε (b P Y −R/τ)

(with b > 0, τ > 0) which depends on the total number Y of predators (at the considered position).
This switch happens on a time scale ε > 0 assumed in the sequel to be small.

Predators switch from searching to handling (and vice-versa) status with a rate 1
η (aS P − H/h)

(with h > 0). This switch happens on a time scale η > 0 assumed in part of the sequel to be small.

1.3 Presentation of the results of this paper

In the system above, it is possible to pass to the limit at the rigorous level when ε → 0, and η > 0 is
kept constant, when the dimension is (1 or) 2. More precisely, it is possible to show the following:

Theorem 1. Let Ω be a bounded regular open subset of IR2, and r, n, a, b, τ , h, Γ, µ and η be strictly
positive parameters. Finally, let Pin, Rin, Sin and Hin be nonnegative initial data lying in C0,α(Ω) for
some α ∈]0, 1[, and such that infx∈ΩHin > 0.

Then, for each ε > 0, there exists a unique strong (nonnegative for each component) solution
Pε := Pε(t, x), Rε := Rε(t, x), Sε := Sε(t, x), Hε := Hε(t, x) such that the quantities ∂tPε, ∂xixjPε,
∂tRε, ∂xixjRε, ∂tSε, ∂xixjSε, ∂tHε, ∂xixjHε lie in C0,α([0, T ] × Ω) for all T > 0 and i, j ∈ {1, 2}, to
system (1), with homogeneous Neumann boundary condition (ν := ν(x) being the unit normal exterior
vector at a point x ∈ ∂Ω):

∇xPε(t, x) · ν(x) = 0, ∇xRε(t, x) · ν(x) = 0, for t ∈ IR, x ∈ ∂Ω, (2)

∇xSε(t, x) · ν(x) = 0, ∇xHε(t, x) · ν(x) = 0, for t ∈ IR, x ∈ ∂Ω, (3)

and initial data:

Pε(0, ·) = Pin, Rε(0, ·) = Rin, Sε(0, ·) = Sin, Hε(0, ·) = Hin. (4)

Moreover, when ε→ 0, the quantities Pε, Rε converge (up to extraction of a subsequence) in L2+δ([0, T ]×
Ω) for some δ > 0 and all T > 0 towards functions P , R, and the quantities Sε and Hε converge (up
to extraction of a subsequence) uniformly in [0, T ]×Ω for all T > 0 towards functions S and H. Then,
P,R ∈ L2+δ([0, T ]× Ω), and S,H ∈ C0,α([0, T ]× Ω) for some α > 0 and all T > 0.

Finally, those functions are weak solutions of the limiting system

∂t(P +R)−∆x(dP P + dRR) = r (P +R)

(
1− P +R

n

)
− aP S, (5)

∂tS − dS ∆xS =
1

η

(
−aS P +

1

h
H

)
+ ΓH − µS, (6)
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∂tH − dH ∆xH =
1

η

(
aS P − 1

h
H

)
− µH, (7)

b P (S +H) =
R

τ
, (8)

together with homogeneous Neumann boundary conditions:

∇x(dP P (t, x) + dRR(t, x)) · ν(x) = 0, for t ∈ IR, x ∈ ∂Ω, (9)

∇xS(t, x) · ν(x) = 0, ∇xH(t, x) · ν(x) = 0, for t ∈ IR, x ∈ ∂Ω, (10)

and the initial conditions:

P (0, x) +R(0, x) = Pin(x) +Rin(x), for x ∈ Ω, (11)

S(0, ·) = Sin, H(0, ·) = Hin, (12)

in the following sense:
First, for all φ ∈ C2

c (IR+ × Ω),

−
∫ ∞

0

∫
Ω

(P +R) ∂tφdxdt−
∫

Ω
(Pin +Rin)φ(0, ·) dx−

∫ ∞
0

∫
Ω

(dP P + dRR) ∆xφdxdt (13)

=

∫ ∞
0

∫
Ω

(
r (P +R)

[
1− 1

n
(P +R)

]
− aP S

)
φdxdt;

Then, for all φ ∈ C2
c (IR+ × Ω),

−
∫ ∞

0

∫
Ω
S ∂tφdxdt−

∫
Ω
Sin φ(0, ·) dx−

∫ ∞
0

∫
Ω
dS S∆xφdxdt (14)

=

∫ ∞
0

∫
Ω

(
1

η
(−aS P +

1

h
H) + ΓH − µS

)
φdxdt;

Finally, for all φ ∈ C2
c (IR+ × Ω),

−
∫ ∞

0

∫
Ω
H ∂tφdxdt−

∫
Ω
Hin φ(0, ·) dx−

∫ ∞
0

∫
Ω
dH H ∆xφdxdt (15)

=

∫ ∞
0

∫
Ω

(
1

η
(aS P − 1

h
H)− µH

)
φdxdt.

We conclude with extra regularity properties for S,H: indeed ∂tS, ∂tH, ∂xixjS and ∂xixjH lie in
L2+δ([0, T ] × Ω) for some δ > 0 and all T > 0, i, j ∈ {1, 2}, so that eq. (6) and eq. (7) (and the
corresponding Neumann boundary conditions and initial conditions) are both satisfied in the strong
sense.

Note that the limiting equation above can be rewritten (in strong form, without taking into account
the initial and boundary conditions) as

∂tX −∆x

(
dP + dR τ b Y

1 + τ b Y
X

)
= r X

(
1− X

n

)
− a X

1 + τ b Y
S, (16)

∂tS − dS ∆xS =
1

η

(
−aS X

1 + τ b Y
+

1

h
H

)
+ ΓH − µS, (17)

∂tH − dH ∆xH =
1

η

(
aS

X

1 + τ b Y
− 1

h
H

)
− µH, (18)

Y = S +H. (19)
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When η tends to 0, this system formally converges to the system

∂tX −∆x

(
dP + dR τ b Y

1 + τ b Y
X

)
= r X

(
1− X

n

)
− a X

1 + τ b Y
S, (20)

∂tY −∆x(dS S + dH H) = ΓH − µY, (21)

aS
X

1 + τ b Y
=

1

h
H. (22)

Unfortunately, this formal limit seems quite difficult to transform in a rigorous theorem. This difficulty
stems from the non-triangular structure of the cross diffusion system (20)-(22) (a cross diffusion system
consisting of two equations is said to be triangular when the cross diffusion terms appear only in one
of the two equations of this system). This structure can be better seen when this system is rewritten
in the following (equivalent) way:

∂tX −∆x (cX(Y )X) = rX

(
1− X

n

)
− aXY

haX + τbY + 1
,

∂tY −∆x (cY (X,Y )Y ) = Γh
aXY

haX + τbY + 1
− µY,

(23)

where
cX(Y ) = dP

1

τbY + 1
+ dR

τbY

τbY + 1
,

cY (X,Y ) = dS
τbY + 1

haX + τbY + 1
+ dH

haX

haX + τbY + 1
.

Since non-triangular cross diffusion terms appear in system (23), it looks quite difficult to show the
existence of strong global solutions to this system (and therefore, as previously noticed, to pass to the
limit rigorously when η tends to 0 in (16)).

It is however feasible to study the possible appearance of patterns in system (23), by performing
a linear stability investigation of its homogeneous steady solutions. Turing patterns are known to
appear in predator-prey systems with predator-dependent trophic function and standard diffusion,
under homogeneous Neumann boundary conditions [2] or Robin boundary conditions [9]. In addition,
while predator-prey systems with prey-dependent trophic function and standard diffusion cannot give
rise to Turing instability [2], cross-diffusion terms are the key destabilizing ingredient that leads to the
emergence of spatial patterns [23, 16, 21], as in the context of competitive species [22, 13, 14].

What we want to point out in our study is the following: first the system (23) can lead to the
appearance of Turing instability, for a certain range of parameters. Secondly, if the cross diffusion
terms in this system are replaced by standard diffusion terms, then the Turing instability zone (that is,
the zone in which the parameters lead to Turing instability) can change significantly, or even appear.
We provide in this paper examples of parameters where such situations happen, that is when no Turing
instability appears for the system (23), but the Turing instability appears when in this system, the
cross diffusion is replaced by a (coherently chosen) standard diffusion.

Next section is devoted to the proof of Thm. 1, while in Section 3 is studied the Turing instability
properties of the limiting system (23).

2 Rigorous results of convergence

In this section, we present the:

Proof of Theorem 1: We first observe that when ε > 0 is given, the existence and uniqueness of
a strong solution to system (1) (together with Neumann boundary conditions and initial conditions)
is a consequence of standard theorems for reaction-diffusion systems (cf. for example [12]).
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Adding the fwo first equations in system (1), we end up (denoting by C any strictly positive
constant, and using the elementary inequality x (1− x/n) ≤ C) with the differential inequality

∂t(Pε +Rε)−∆x(dP Pε + dRRε) = r (Pε +Rε)

(
1− 1

n
(Pε +Rε)

)
− aPε Sε ≤ C, (24)

so that (remembering that Pε + Rε ≥ 0) using the improved duality Lemma of [7], we can find δ > 0
such that Pε and Rε are bounded in L2+δ([0, T ]×Ω) for all T > 0. We deduce from this bound that, up
to extraction of a subsequence, Pε and Rε converge weakly in L2+δ([0, T ]×Ω) towards some functions
(resp. denoted by P and R) also lying in L2+δ([0, T ]× Ω) (for all T > 0).

In the same way, adding the two last equations in system (1), we end up with the differential
inequality

∂t(Sε +Hε)−∆x(dS Sε + dH Hε) = (Γ− µ)Hε − µ Sε ≤ C (Hε + Sε), (25)

so that (remembering that Sε +Hε ≥ 0) using the improved duality Lemma of [7] (and more precisely,
a variant of this Lemma found in [5]), we also can find δ > 0 such that Sε and Hε are bounded in
L2+δ([0, T ]× Ω) for all T > 0.

Next we observe that

∂tSε − dS ∆xSε =
1

η
(−aSε Pε +

1

h
Hε) + ΓHε − µSε ≤ C Hε, (26)

so that thanks to the properties of the heat equation in dimension 2 (the convolution by the heat kernel
in dimension 2 is a convolution with a function lying in Lq for all q < 2, cf. [7] for example), we obtain
the boundedness of Sε in C0,α([0, T ]× Ω) for some α ∈]0, 1[ and all T > 0.

Finally, we compute

∂tHε − dH ∆xHε =
1

η
(aSε Pε −

1

h
Hε)− µHε, (27)

so that ∂tHε − dH ∆xHε is bounded in L2+δ([0, T ]×Ω) for all T > 0. Thanks again to the properties
of the heat equation in dimension 2, Hε is bounded in C0,α([0, T ]×Ω) for some α ∈]0, 1[ and all T > 0.

Using the bounds above, we see that ∂tSε−dS ∆xSε and ∂tHε−dH ∆xHε are bounded in L2+δ([0, T ]×
Ω) for all T > 0. Then, the properties of maximal regularity for the heat equation imply that ∂tHε,
∂xixjHε, ∂tSε, and ∂xixjSε are bounded in L2+δ([0, T ]× Ω) for all T > 0 and i, j ∈ {1, 2}.

As a consequence, Hε and Sε converge uniformly on [0, T ]×Ω for all T > 0 towards two functions
(resp. denoted by H and S), up to extraction of a subsequence, where H and S lie in C0,α([0, T ]×Ω),
for some α ∈]0, 1[ and all T > 0. Moreover H and S satisfy the extra properties of regularity stated in
the Theorem.

We also observe that

∂tHε − dH ∆xHε =
1

η
(aSε Pε −

1

h
Hε)− µHε ≥ −

(
1

η h
+ µ

)
Hε,

so that for all t ∈ [0, T ], x ∈ Ω,

Sε(t, x) +Hε(t, x) ≥ Hε(t, x) ≥ [ inf
x∈Ω

Hin(x)] exp

(
−
(

1

η h
+ µ

)
T

)
> 0. (28)

We now compute, for any α ∈]− 1, 1[,

d

dt

{∫ (
bα
P 1+α
ε

1 + α
(Sε +Hε)

α +
1

τα
R1+α
ε

1 + α

)}

=

∫ (
bα (Sε +Hε)

α Pαε ∂tPε +
1

τα
Rαε ∂tRα +

α

1 + α
bα P 1+α

ε (Sε +Hε)
α−1 ∂t(Sε +Hε)

)
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=

∫ (
bα (Sε +Hε)

α Pαε dP ∆xPε + r bα (Sε +Hε)
α P 1+α

ε (1− Pε +Rε
n

)− a bα (Sε +Hε)
α P 1+α

ε Sε

−1

ε
bα (Sε +Hε)

α Pαε (b Pε (Sε +Hε)−
Rε
τ

) +
1

τα
Rαε dR ∆xRε +

r

τα
R1+α
ε (1− Pε +Rε

n
)

+
1

ε

Rαε
τα

(b Pε (Sε +Hε)−
Rε
τ

) +
α

1 + α
bα P 1+α

ε (Sε +Hε)
α−1 (dS ∆xSε + dH ∆xHε)

+
α

1 + α
bα P 1+α

ε (Sε +Hε)
α−1 ((Γ− µ)Hε − µSε)

)
= −1

ε

∫
(b Pε (Sε +Hε)−

Rε
τ

) (bα Pαε (Sε +Hε)
α − Rαε

τα
)

−dP α bα
∫

(Sε +Hε)
α Pα−1

ε |∇xPε|2 − dR α
1

τα

∫
Rα−1
ε |∇xRε|2

−dP α
1− α
1 + α

bα
∫
P 1+α
ε (Sε +Hε)

α−2 |∇x(Sε +Hε)|2

+

∫ (
r bα (Sε +Hε)

α P 1+α
ε (1− Pε +Rε

n
)− a bα (Sε +Hε)

α P 1+α
ε Sε

+
r

τα
R1+α
ε (1− Pε +Rε

n
) +

α

1 + α
bα P 1+α

ε (Sε +Hε)
α−1 ((Γ− µ)Hε − µSε)

)
+

α

1 + α
bα
∫
P 1+α
ε (Sε +Hε)

α−1

{
(ds + dP ) ∆xSε + (dH + dP ) ∆xHε

}
.

Integrating w.r.t time between 0 and T leads to the following estimate:

bα

1 + α

∫
P 1+α
ε (Sε +Hε)

α dx (T ) +
1

τα (1 + α)

∫
R1+α
ε dx (T )

+
1

ε

∫ T

0

∫
(b Pε (Sε +Hε)−

Rε
τ

) (bα Pαε (Sε +Hε)
α − Rαε

τα
) dxdt

+dP α b
α

∫ T

0

∫
(Sε +Hε)

α Pα−1
ε |∇xPε|2 dxdt+ dR α

1

τα

∫ T

0

∫
Rα−1
ε |∇xRε|2 dxdt

+dP α
1− α
1 + α

bα
∫ T

0

∫
P 1+α
ε (Sε +Hε)

α−2 |∇x(Sε +Hε)|2 dxdt

≤ C
∫ T

0

∫ (
1 + (Sε +Hε)

α + P 1+α
ε Hε (Sε +Hε)

α−1

)
dxdt

+C

∫ T

0

∫
P 1+α
ε (Sε +Hε)

α−1

(
|∆xSε|+ |∆xHε|

)
dxdt

+C

∫ [
P 1+α
in (Sin +Hin)α +R1+α

in

]
dx.

The first term in the r.h.s of the estimate above is bounded (uniformly in ε) since Sε + Hε and
(Sε +Hε)

−1 are bounded (uniformly in ε) in L∞([0, T ]×Ω) for all T > 0, and since Pε is bounded in
L2+δ([0, T ]× Ω) for all T > 0, and some δ > 0.

The last term of this r.h.s. is also finite thanks to the assumptions made on the initial data.
Remembering finally that ∂xixjSε and ∂xixjHε are bounded in L2+δ([0, T ] × Ω) (for some δ > 0,

and all T > 0, i, j ∈ {1, 2}), we see that when α > 0 is small enough, the last term is also bounded
(uniformly in ε).

Still assuming that α > 0 is small enough, we get therefore the following bounds:∫ T

0

∫
(b Pε (Sε +Hε)−

Rε
τ

) (bα Pαε (Sε +Hε)
α − Rαε

τα
) dxdt ≤ C ε, (29)
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and ∫ T

0

∫
(Sε +Hε)

α Pα−1
ε |∇xPε|2 dxdt+

∫ T

0

∫
Rα−1
ε |∇xRε|2 dxdt ≤ C,

(where the constant C does not depend upon ε).
Then, using Cauchy-Schwartz inequality and the bounds on Sε +Hε and Pε, we get the estimate(∫ T

0

∫
|∇xPε| dxdt

)2

≤
[

inf(Sε +Hε)

]−α ∫ T

0

∫
P 1−α
ε dxdt (30)

×
∫ T

0

∫
(Sε +Hε)

α Pα−1
ε |∇xPε|2 dxdt ≤ C,

where the constant C does not depend upon ε. In the same way,(∫ T

0

∫
|∇xRε| dxdt

)2

≤
∫ T

0

∫
R1−α
ε dxdt

∫ T

0

∫
Rα−1
ε |∇xRε|2 dxdt ≤ C, (31)

where the constant C does not depend upon ε.

Using identity (24), we see that ∂t(Pε + Rε) ∈ L2([0, T ];H−2(Ω)) + L1+δ/2([0, T ] × Ω), so that
thanks to estimates (30) and (31) and Aubin’s lemma (cf. for example [20]), Pε +Rε converges (up to
extraction of a subsequence) a.e. to P +R on [0, T ]× Ω.

Then, using the elementary inequality (for α ∈]0, 1[, and a constant C which may depend on α)
(x− y) (xα − yα) ≥ C (x(1+α)/2 − y(1+α)/2)2, estimate (29) leads to the bound:∫ T

0

∫ ([
b Pε (Sε +Hε)

](1+α)/2

−
[
Rε
τ

](1+α)/2)2

dxdt ≤ C ε.

We now introduce a second elementary inequality (which holds for α > 0 small enough, and a constant
C which may depend on α) |x− y| ≤ C |x(1+α)/2 − y(1+α)/2| (x(1−α)/2 + y(1−α)/2). Then∫ T

0

∫
|b Pε (Sε +Hε)−

Rε
τ
| dxdt

≤
∫ T

0

∫ ∣∣∣∣(b Pε (Sε +Hε))
(1+α)/2 − (

Rε
τ

)(1+α)/2

∣∣∣∣ ((b Pε (Sε +Hε))
(1−α)/2 + (

Rε
τ

)(1−α)/2

)
dxdt

≤ 2

(∫ T

0

∫ ∣∣∣∣(b Pε (Sε +Hε))
(1+α)/2 − (

Rε
τ

)(1+α)/2

∣∣∣∣2dxdt)1/2

×
(∫ T

0

∫ [
(b Pε (Sε +Hε))

1−α + (
Rε
τ

)1−α
]
dxdt

)1/2

≤ C
√
ε.

As a consequence, b Pε (Sε +Hε)− Rε
τ converges (up to extraction) strongly in L1([0, T ]×Ω) a.e. to 0,

and (since Sε +Hε converges a.e. towards S +H) weakly in L1([0, T ]× Ω) towards b P (S +H)− R
τ ,

so that eq. (8) holds.

Remembering moreover that Pε + Rε converges a.e. to P + R, we see that b Pε (Sε + Hε) +
bRε (Sε + Hε) converges a.e. to P (S + H) + bR (S + H), and that ( 1

τ + b (Sε + Hε))Rε converges
a.e. to ( 1

τ + b (S +H))R. Finally, we obtain that Pε converges a.e. towards P , and Rε converges a.e.
towards R. Thanks to the properties of boundedness in L2+δ([0, T ] × Ω) of the sequences Pε and Rε
(for some δ > 0), we see that Pε converges towards P in such a space, and Rε converges towards R in
such a space.

We now write down a weak form of eq. (24): For all φ ∈ C2
c (IR+ × Ω),

−
∫ ∞

0

∫
Ω

(Pε +Rε) ∂tφdxdt−
∫

Ω
(Pin +Rin)φ(0, ·) dx−

∫ ∞
0

∫
Ω

(dP Pε + dRRε) ∆xφdxdt (32)
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=

∫ ∞
0

∫
Ω

(
r (Pε +Rε) (1− 1

n
(Pε +Rε))− aPε Sε

)
φdxdt.

Then r (Pε+Rε) (1− 1
n (Pε+Rε))−aPε Sε converges in L1([0, T ]×Ω) to r (P+R) (1− 1

n (P+R))−aP S,
so that we can pass to the limit in all the terms of eq. (32) and obtain the weak formulation (13).

We then write down a weak form of eq. (26): for all φ ∈ C2
c (IR+ × Ω),

−
∫ ∞

0

∫
Ω
Sε ∂tφdxdt−

∫
Ω
Sin φ(0, ·) dx− dS

∫ ∞
0

∫
Ω
Sε ∆xφdxdt (33)

=

∫ ∞
0

∫
Ω

(
1

η
(−aSε Pε +

1

h
Hε) + ΓHε − µSε

)
φdxdt.

We can pass to the limit in this formulation and end up with the weak form of the limiting equation
(14).

We finally write down a weak form of eq. (27): for all φ ∈ C2
c (IR+ × Ω),

−
∫ ∞

0

∫
Ω
Hε ∂tφdxdt−

∫
Ω
Hin φ(0, ·) dx− dH

∫ ∞
0

∫
Ω
Hε ∆xφdxdt (34)

=

∫ ∞
0

∫
Ω

(
1

η
(aSε Pε −

1

h
Hε)− µHε

)
φdxdt.

We can once again pass to the limit in this formulation and end up with the weak form of the limiting
equation (15). This concludes the proof of the Theorem.

Remark: The proof above can be rewritten without any difficulty in dimension 1. In dimension 3
and above, it is still possible to show that Pε and Rε are bounded in L2+δ([0, T ]×Ω) for some δ > 0 and
all T > 0 (the improved duality lemma of [7] works indeed in any dimension). However the properties
of the heat kernel are not sufficient anymore to show that Hε is bounded in L∞([0, T ]×Ω) for all T > 0.
Instead one gets the following weaker estimate: Hε is bounded in L10+δ([0, T ]×Ω) for some δ > 0 and
all T > 0, and ∆xHε is bounded in L5/3+δ([0, T ]× Ω) for some δ > 0 and all T > 0. This is however

not sufficient to give a sense to a quantity like
∫ T

0

∫
P 1+α
ε (Sε+Hε)

α−1

(
|∆xSε|+ |∆xHε|

)
dxdt, which

is used in the proof above, so that the proof fails.
It is nevertheless possible to obtain a convergence result very close to Thm. 1 in dimension 3 and

above, if one supposes (in addition to the assumptions of Thm 1) that |dP − dR| is small enough.
Indeed under such an assumption, the improved duality lemma of [7] leads to a bound in Lq([0, T ]×Ω)
for all T > 0 and q > 2 as large as desired (depending on |dP − dR|). Using this bound, we can recover
the boundedness of Hε in C0,α([0, T ]×Ω) for some α > 0 and all T > 0, and conclude as in dimension
1 and 2.

Finally, the assumption that inf Hin > 0 is technical. It is useful for the main estimate but is not
based on any modeling consideration. It may be relaxed by using the properties of the heat kernel (it
becomes true uniformly w.r.t. ε, at any strictly positive time t0 > 0, if Hin is not equal to 0 a.e.).

3 Turing instability analysis

In this section, we study the stability of system (23), and we compare the (Turing) instability region
with the corresponding region when the cross diffusion is replaced by a standard diffusion. In Appendix
A, a comparison between the homogeneous equilibrium states of the microscopic system (1) in the case
of coexistence (X,Y > 0), and the ones of the limiting (when ε, η → 0) system (23) can be found.

3.1 Adimensionalization

In order to simplify the notations and to keep only meaningful parameters, we now propose an adi-
mensionalization procedure for system (23), that we rewrite here under the following form:

∂tX −∆x

({
dP

1

τbY + 1
+ dR

τbY

τbY + 1

}
X

)
= rX

(
1− X

n

)
− aXY

haX + τbY + 1
, (35)
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∂tY −∆x

({
dS

τbY + 1

haX + τbY + 1
+ dH

haX

haX + τbY + 1

}
Y

)
= Γh

aXY

haX + τbY + 1
− µY.

Using the new variables θ, ξ, y instead of t, X, Y , where

t =
θ

r
, X = nξ, Y = ζy,

we obtain:

∂θξ −∆x

({
dP
r

1

τbζy + 1
+
dR
r

τbζy

τbζy + 1

}
ξ

)
= ξ (1− ξ)− aζ

r

ξy

hanξ + τbζy + 1
,

∂θy −∆x

({
dS
r

τbζy + 1

hanξ + τbζy + 1
+
dH
r

hanξ

hanξ + τbζy + 1

}
y

)
=

Γhn

ζ

aζ

r

ξy

hanξ + τbζy + 1
− µ

r
y.

We then define
DP :=

dP
r
, DR :=

dR
r
, DS :=

dS
r
, DH :=

dH
r
,

aζ

r
=: b,

Γhn

ζ
=: c, han =: p, τbζ =: k,

µ

r
=: m,

so that the system becomes:

∂θξ −∆x

({
DP

1

ky + 1
+DR

ky

ky + 1

}
ξ

)
= ξ (1− ξ)− bξy

pξ + ky + 1
, (36)

∂θy −∆x

({
DS

ky + 1

pξ + ky + 1
+DH

pξ

pξ + ky + 1

}
y

)
=

cbξy

pξ + ky + 1
−my.

Note that we obtain the same reaction term as in [8, 9], in which it has been proven that a globally
stable equilibrium point exists under suitable conditions on the parameters.

3.2 Homogeneous steady states

We look for the homogeneous steady states of system (36). Following [8], we can prove that the system
admits a total extinction equilibrium E0(0, 0), and a non coexistence equilibrium E1(1, 0), which do
not depend on the parameters. Moreover a coexistence equilibrium E∗(x∗, y∗) exists (positive and
unique) if and only if

cb

m
> p+ 1.

One can also see that

b− k ≥ 0 ⇒ y∗ ≥ 0 for 0 ≤ x∗ ≤ 1,

b− k < 0 ⇒ y∗ > 0 for
k − b
b
≤ x∗ ≤ 1.

The coordinates of this equilibrium are

x∗ =
− ((cb−mp)− kc) +

√
((cb−mp)− kc)2 + 4mkc

2kc
,

y∗ =
cb−mp
mk

x∗ −
1

k
, or equivalently y∗ =

(1− x∗)(px∗ + 1)

b− k + kx∗
.
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3.3 Stability properties for the ODEs

In this subsection, we consider the ODE obtained from (36) by dropping the diffusion terms, and
evaluate the stability of the equilibria found in the previous subsection.

Evaluating the Jacobian matrix at the equilibrium states, we can see that E0 is unstable (saddle
point) for all parameters, while E1 is locally asymptotically stable when E∗ does not exist, and unstable
otherwise.

The stability of E∗ is less straightforward. The elements, the trace and the determinant of the
Jacobian matrix evaluated at (x∗, y∗), are

J∗11 =
mp

cb
−
(

1 +
mp

cb

)
x∗, J∗12 = −m

c

(
1− k

b
(1− x∗)

)
< 0,

J∗21 = c(1− x∗)
(

1− mp

cb

)
> 0, J∗22 = −mk

b
(1− x∗) < 0,

trJ∗ = −x∗ +
m

b

(p
c
− k
)

(1− x∗), det J∗ =
m

cb
(1− x∗)

√
((cb−mp)− kc)2 + 4mkc > 0.

Note that
J∗11 > 0 for 0 <x∗ <

mp

mp+ cb
< 1,

and moreover

p < kc ⇒ trJ∗ < 0 ⇒ E∗ locally asymptotically stable.

3.4 The linearization of the cross-diffusion terms

We now study the cross-diffusion system, under the assumption that DP > DR and DS > DH , which
are biologically meaningful (handling predators should not diffuse as much as searching predators, and
invulnerable preys should not diffuse as much as vulnerable preys).

The linearization of the diffusion terms around E∗ gives the matrix J∗∆, which elements are

J∗∆11 = DP
1

ky∗ + 1
+DR

ky∗
ky∗ + 1

> 0, J∗∆12 = −(DP −DR)
kx∗

(ky∗ + 1)2
< 0,

J∗∆21 = −(DS −DH)
py∗(ky∗ + 1)

(px∗ + ky∗ + 1)2
< 0,

J∗∆22 = DS
px∗(2ky∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2
+DH

px∗(px∗ + 1)

(px∗ + ky∗ + 1)2
> 0,

(remember that we assume that DP > DR and DS > DH). It follows that trJ∗∆ > 0 , and it can be
proven also that det J∗∆ > 0. Indeed, a simple computation shows that

det J∗∆(ky∗ + 1)(px∗ + ky∗ + 1)2 =

= DPDS

(
px∗ky∗ + px∗ + (ky∗ + 1)2) +DPDHpx∗(px∗ + ky∗ + 1)

)
+

+DRDSky∗
[
px∗(2ky∗ + 1) + (ky∗ + 1)2 + px∗

]
+DRDHky∗(px∗)

2.

We look at the characteristic matrix

Mκ =

(
J∗11 J∗12

J∗21 J∗22

)
− λk

(
J∗∆11 J∗∆12

J∗∆21 J∗∆22

)
,

for any λk ≥ 0 eigenvalue of −∆x on Ω (with Neumann boundary conditions), where k ∈ N. Its trace
and determinant are

trMκ = trJ∗ − λktrJ∗∆ < 0,

detMκ = det J∗ − λk(J∗∆22J
∗
11 + J∗∆11J

∗
22 − J∗∆12J

∗
21 − J∗∆21J

∗
12) + λ2

k det J∗∆.
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3.5 Turing instability for the cross diffusion system

We now show that there is a nonempty region of Turing instability for system (36).

In order to get instability, we need detMκ < 0. Since det J∗, det J∗∆ > 0, a necessary condition for
instability to occur is that the coefficient of λk is negative. This coefficient can be rewritten as

Cκ := J∗∆22J
∗
11 + J∗∆11J

∗
22 − J∗∆12J

∗
21 − J∗∆21J

∗
12

= J∗11

(
DS

px∗(2ky∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2
+DH

px∗(px∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2

)
− (DS −DH)

py∗(ky∗ + 1)

(px∗ + ky∗ + 1)2

m

c

(
1− k

b
(1− x∗)

)
−DR

mk

b
(1− x∗).

If J∗11 < 0, then Cκ < 0, and no Turing instability can appear. If J∗11 > 0, the sign of Cκ is not
prescribed a priori. One can easily check however that if DR << 1, DS ≈ DH , then Cκ > 0. Under
that condition and the extra assumption DS >> DP , one can even check that

C2
κ − 4 det J∗ det J∗∆ > 0.

Indeed, under the assumptions DR << 1, DS ≈ DH ,

Cκ ≈ J∗11

(
DS

px∗(2ky∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2
+DH

px∗(px∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2

)
,

and

4 det J∗ det J∗∆ ≈ 4 det J∗DP
1

ky∗ + 1

(
DS

px∗(2ky∗ + 1) + (ky∗ + 1)2

(px∗ + ky∗ + 1)2
+DH

px∗(px∗ + 1)

(px∗ + ky∗ + 1)2

)
.

3.6 Comparison with the linear-diffusion case

In this subsection, we wish to compare the stability of the steady homogeneous state E∗ for system
(36), and for the standard (called in the sequel “linear”) reaction-diffusion system

∂θξ −Dx ∆xξ = ξ (1− ξ)− bξy

pξ + ky + 1
, (37)

∂θy −Dy ∆xy =
cbξy

pξ + ky + 1
−my,

where the linear diffusion rates are the cross diffusion terms of (36) evaluated at the equilibrium (x∗, y∗):

Dx := DP
1

ky∗ + 1
+DR

ky∗
ky∗ + 1

,

Dy := DS
ky∗ + 1

px∗ + ky∗ + 1
+DH

px∗
px∗ + ky∗ + 1

= DS

(
1− mp

cb

)
+DH

mp

cb
.

Note that bothDx andDy are convex combinations ofDP , DR andDS , DH , respectively. Furthermore
Dx = J∗∆11.

The characteristic matrix related to the equilibrium E∗ = (x∗, y∗) is now

ML
κ =

(
J∗11 J∗12

J∗21 J∗22

)
− λk

(
Dx 0

0 Dy

)
.

The trace is still negative and the determinant is

detML
κ = det J∗ − λk(DyJ

∗
11 +DxJ

∗
22) + λ2

kDxDy.
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Also in this case, if J∗11 < 0, then no Turing instability can appear. If J∗11 > 0, we can get Turing
instability by choosing Dx << 1 and Dy >> 1.

Such a behavior occurs when one chooses DR << 1, DS ≈ DH , DS >> 1 >> DP . We now wish to
compare the Turing instability regions for systems (36) and (37). In order to do so, we try to compare
the determinants

detML
κ = DxDy︸ ︷︷ ︸

AL

λ2
k − (DyJ

∗
11 +DxJ

∗
22︸ ︷︷ ︸

BL

)λk + det J∗,

detMκ = det J∗∆︸ ︷︷ ︸
AC

λ2
k − (J∗∆22J

∗
11 + J∗∆11J

∗
22 − J∗∆12J

∗
21 − J∗∆21J

∗
12︸ ︷︷ ︸

BC

)λk + det J∗.

One can in fact show that AL < AC for all parameter values, and that

BL > BC ⇔ (DS −DH)px∗

√
∆

c
> (DP −DR)

mkcb

cb−mp
, (38)

where ∆ := ((cb−mp)− kc)2 + 4mkc.

We now present examples of parameters (corresponding to the case when BL > BC) corresponding
to the following cases:

1. There are no regions of strictly negative determinant for both linear and cross diffusion (Figure
1(a)), so that no Turing instability occurs for both linear and cross diffusions.

2. The linear diffusion case has a Turing instability region, but the determinant of the cross diffusion
case is positive for all λk (Figure 1(b)), so that the cross diffusion case does not lead to Turing
instability.

3. Both cases lead to nonempty Turing instability regions (Figure 1(c)) and we check that√
B2
L − 4AL det J∗

2AL
>

√
B2
C − 4AC det J∗

2AC
,

which means that the Turing instability region for the cross diffusion case is strictly included in
the Turing instability region of the linear diffusion case.

In all the cases presented above, we see that the use of the cross-diffusion model leads to a possibility
of obtaining nontrivial patterns which is less likely than when the linear diffusion model is considered,
so that using linear diffusions may lead to some bad evaluation of the possibility to obtain patterns.

We show in Figure 1 the determinants of the characteristic matrices with respect to λk, for the
following set of parameter values:

m = 0.01, c = 0.31, b = 0.91, p = 1.51, h = 0.21,

(for which the coexistence equilibrium state exists and it is l.a.s with J∗11 > 0), and we propose different
choices of the diffusion coefficients leading to different cases:

• Figure 1(a): DP = 0.01, DR = 0.005, DS = 10, DH = 9;

• Figure 1(b): DP = 0.01, DR = 0.005, DS = 70, DH = 69;

• Figure 1(c): DP = 0.01, DR = 0.005, DS = 100, DH = 99.

Acknowledgment: This paper partly reflects the presentations made at the conference Wascom
in 2017 at Bologna, Italy.

This work is also written in honour of the seventieth birthday of Professor Tommaso Ruggeri.
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Figure 1: Turing Instability regions for linear diffusion and cross diffusion cases. (a) There are no
regions of strictly negative determinant for both linear and cross diffusion, so that in both cases Turing
instability cannot appear. (b) The linear diffusion case has a Turing instability region (TIRL), but the
determinant of the cross diffusion case is positive for all λk, so that the cross diffusion case does not
lead to Turing instability. (c) Both cases lead to nonempty Turing instability regions, but the Turing
instability region for the cross diffusion (TIRC) case is strictly included in the Turing instability region
of the linear diffusion case (TIRL).
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Appendix A: Homogeneous equilibrium states

We provide here a short study of the homogeneous equilibrium states of the microscopic system (1)
in the case of coexistence (X,Y > 0), and compare them to the ones of the limiting (when ε, η → 0)
system (23).

We start therefore with the system

rP

(
1− X

n

)
− aPS − 1

ε

(
bPY − 1

τ
R

)
= 0,

rR

(
1− X

n

)
+

1

ε

(
bPY − 1

τ
R

)
= 0,

−1

η

(
aSP − 1

h
H

)
+ ΓH − µS = 0,

1

η

(
aSP − 1

h
H

)
− µH = 0,

X = P +R,

Y = S +H.
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Adding the first and second equations on one hand, and the third and fourth equation on the other
end, we see that it is equivalent to

rX

(
1− X

n

)
= aPS,

−εrR
(

1− X

n

)
= bPY − R

τ
,

(Γ− µ)H = µS,

aSP − H

h
= ηµH,

X = P +R,

Y = S +H.

From the third and sixth equations, we obtain

H =
µ

Γ
Y, S =

(
1− µ

Γ

)
Y,

which leads to an equivalent 4-equations system:

rX

(
1− X

n

)
= a

(
1− µ

Γ

)
PY,

bPY − R

τ
= −εrR

(
1− X

n

)
,

a
(

1− µ

Γ

)
Y P − µ

Γh
Y =

ηµ2

Γ
Y,

X = P +R.

Under the condition Y 6= 0 (we look only for the case of coexistence), we can simplify the third equation
and get a value P∗(η) for P (which does not depend upon ε, and is strictly positive as soon as Γ > µ):

P∗(η) :=
1

a

µ

Γ− µ

(
1

h
+ ηµ

)
, (39)

so that using R = X − P∗(η), the system becomes
rX

(
1− X

n

)
= a

(
1− µ

Γ

)
P∗(η)Y,

bP∗(η)Y − 1

τ
(X − P∗(η)) = −εr(X − P∗(η))

(
1− X

n

)
.

This can be rewritten as a second order equation on X:

rX

(
1− X

n

)
=
a

b

(
1− µ

Γ

)[1

τ
(X − P∗(η))− εr (X − P∗(η))

(
1− X

n

)]
, (40)

or equivalently

− r
n

(
1 + ε

a

b

(
1− µ

Γ

))
X2+

[
r − a

τb

(
1− µ

Γ

)(
1− εrτ

(
1 +

P∗(η)

n

))]
X+

a

b

(
1− µ

Γ

)(1

τ
− εr

)
P∗(η) = 0.

The limiting equation (when η and ε tend to 0) is therefore

rX

(
1− X

n

)
=

a

τb

(
1− µ

Γ

)
(X − P∗(0)) , with P∗(0) =

1

ah

µ

Γ− µ
,

and it is identical to the second order equation in X obtained when looking for the homogeneous
equilibria in system (23).

As a consequence, in the case when this limiting equation has a (unique) strictly positive solution X
for which the corresponding Y is also strictly positive (coexistence equilibrium for the limiting problem,
which entails the necessary condition Γ > µ), then for ε, η > 0 small enough, a (unique) coexistence
equilibrium also exists and converges (when ε, η → 0) towards the (unique) coexistence equilibrium of
the limiting problem.
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