HYPOCOERCIVITY : THE EXAMPLE OF LINEAR
TRANSPORT

L. DESVILLETTES

ABSTRACT. The concept of hypocoercivity is useful when one deals
with the large time behavior of PDEs in which dissipative effects
can be easily obtained only with respect to part of the variables.
In order to illustrate it, we show how it works on a very simple
linear transport equation in a periodic box, in a situation where
it is also possible to resort to spectral theory. Then, we recall
the estimates obtained thanks to the concept of hypocoercivity by
various authors for kinetic equations.

1. HYPOCOERCIVITY

1.1. Entropy and entropy dissipation. We recall here how to ob-
tain explicit estimates of convergence (in large time) toward equilibrium
for a PDE (or an ODE, or an integral equation) in which dissipative ef-
fects are predominant : the equation is then sometimes called coercive.

We suppose that f is solution of the equation
(1) atf = Af7

where A can be either linear or nonlinear, and involve either derivatives
or integrals.

We suppose that there exists a (bounded below) Lyapounov func-
tional H = H(f) (usually called entropy (or opposite of the entropy))
and a functional D = D(f) (usually called entropy dissipation or en-
tropy production) such that

(2) OH(f) = =D(f) <0,

(3) D(f)=0 <= Af=0 <= [=/q

where f,, is a given function.
Note that very often, f., is uniquely defined only once a finite number

of conserved quantities (along the flow of eq. (1)) is fixed.
1
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We suppose moreover that

(4) D(f) Z(I)(H(f)_H(feq))a

where ® : R, — R is a function such that ®(z) =0 <= z = 0. One
looks in general for a function ® which increases as much as possible
near (.

Note that since estimate (4) will be used only when f is a solution
at time ¢ of eq. (1), it has to be proven only for such f. In particu-
lar, in the (very common) case when there are conserved quantities in
the evolution of eq. (1), it is enough to prove estimate (4) when the
corresponding quantities are fixed.

Assuming that estimate (4) holds, we get thanks to formula (2) the
differential inequality

(5) H(H(f) — H(feg)) < —O(H(f) — H(feq)):

Then, thanks to Gronwall’s lemma,
(6) H(f(t)) — H(fe) < R(2),

where R is the reciprocal of a primitive of —1/®.
Finally, when H is well behaved, we obtain

(7) 1f = fell < 5(2),

where S is related to R, and || || is some norm which depends on the
problem.

When one can take ®(z) = Cstx, one gets R(t) < e=“*'! so that
exponential decay toward the equilibrium can be proven. Sometimes,
it is however only possible to take ®(z) = Cst. 2'*° for some (or all)
e > 0, and consequently R(t) = Cst.t=*/*. When this holds for all
¢ > 0, we say that the decay is almost exponential.

Finally, since H(f) is minimal when f = f.,, we see that gener-
ically one can take R(¢t) = CstS(t)>. Then, an exponential (resp.
almost exponential) decay of the entropy towards its minimum entails
an exponential (resp. almost exponential) decay of f itself towards the
equilibrium.
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1.2. Examples of coercivity. When A is a linear integral operator,
the formalism of the previous chapter can sometimes be used with a
functional H which is quadratic. For example, if f = f(v) > 0, with
v e [—1/2,1/2] and

1/2
(8) Af(v) = (w) dw — f(v),
~1/2
one has f.,(v) = f_lfiQ f(0,v)dv. In the sequel we shall assume that
f_lfiQ f(0,v)dv =1 so that f.,(v) = 1.
Then, we introduce H(f) = f—lﬁz f?dv, so that H(f.,) = 1. We
see that eq. (2) holds with D(f) = 2 f_lfo |f — 1]*dv. We also im-

mediately obtain estimate (4) with ®(z) = 2z. Finally, we get the
exponential convergence, which is in agreement with the (very simple)
explicit solution of eq. (1) in this case.

In many cases, it leads to interesting developments to take a func-
tional H which uses logarithms, such as the “physical” entropy [ f log f
or variants of this quantity.

We begin with the case of the Fokker-Planck equation. We consider
f = f(v) >0, with v € RV, and

(9) Af() =V - (Vf+ov]).

We consider once again only the case when fUERN f(0,v)dv =1, and
define the (relative) entropy (or free energy) by :

Hi = [ )i

with

_I»?

e 2
(2m)N/2

Differentiating H( f) along the flow (1) with A given by (9), we see that
(2) holds, with

(10) M(v) =

2
(11) D(f) :/ f ‘Vlogi dv.
o M
That is, the dissipation of the (relative) entropy H(f) is exactly the
so-called relative Fisher information D(f).

Then, (3) holds with f.,, = M (and H(f.,) = 0).
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In this situation (and still assuming that fUERN f(0,v)dv = 1), esti-
mate (4) can be obtained with ®(x) = 2 thanks to the logarithmic
Sobolev inequality of Gross [14], that is :

(12) D(f) = 2H(f).

As a consequence, we can take R(t) = e ?' in eq. (6), so that the
exponential decay is still obtained.

Using now the Csiszar-Kullback-Pinsker inequality (Cf. [6] and [18]) :

1
(13) H(f) = 5 1If = fellis,

we see that we can take S(¢) = 2e7" in (7). This result is sharp since
—1 is the first nonpositive eigenvalue of A. Note finally that as in the
previous example, the exponential decay can be directly seen on the
explicit solution of the Fokker-Planck equation. Note that this result
was first described in the vocabulary of kinetic theory in [23].

We now consider the (spatially homogeneous) Boltzmann equation
of rarefied gases. One still takes f = f(¢,v) > 0, with v € RY (f(¢,v)
is the number density of molecules of a gas which at time ¢ have ve-
locity v), but now the operator A is a quadratic and integral operator
modeling the binary collisions between the molecules. It is defined by :

a ae =eune = [ [ Aensen - o)

N,O'ESN_l
X B |v— v, 2% dodv.,
R
with
, vtue |uv—u
o — o,
2 2
, vtue |juv—u,
Uy = - g,
2 2

and B > 0 (a.e.) is a cross section depending on the interaction between
the molecules. For more details about this kernel, we refer to [5].
The conserved quantities for this model are the mass | f dv, the mo-

mentum [ fvdv and the energy [ f % dv. One defines the (relative)
entropy by

(13 i = [ ryios (55 )
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where

-yl
16 M c U
(16) f(U)—PfW

is the Maxwellian function with same mass, momentum and energy as

f

Py 1
pyg = / fto) [ v ) dv.
veRN v

sorlug + 5 ps Ty 5
Differentiating (1) along the flow (with A given by (14)), we get (2)

with
- L L e sen - e e

(17) « log (%) B<|v — v, % : a) dodv.dv.

Then (still assuming that B > 0 a.e.), (3) holds with f., = My,
(and H(f.,) =0).

Another possible presentation of this result is that
YoeRY,  Af(v)=0 — D(f)=0

= fw)=exp(a+b-v—clv])
for some @ > 0,¢ > 0, and b € RY. This is exactly Boltzmann’s
H theorem.

In this situation, estimate (4) can be obtained (for all physically
relevant cross sections B) with ®(z) = Cst 2! for all ¢ > 0, pro-
vided that f belongs to a set Z of functions which satisfy smoothness
conditions detailed in [29] together with the precise assumptions on
B (for a quadratic cross section, one can even take ¢ = 0). Since for
many initial data and cross sections B (including the physically rele-
vant cases), it is possible to prove that the solution ¢ — f(¢) of eq.
(1), (14) remains in Z, one can take R(t) = Cst.t~'/¢ and, still using
Csiszar-Kullback-Pinsker’s inequality (13), S(t) = Cst, ¢~/ (%),

We refer to [4], [8], [24], [25] and [29] for a complete picture of the
state of the art concerning the use of the entropy/entropy dissipation
method for the spatially homogeneous Boltzmann equation. Those
results should be compared with what is obtained thanks to spectral
theory and linearization (Cf. in particular [1]). The latest development
on this subject consists in mixing the entropy method and the spectral
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theory, in order to get at the same time the exponential decay and
explicitly computable constants (Cf. [19]).

Note finally that the entropy /entropy dissipation method can be used
in other fields than kinetic theory. We refer for example to [11] for an
application in the context of nonlinear elliptic PDEs.

1.3. Description of the method for hypocoercivity. We now in-
vestigate a situation in which the dissipative effects hold only with
respect to part of the variables. We assume nevertheless that thanks
to the coupling between the variables, a unique equilibrium is expected
(up to the conserved quantities).

More precisely, we still consider the abstract equation (1), and we
assume that a couple H, D of entropy and entropy dissipation satisfies
(2).

However, we do not suppose anymore that eq. (3) holds, but assume
instead that

(18) D(f)y=0 < feM,
where M is an infinite-dimensional set of functions, and that
(19) fEM and Af:() = f:feq;

where f., is a given function (once again, a finite number n of quantities
can be conserved along (1), so that f., may in fact depend upon n
parameters). This situation corresponds to what we call hypocoercivity
(by analogy with the hypoellipticity).

Assumption (18) basically means that the dissipation phenomena
in eq. (1) concern only some part of the variables of f, and drives
f to what is called in kinetic theory the local equilibria, that is, the
elements of M. Then, assumption (19) means that the local equilibria
are unstable by the flow along eq. (1), except when they are global
(that is, when f = f.,).

In order to obtain explicit rates of convergence to equilibrium in the
hypocoercive case, one cannot hope to use an estimate like (5), since
it is not compatible with assumption (18). One has somehow to make
quantitative the assumptions (18) and (19).

We suggest to look for an intermediate functional K (f) > 0 for which
(20) D(f) = (K (f)
with
(21) K(f)=0 = feM,
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and which moreover, when differentiated twice along the flow of eq. (1),
yields a differential inequality of the form

@) TR 2 H) - () - Wa(K())

where &, ¥, ¥, : Ry — R, are functions such that the property
O(z)=0 < z=0and ¥;(z) =0 < 2 =0 holds.

Usually, (22) can be proven only under certain assumptions (typi-
cally, of smoothness) on f. One then has to prove that those assump-
tions are compatible with the properties of the solutions of eq. (1).

Before explaining how to use formula (22), let us say that looking
for an estimate on the second derivative in time of K(f) is reasonable
since if at some time t, > 0, one has f(tg) € M, then K(f)(to) = 0
because of (21), and %K(f)(to) = 0 because K is nonnegative.

Suppose now that estimates (20) and (22) hold. Using eq. (2), we
can rewrite them as a system of two differential inequalities :

(23) L CH() ~ H(fa)) > O(K(),
O K W) - H(f) - V(K ().

When @, U; and W, behave nicely (that is, when they grow fast enough
near 0), this system will imply (thanks to a lemma which replaces
Gronwall’s lemma in this context) that

H(f(t)) = H(feq) < R(1),
for some function R related to ®, ¥; and Wy, and (if H has good
properties of coercivity)

1f (1) = feqll < S(2)

for some norm || ||.

The heuristic reason why such a lemma may hold is the following :
as long as f is not close to M, ®(K(f)) will be large, so that thanks
to (23), H(f) decreases in a controlled way to H(f.,). Now if at some
point tg, f(to) is close to M, then W, (H(f) — H(f.,)) > ¢ for some
¢ >0, and we use (24) under the form

2

de .
@A(f) + W (K(f)) = e

Then, if U, behaves nicely, it is possible to show that K(f) cannot
remain close to 0 (except for a small interval of time), so that f(¢) will
not stay close to M for long, and we can again use (23).
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A complete proof in the case when ®(x) = Cstz, ¥y(x) = Cstu,
Uy(z) = Cst.x' can be found in [9]. In this particular case, one can

take R(t) = Cst t1/=71.

In order to clarify the above strategy, we shall first show how it
works on a very simple transport equation, for which the computations
are (relatively) simple. Note that for this equation, a direct study of
the spectrum yields the large time behavior, so that the concept of
hypocoercivity is not really unavoidable.

2. THE EXAMPLE OF A LINEAR TRANSPORT EQUATION

In this section, we consider the simplest possible situation of hypoco-
ercivity. We introduce therefore a one-dimensional transport model in
a periodic box, and we present the computations in details.

Wetaket € Ry, x € T the one-dimensional torus, and v € [—1/2,1/2].
For a function g = ¢(¢, x,v), we introduce the average in velocity

1/2
gta)= [ gt 0)do

1/2
In the sequel, we shall systematically use the identity ¢ = g (remember
that g — g is an average) and the Cauchy-Schwarz inequality under

the form L2
[latofiz< [ [ jgtta0f dods
T TJ-1/2

or sometimes under the equivalent form

1/2 1/2
// Ig(t,:c)Ided:cs// lg(t, z,v)|? dvdz.
TJ-1/2 TJ-1/2

Then, we introduce the transport operator

Af(z,v) = —v 0. f(z,v) + f(z) — f(z,v).
Eq. (1) becomes

(5)  Gflte,0)+0duf(te,v) = F(t,) — f(t,z,v),
This equation models a set of particles on a line which are scattered
isotropically.

We choose an initial datum f(0,z,v) > 0 which is smooth (we shall
see in the sequel which smoothness is needed in order to get the es-
timates of convergence toward the equilibrium). Then, we can find a
unique solution to eq. (25) for ¢t € R4, which is such that f(¢,z,v) > 0
and f(¢,-,-) is smooth (the smoothness is propagated along the flow of
eq. (25), as we shall see later).
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Note that the unique conserved quantity associated to eq. (25) is the

total mass fo 1/ f(t,z,v)dvdz. In the sequel, we restrict ourselves

to the case when [, f_1/2 f(0,2,v) dvdx = 1.

1/2

As in subsection 1.2, we introduce a quadratic entropy (but this time,
we also integrate with respect to the variable z) :

1 1/2
== // |f(t,z,v)|* dvdz.
2 Jr )i

Then, along the flow of eq. (25), we get (thanks to the identity
1/2
b {/2 F(f = f)dvdz = 0),

d
dtH / —1/2ft z,0) 0 f(t, z,v) dvde
1/2 7
= /T/_I/Zf(t,:l:,v)(—'vé?zf(t,x,v) + f(t,x) — f(t,z,v)) dvdz

1/2
= / i flt,z,v) (f(t,z) — f(t,z,v)) dvdz

// ft,z) — f(t,z,v)|* dvdz.
—1/2

As a consequence, eq. (2) holds with

// flt,z) — f(t,z,v)|]* dvdz.
~1/2

D(g) =0 = ge M,

where M is the set of local equilibria, consisting here of the functions

Then,

which do not depend upon the variable v (that is, they are equal to
their average in v).

It is then obvious that if ¢ = g(z,v) lies in M and Ag = 0, then
—v dzg(x) =0, so that ¢ is constant, and after taking into account the
conservation of mass, g = f.;, = 1. We see therefore that (19) holds,
and we are in the typical situation of hypocoercivity.

Our method is particularly simple for this transport equation because
we can take the intermediate functional K(f) := D(f). Therefore,
estimate (20) immediately holds. This is at variance with a large part
of the other results in this direction, even in a linear context.
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In order to obtain an estimate of the type (22), we need to compute
the second derivative of K(f) with respect to time along the flow of
eq. (25).

The experience shows that in order to get (22), the first computation
to perform consists in looking for the second derivative of K(f) at a
time tqg when f(to) = f(to), i.-e. at local equilibrium. For such a time,

j—;[x’(f) = %(%/T/_ll//]f—fl?dvdﬁ
=§(//j}u>fg%ﬁ<ﬂmw)
_2//1/2 (f = F)I? dvda

_2//_1/2|—08f—|—f 4 0. (0 )2 dvde

=2A/QJ—v&f+&@ﬂP®M
=2[W|%w/mfﬁm
5 [P
>5[ [ ra

(H(f) = H(fe))-

Then, we can see that (22) (with Wy = Cst) is a perturbation of esti-
mate (26) when we do not suppose anymore that f(tg) = f(to).

Lo | —

(26) > -

We begin the computation of %K(f) without assuming anymore
that f(io) = f(to).

We shall use the following formulas (obtained from equation (25) by
taking averages in v) :

0i(v f) + 0x(v2 f) = —v [,
attf:vQ zzf_Uaf—l_ZUaf a( f)_f—l_fa

Ouf = Duu(v f)‘|‘a( f)
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-5 S f|2dvdw>
_2//—1/2 (f - f|2dvdx—|—2//_1/2 dt?f 7) dvdz

_2//_1/2|—uﬁf—|—f F+ 0. (0 )2 dvde

Then,

+2 // (f=1) <v28mf—v Do f+20 0y f—2 6z(ﬁ)—f+f—am(ﬁ)> doda.
TJ-1/2
Using the elementary inequality

(27) 2(a+0b)*>a”—2b%

we obtain
k() > [ / oo v
- [ / N g dvda / / 1/2'8 D) doda
2| [ [ 11//22<f—f)v2 o f dvda »
4//15; 7)v0,f dvde —4‘//_1/2f 1) 0.0 ) dvda
//_mf P doda //_mf 7) 0, (97F) dvd |

We denote by [ the sum of the second, third, seventh and eighth term
in the previous inequality, and by J the sum of the fourth, fifth, sixth
and ninth term.

-2 (f—f)vazfdvdx

-2

Then, after having used ab < % (a + 62 for the seventh term,

[<8//_1/2|f f|2dvd1:—|—6//_1/2 o (f — )P dvda

<8//_1/2|f f|2dvdr+6//_l/2| o2 10u(f = F)[? dvde
§8//_1/2|f—f|2dvdx—|—_—//_1/2|8I(f—f)|2dvd:c

<8|lf - f||L2L2)+ 10:(f = DlIEz 22,
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and
J <2

+4

/ (f = F)o. dd‘

0p(f—1) dvda

fldd‘

<7]f”f > <// o |m> :
(s (] o v

<3 KA 10:(f = Dllzzwz) + K 0z f — Dllz2(z2)-
Then, we b rve that (thanks t (27))

// 0 0, f|? dvdz
Z%AZZI%ﬂdd A[m|&f—mwwx
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_24//_1/2|f—1|2dvdx——//_1/2 L — ) dode
%//_jilf 1|2dvdr——// - f|2dvdr——//_l/2 () dode.

1/2 . )
=31 //_ f =1 dvde - ﬂ 1F =z — 5 ||0z(f = NIz z2)-

1/2
Finally, we get the estimate :

— 1|* dvd
dtQ o 24//1/2|f | vase

—(8+ ﬂ) f = FllZ2 2y — 1 ||3z(f — Plliz (2
= 3K (N0 = Dllzazy = KU 102 (f = Dllzzzz)-

We now introduce the homogeneous H' norm (with respect to the

variable ) of f :
1/2
M= [ [ 15
1/2

Thanks to a standard interpolation, we obtain for any [ > 1,
(1- 1/1 2/1

i
a dvdx.

191112y < Nall2izz)” 1911500 )
|wmﬂ<mm“ﬁmmm
We get
dt2 _24//_1/2|f—1|2dvdx
(84 5 1~ FlEaqezy — 2 1 = FIESA N7 = AL

‘ { l l {
-4A<Wqum%mfugwf—<Wwfumﬁnfu%w2
We now use Young’s inequality
1 1 T 1 1
1/2 1/2-1/(21) Loy LN oy 174170
vor = (2 25) - <2 i 25) 7 Y ’

with y = K(f), v = ||f — 1||%2(Lg)7 and n > 0 to be determined later.
We obtain
gz

. /1 1/1 —2/(1-1/1)
k= (353 (5 5) 10— Wy

1 ! _2/(1—
(5= 31) 17 = ey 70N 117 = i
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2-2/1 2/1

1 _
—(8+ﬂ)||f—fllimg)— 1/ = Flz e 1 = Al ey
1

1 2/(1+1/1) 777 ,\1/(1+1/1) 1/
=3 (G4 g7 ) ORGP - 1l

1 1 !
~ (537 PO RGOS 1l

1 1/1 - -
> (35 =3 (1= ) 1 = gy e

= (= ) I = Ul /) (0 — B2
=R+ g1 = A1y + 11— )
= RO (g ) 0 (1= gy =y ) 1= TERGE)

2 2

We now choose

3 (1=1/1)
1/1 1/1
= (2003 (30 =y 41 - ) )

so that
1
l — l — —
(1__> = 1||;{z o) 2/(1 l/l)_|_< ) = 1||;{21 Lz)n 2/(1-1/1) _ YR

We end up with the estimate

d? 2 2
LK) > (H(f)—H(feq))—K(f)l‘”l{( = I+ U112

| N i
o IE=TESG (200=D)) ™ (30 g1y ) ™ T

We have the structure of eq. (22) provided that the quantities
1f = Fllza 2y, F = Fllg 2y L=l 2y, = Hlizire

can be estimated from above (uniformly when ¢t — 400).

We now note that since equation (25) is linear and has coefficients
Which do not depend on =z, it is also satisfied by any spatial derivative

2L of f. But we already know that ¢ — H(f)(t) is decreasing, so that

all the norms ¢ — |[f(2)|[ 112, (for all I € N) also decrease.
We now define

Cr=1FO)gz(r2)-
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Then, for all [ € N,

10 = DOz < 26,
and for all [ € N*,
1f(2) = 1||H;(Lg) < (.
Finally, we obtain

d? 1 7

1 2 2
K (F) = 50 (H(f) = H(fe) = K(f)' 7 {(8 +5) Gl g

24

1 1 (12 1 I+1 I 1/1

If we suppose that C; < +oo for all [ € N, then thanks to theorem 11
of [9], we see that

(29) H(f(t)) — H(feq) < Cst(s)t”

for all s > 0.

We now compute the typical order of magnitude of the constant in
(29). We suppose that [ = 2 and Cy = Cy = Cy = 2. That corresponds
to an initial datum having derivatives (in x) of order up to 4 which
have L? norms of order 1. Then, estimate (28) becomes

d? 1 Y 1
KU 2 g () = HUT) - K7 {06+

dt2 24 12
3 1/3 2
+ 141/3 <12> (4 \/§> }

> D (H(F) ~ H(fu)) — 48 K(f)

We end up with the system of two differential inequalities :

(H(f) = H(fey)) = K(f),

7
)+§

(30) o

2

() K2 ()~ H(f) ~ A K()

We assume (for the sake of simplicity) that H(f)(0) — H(f.,)
We define tq and to + 7o in such a way that H(f)(to) — H(fe)
H(f)(to+ To) = ao/2, where aq €]0, 1] is given (note that ¢t — H(f(¢
decreases and that (at this level) one can have Ty = +00).

Thanks to (31), we see that

< 1.
10)

2

IR A8 K(f) V7 >

ag

48°
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We recall here a lemma from [10], in which we precise the constants a
little more.

Lemma : Let y be a C'* function on [T}, T3] (for some 0 < Ty < Ty)
satisfying the differential inequality
y// +u yl—(—: Z ]{7,

for some u, k > 0, ¢ €]0, 1].
Then
Ty — Ty < 48y~ 1/(2(1=¢)) pe/(2(1=2))

1 T, 1 1 o/1)2*%
, > /(=g s B .
- /T1 y(s)ds > 26 k inf —

Applying this lemma in our case, we see that

1/2
To < 48 (48)7 <@> ,

or

48

1 [lotTe 1 [ao\?. 11,
?0[0 [\(f)(t)dtz % (@) inf <£,(@) )

Then we notice that (thanks to (30))

or

ao

to+7o
o / Kt

so that

To < 487124,
or
(32) To < 1.110% ag.

Remembering that ag < 1, we see that (32) holds.
We now define the times 7T; (l € N) by the formula Ty = 0 and (for
i > 1) H(f)(T;) — H(fey) = 27°. Thanks to (32), we get the estimate
Tipq — T; < 1.110%02°,
Summing those estimates for : = 0,..,n — 1, we obtain
T, <1.110%2".
Then (taking into account the decay of ¢t — H(f(t))),
Vt e [1.110"2" 1.110" 271, H(f)(t)— H(fe,) <277
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This ensures that for all ¢ > 0,
2.21010

H(F)() = H(fy) € ==

Of course, this estimate is not optimized at all, but it gives the order of
magnitude of the explicit estimate that one can obtain. In this method,
it is the use of the estimate in [10] which entails an enormous increase
of the final constant.

C. Mouhot, C. Villani and L. Neumann have recently proposed an-
other approach (which does not use in the same way second order
derivatives in time) which will certainly help to obtain better constants

at the end (Cf. [28] and [20]).

3. A REVIEW ON THE EXISTING RESULTS OF HYPOCOERCIVITY

In section 2, we applied the method for hypocoercive situations to
the simplest possible problem in which it makes sense to use it. We
now rapidly describe the existing applications of this method for more
realistic models.

3.1. The Fokker-Planck equation in a confining potential. We
consider here the operator

(33) Af = =0 -Vof + V.V -V f +V, - (Vof +v f),

where z,v € RY, f = f(t,z,v) > 0, and V = V(z) is a confining
potential satisfying the normalization property fRN e V@) do = 1.

One quantity is conserved along the flow of eq. (1), (33), namely the
total mass :

(34) i/ f(t,z,v)dvdx = 0.
dt RN JRN

As a consequence, we suppose in the sequel that

(35) /RN - ft,z,v)dvdx = 1.

Then, one introduces the (relative) entropy (or free energy)

HQﬂ:iéw Rﬁﬂxw)bg<gj%?ﬁ%;>dmh,

where M is given by formula (10). Eq. (2) is satisfied with the entropy
dissipation D defined by
2

(36) Mﬁ:éﬁh@%—@
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It is easy to see that (18) is verified with

(37) M ={(z,v) = plz) M(v), p> O,/pdm =1}

That is, the set M of local equilibria is formed by the functions which
have a (centered, normalized) Maxwellian profile with respect to the v
variable, and are arbitrary with respect to the x variable.

Then, (19) holds with f.,(z,v) = eV M(v) since f € M and
Af =0 implies that v -V (p(z) M(v)) = V.V -V, (p(z) M(v)) =0, so
that V.(p+pV)- (v M(v)) =0, and finally p(z) = eV,

The intermediate functional K(f) that we introduce here is the rel-
ative entropy of f with respect to the local Maxwellian ps(z) M(v)
(where ps(z) = [ f(z,w)dw), that is

o | fie) )

K(f) /RN - flz,v) log (,Of(fﬁ) M (o) dzdv.
It is clear that (21) holds. Estimate (20) with ®(z) = 2 is then
a simple consequence of Gross’s Sobolev logarithmic inequality (Cf.
[14))

Estimate (22) holds with ¥,(z) = Cstz and Wy(z) = Cst.2'7° as
soon as f € S, where S is the set consisting of functions f having
bounded H* derivatives (for all £ € N) and such that a f.;, < f <bf,
for some a,b > 0. Noticing that S is stable by the flow of eq. (1),
(33) when V' has a behavior at infinity close to that of the quadratic
potential, we obtain

H(f)(t) = H(fey) < Csto =7
and it is possible to conclude thanks to the Csiszar-Kullback-Pinsker
inequality.

We summarize the above result in the following theorem, first proven

in [9] :

Theorem 1 (L. Desvillettes, C. Villani) : Let fy = fo(x,v) >0 be
an initial datum of mass 1 for eq. (1), (33), such that a fo; < fo < b fey
for some a,b > 0, and V be a potential of the form V (z) = %—I—CI)(.%)—I—
Vo with Vo € R, [eV® dz =1 and ® € H*(RY). Then, for all ¢ > 0,
there exists C. > 0 explicitly computable such that

() = fual lpagemy < CotF

One can compare this result with more recent theorems obtained in
[17] and [27], where the exponential decay is proven.
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3.2. The linear Boltzmann equation in a confining potential.
One defines the operator

(38) Af=—v-Vof +a-Vof —p; M+ ],

where z,v € RN, f = f(t,z,v) > 0, py = [ fdv, and M is given by
formula (10).

This operator describes the interaction between particles and a fixed
medium (which has M as velocity distribution) in the presence of a
quadratic confining potential. Note that the collision operator is more
complicated than in the transport equation of section 2, in particular
because v does not belong to a compact set.

The total mass is still conserved along the flow of eq. (1), (38), that
is, (34) holds. As a consequence, we still assume that (35) holds.

Then, one introduces the (relative) quadratic entropy

mn=[ | -

flz,v) = @) M(v)
Eq. (2) is satisfied with the entropy dissipation D defined by
(39)

p(p =200 [ [ o) = pito) o)

It is clear that, as in subsection 3.1, (18) is verified with M given by
(37).

Note also that (19) holds with f.,(z,v) = (62;3—2]\]//22 M(v) since f € M
and Af = 0 implies that v V.(p(z) M(v)) —x - V,(p(x) M(v)) = 0, so
that (Vyp —pa)- (v M(v)) =0, and finally p(z) = St

2m\N/2*

The intermediate functional K(f) that one can éaﬁe here is (as in
section 2) nothing but the entropy dissipation D(f). As a consequence,
estimates (20) and (21) are immediately obtained.

As in the previous subsection, estimate (22) holds with ¥,(z) =
Cstx and Wy(x) = Cst. 2™ as soon as [ is smooth enough. Then, it

is possible to show that the required smoothness is propagated, so that

H(f)(t) = H(fey) < Cste /=,

2

e /2 (M('v))_l dvdzx.

2

e /2 (M(’U))_l dvdzx.

and

£ () = feglliremy < Cot™/°
thanks to Cauchy-Schwartz inequality. We summarize the above result
in the following theorem, proven in [3] :

Theorem 2 (M. Caceres, J. Carrillo, T. Goudon) : Let fy =
fo(z,v) >0 be an initial datum of mass 1 for eq. (1), (38), such that
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afog < fo < bf., for some a,b> 0, and fo € W°(RY x RY). Then,
for all € > 0, there exists C. > 0 explicitly computable such that

1F(t) = fegllpremy < Cet™Ve.

We also refer to the very recent work by F. Hérau for improvements
of the results given here (Cf. [16]).

3.3. The linear Boltzmann equation in a periodic box. One
considers the operator

(10) Af=—o(b) - Ts [ (S0 I0) = 5000 0 ) i
keB

where 2 € TV, k € B C RY and B is equipped with the measure

dk, f = f(t,z,k) > 0. We assume that v, S satisfy the following

assumptions : k — v(k) is odd and

(41) Vz+# 0,3k € B, v(k) -z #0;

the kernel (k, k") — S(k, k') is nonnegative, and there exists My > 0
such that [, My(k)dk =1, [yv(k) My(k)dk =0, [;|v(k)|* My(k)dk <
+o00, Q(M;) = 0. Moreover, we suppose that

Sk, k) _

Vk,k' € B, < <
7= (k)

for some v, T" > 0.

This corresponds to a more general (with respect to subsection 3.2)
linear interaction between the particles and a background (the fact that
v = v(k) enables to treat semiconductors models), but to a simpler
assumption on the domain (the torus TV, normalized in such a way
that its volume is 1) in which the space variable x lives.

Once again, the total mass is conserved along the flow of eq. (1),
(40). This means that (34) holds and that we can assume that (35)
also holds (v has to be replaced by k in those two formulas).

Then, one introduces the (relative) quadratic entropy

2 (M (k)™ dkda.

fz, k) = My (k)

TN JB
Eq. (2) is satisfied with the entropy dissipation D defined by

UL (s st o)

><<M1(t k) — AJ;(t x k))dkdkdr
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Then, (18) is verified with

M = {p(;c)Ml(k), /TN,O(;C)dx - 1}.

Note also that (19) holds with f.,(z,v) = M;(k) since f € M and
Af = 0 implies that v(k) - Vz(p(z) M1(k)) = 0, and assumption (41)
can be used to prove that p is a constant.

The intermediate functional K(f) that one can take here is the rela-
tive (quadratic) entropy with respect to the local equilibrium, namely

K= [ [ 1r— e dhds,
z€TN JkeB

where p; = fkerdk. Then, (21) is obvious, and estimate (20) is a
consequence of standard computations.

As in subsection 3.2, estimate (22) holds with Wy(z) = Cstz and
Uy(z) = Cst.x'™° as soon as f is smooth enough. Finally, it is also
possible to show that the required smoothness is propagated, so that

H(f)(t) — H(My) < Cst /=71,

The following theorem summarizes the results decribed above (Cf.

[12]) :

Theorem 3 (K. Fellner, L. Neumann and C. Schmeiser) :  Let
fo = folz,k) > 0 be an initial datum for eq. (1), (40), such that
fo € LYTYN x B)N L*(B, My " dk; H*(T™)) (for some n > 2).

Then, there exists C,, > 0 explicitly computable such that

1F(8) = M1||L2(B,M;1dk;L2(TN)) < ¢, U2,

3.4. The nonlinear Boltzmann equation. We now consider the
spatially inhomogeneous Boltzmann operator

(42) Af =—v-Vof +Q(f)

with @) defined by (14), and we suppose that x varies in a bounded
domain @ (taken without loss of generality of volumee 1) which is
supposed to have no axis of symmetry. We supplement (42) with the
boundary condition

(43)

Vte R,z € 0Q,v e RY, flt,z,v)= f(t,z,v —2(v-n(x))n(x)),

where n(x) is the exterior normal vector to 9. We refer to [5] for
details on the underlying modeling : it describes a rarefied gas in a
box.
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The conserved quantites for eq. (1), (42), (43) are the total mass
and energy :

(44) /Rth;”< )dvd;v_o

since the momentum is not conserved during the rebounds at the
boundary.
We shall suppose in the sequel that f is normalized in such a way
that its total mass and energy are respectively equal to 1 and N/2.
We define the (relative) entropy H by

/ [ f@0) log(f(( )))dud

Then, (2) holds with

//RN/RN/SNl{ z,v') flz,v,) = f('rav)f(fﬁ,‘v*)}

x log <f(T’ o) S, U*)) B <|U — v, L 0') dodv.dvdz.
P o) flao) o]
According to [5] for example, we see that eq. (18) holds with

M= {0 G L 00 2 0ute) € RV () >0,

lul* N N
de =1 —+ —T)dx = — ;.
Note that M can also be defined by

M = {g s (z,v) = exp (a(z)+b(z)v—c(z) [v]?), a(z) € R,b(z) e RY, ¢(z) >0,

oo (g ) o= ()

Then, property (19) is a consequence of the following computation of

Grad (in dlmenswn 3) (Cf. [13]) :
v Va(exp (a(z) + b(x) - v — c(z) [v]*)) =

= a(x) =ag, blz)=by+b xz, c(x)=co,
for some constants ag € R, bg,b; € R? ¢y € R. Using the boundary

condition (and the fact that  has no axis of symmetry), we get by =
by = 0, so that

fegl,v) = exp(ao — co [v]*),
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and ag, ¢o are computable thanks to the conservations (44). Finally,
feg = M, where M is given by (16).

Integrating with respect to x estimate (4) (with D, ® as defined in
the last part of subsection 1.2), it is easy to see that (20) holds with
®(z) = Cst.2'*° and K defined as the relative entropy of f and M; :

K(f) :/Q [ f(w0) log (%) dvdz,

where M is defined by (16). In this case, unfortunately, eq. (22) has to
be replaced by a variant for many reasons. First, one needs to consider
K'(f) = ||f — My||3. instead of K(f) in order to avoid the assumption
that f decreases when |v| — 400 like a Gaussian (such a decay is in
general not propagated by the flow of eq. (1), (42), (43)). Then, one
has to replace Wy ( K'(f)) (or rather Wo(K'(f))) by Wo( K'(f)/6)+d H(f)
(for any § > 0). Those two changes make the proof more complex but
do not lead to major conceptual difficulties.

Finally, the most important change with respect to the model dif-
ferential inequality (22) is related to the fact that it is not possible
to reconstitute the term Wi (H(f) — H(fe)) in (22) by using directly
K(f)or K'(f). One in fact needs to introduce other intermediate func-
tionals, so that one ends up with a differential system of more than 2
inequalities (actually : 4). This is realated to the fact that the dissi-
pative term in the compressible Navier-Stokes equation acts only on u
and 7' but not on p (Cf. [10] for more details).

When all those modifications have been performed, one can prove

the following result (Cf. [10]) :

Theorem 4 (L. Desvillettes, C. Villani) :  Let f be a (strong)
solution of the Boltzmann equation (1), (42) (with a cross section B
satisfying assumptions detailed in [10]) on a bounded regular open set
Q of volume 1 with no axis of symmetry and with the specular reflexion
boundary condition (43). We assume that its total mass is 1 and its
total energy is N/2. We also assume that for all k,l € N,

swp [ [ VE ko) (1 o) deds < +oc,
t>0 zEQUERN

and that there exists C1,Cy > 0, ¢ > 2, such that f(t,z,v) >
C1 exp(—C3|v|?) (this last assumption can be somehow relaxed, Cf.
21]).

Then for all ¢ > 0,

‘f(t,:c,v) M) <L)

L1(QxRN)
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where C, is an explicitly computable constant.

We notice that the assumptions of this theorem are not empty, since
solutions close to equilibrium satisfying them can be built (Cf. [15]).
We refer to [2] and [26] for a comparison with theorems obtained by
spectral theory and linearization.

In this subsection, we also quote a recent paper by L. Neumann
and C. Schmeiser, devoted to another type of nonlinear Boltzmann
equation, namely

(45)
Ouf 40 Vof = (M@ou—f@»ﬂww—M@vu—f@wf@Qdm

RN

where M is (as usual) the centered reduced Maxwellian (given by (16)).
This kinetic equation corresponds to the interaction between particles
of fermion type. One can prove the following result :

Theorem 5 (L. Neumann, C. Schmeiser) : We suppose that
f(0,2,v) is an initial datum satisfying

f_(’U) S f(0,$,’1)) S f-l—('U)v
where

ki M(U)
fe(v) = T4 s M(o)'

for some ky > 0. Let f be a (strong) solution of eq. (45) such that

op [ [ o) M ) dode < o
z€TN veRN

>0
Then for all ¢ > 0,

S Cs t—l/t‘f’
LY(TNxRY)

\Mmaw—mw>

where C, is an explicitly computable constant, and

koo M(v)

R T TS

with k., fixed by the conservation of global mass.
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