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We show that the entropy method can be used to prove exponential con-
vergence towards equilibrium with explicit constants when one considers a

reaction-diffusion system corresponding to an irreversible mechanism of disso-

ciation/recombination, for which no natural entropy is available.
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1. Introduction

We consider a diatomic gas with dissociation/recombination reactions,

made up by atoms A with mass m1 and molecules A2 with mass m2 = 2m1.

According to a common kinetic model,1 the gas is described as a mixture

of three species, with an additional component, labelled by i = 3, repre-

senting unstable molecules A3 ≡ A∗2 (with mass m3 = m2) and playing the

role of a transition state. The mixture is then taken to diffuse in a much

denser medium, whose evolution is not affected by the collisions going on,

assumed in local thermodynamical equilibrium, namely with distribution

function f0 = n0M0, where M0 stands for the normalized Maxwellian with

temperature T0 (constant) and vanishing mass velocity. According to the

model, both atoms A1 and stable molecules A2 may undergo elastic colli-

sions with other atoms, stable molecules and background particles. More-

over, atoms A1 may form a stable molecule A2 passing through the transi-

tion state A∗2, while, on the other hand, both stable and unstable diatomic

molecules may dissociate into two atoms. More precisely, the recombination

process occurs in two steps:

(R) A1 +A1 → A∗2, (I) A∗2 + P → A2 + P,
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where P = A, A2, while dissociation occurs via two possible reactions:

(D1) A2 + P → 2A1 + P, (D2) A∗2 + P → 2A1 + P.

All above interactions, modelling the chemical reactions at the kinetic

level, have to be understood as irreversible processes. The host medium

is assumed here only elastically scattering, and not chemically reacting. A

physical situation in which the background is actually involved in chemical

processes is extensively discussed in Refs. 2, 3.

Kinetic Boltzmann equations relevant to species A1, A2, A∗2 have been

scaled2 in terms of the typical relaxation times, a small parameter defining

the dominant process(es) has been introduced, and the formal asymptotic

limit when this parameter vanishes has been consistently investigated. This

leads to the derivation of hydrodynamic limiting equations, whose nature

varies considerably according to the relative importance of the various pro-

cesses and to the corresponding pertinent scaling, but which are typically of

reaction-diffusion type as long as the scattering with the background plays

an important role. We shall deal here with one of the asymptotic limits

which seems more realistic in practice, and leads to

∂tni − di ∆xni = Qi(n1, n2), i = 1, 2, (1)

where di are the diffusion coefficients

d1 =
m1 +m0

2m1m0

T0

ν̄s10 n0
, d2 =

2m1 +m0

4m1m0

T0

ν̄s20 n0
,

and Qi are the reaction contributions

Q2 =
1

νt31 n1 + νt32 n2

[
A(n1)3 +B(n1)2n2 − Cn1(n2)2 −D(n2)3

]
(2)

with A = νr11 ν
i
31 > 0, B = νr11 ν

i
32 − νd21 ν

t
31, C = νd21 ν

t
32 + νd22 ν

t
31 > 0, D =

νd22 ν
t
32 > 0, and Q1 = − 2Q2 (preservation of total number of atoms n̄0).

νkij are total microscopic collision frequencies, where the superscript k takes

the values s, r, i, d, corresponding to elastic scattering, recombination R,

inelastic scattering I, dissociationsD1,D2, respectively, and νt3j = νi3j+ν
d
3j .

Just on the basis of the sign of the coefficients, it can be checked that the

cubic function (in the variable n1) into the square brackets in (2) has a

positive root n1 = γ n2 (with γ > 0), while the other two roots are negative

or complex conjugate with negative real part. Therefore

Q2 = (n1 − γ n2)P(n1, n2) (3)

where P(n1, n2) =
(n1)2 + (α+ β)n1 n2 + αβ (n2)2

λn1 + µn2
> 0
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with λ, µ > 0 and α, β > 0 or complex conjugate with positive real part.

Taking into account conservation of n̄0, system (1) with Neumann boundary

conditions on a bounded domain of unit measure admits a unique global

equilibrium state:

n∗1 =
γ

2 + γ
n̄0 , n∗2 =

1

2 + γ
n̄0 . (4)

2. Existence and uniqueness of a strong solution

Theorem 2.1. Let d1, d2 > 0 and Ω be a bounded regular (C2) open set

of RN . We consider initial data in C2(Ω̄), compatible with Neumann bound-

ary conditions, and satisfying the bounds (for some strictly positive con-

stants c1, c2, C1 and C2):

0 < c1 < n1(0,x) < C1 , 0 < c2 < n2(0,x) < C2 . (5)

Then, there exists a unique (strong) solution n1(t,x), n2(t,x) in C2(R+×Ω̄)

to system (1) with homogeneous Neumann boundary conditions such that,

for (t,x) ∈ R+ × Ω,

k1 ≤ n1(t,x) ≤ K1 , k2 ≤ n2(t,x) ≤ K2 , (6)

where
k1 = min

{
c1 , γ c2

}
, k2 = min

{
γ−1 c1 , c2

}
, (7)

K1 = max
{
C1 , γ C2

}
, K2 = max

{
γ−1 C1 , C2

}
. (8)

Proof. At first we shall prove that the “maximum principle” holds for

(t,x) ∈ [0, T ]×Ω, for each T > 0, following the same lines as in Ref. 4. Let

ε > 0 be fixed and let us consider the functions

nε1(t,x) = n1(t,x) e− ε t , nε2(t,x) = n2(t,x) e− ε t ; (9)

we prove that
nε1(t,x) < K1 , nε2(t,x) < K2 . (10)

From equations (1) it follows that the evolution of nε1, nε2 is governed by

the system

∂tn
ε
1 − d1 ∆xn

ε
1 = − 2 (nε1 − γ nε2)P(nε1, n

ε
2) eε t − ε nε1 ,

∂tn
ε
2 − d2 ∆xn

ε
2 = (nε1 − γ nε2)P(nε1, n

ε
2) eε t − ε nε2 .

(11)

Suppose that inequalities (10) do not hold for all (t,x) ∈ [0, T ] × Ω, and

define the set Bε =
{
τ > 0 : nε1(t,x) < K1, nε2(t,x) < K2 ∀ (t,x) ∈

[0, τ) × Ω
}
. If we denote t̃ = supBε, there must exist x̃ ∈ Ω̄ such that

(nε1(t̃, x̃), nε2(t̃, x̃)) ∈ ∂Bε, hence one of the following equalities holds:

nε1(t̃, x̃) = K1 or nε2(t̃, x̃) = K2 .
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If nε1(t̃, x̃) = K1, by definitions of t̃ and x̃ we have nε1(t̃, x̃) ≥ nε1(t̃,x)

∀x ∈ Ω, thus d1 ∆xn
ε
1(t̃, x̃) ≤ 0. Moreover, by evaluating the chemical

contributions in the first of (11) at (t̃, x̃) we get

− 2
(
nε1− γ nε2

)
(t̃, x̃)P

(
nε1, n

ε
2

)
(t̃, x̃) ≤ − 2

(
K1− γK2

)
P
(
K1, n

ε
2(t̃, x̃)

)
= 0

(the inequality holds since nε2(t̃, x̃) ≥ K2 and P(nε1, n
ε
2) > 0 , and the last

term vanishes since K1 = γK2). Consequently, the equation (11) for nε1
implies that ∂tn

ε
1(t̃, x̃) ≤ − ε nε1(t̃, x̃) < 0, hence nε1(t, x̃) > nε1(t̃, x̃) = K1

for t < t̃, contradicting the definition of t̃. The case nε2(t̃, x̃) = K2 may

be treated in a similar way. Consequently, the set Bε is unbounded, hence

nε1(t,x) < K1 and nε2(t,x) < K2 for all x ∈ Ω and for all t ∈ [0, T ]. This

means that n1(t,x) < K1 eε t and n2(t,x) < K2 eε t, thus, passing to the

limit ε→ 0, we have n1(t,x) ≤ K1 and n2(t,x) ≤ K2.

The “minimum principle” for n1 and n2 may be recovered analogously,

by studying the evolution of the auxiliary functions n1,ε(t,x) = n1(t,x) eε t

and n2,ε(t,x) = n2(t,x) eε t .

Boundedness from above of n1 and n2 allows to prove existence and

uniqueness of a strong solution on [0, T ] to the system (1) (with Neumann

boundary conditions) by resorting to a suitable fixed point argument.5 By

sticking together the solutions on [0, T ] (for T ∈ R+), we obtain a (unique)

solution in C2(R+ × Ω̄).

3. Entropy functional and convergence to equilibrium

Large time behavior of reaction-diffusion systems has attracted a consider-

able interest in scientific literature,6 and we show here that the “entropy /

entropy dissipation method”, already successfully used in the frame of re-

versible chemistry,7 may be extended to the present irreversible situation.

A crucial feature of our system (1) is that it admits a unique collision equi-

librium (n∗1, n
∗
2), given explicitly in (4). Notice that Q2 ≥ 0 ⇔ n1 ≥ γ n2,

and conversely for Q1. This suggests that a suitable entropy could be given

by the quadratic functional

E(n1, n2) =

∫
Ω

(
1

4
(n1)2 +

γ

2
(n2)2

)
dx . (12)

Lemma 3.1 (Relative entropy). A direct computation shows that the

relative entropy with respect to the equilibrium state (n∗1, n
∗
2) is related to

the L2–distance from the equilibrium itself:

E(n1, n2)− E(n∗1, n
∗
2) =

1

4
‖n1 − n∗1‖22 +

γ

2
‖n2 − n∗2‖22 , (13)
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hence the entropy E(n1, n2) takes its minimum for (n1, n2) = (n∗1, n
∗
2).

Lemma 3.2 (Entropy dissipation). The entropy dissipation D(n1, n2)

= − ∂tE(n1, n2) fulfils the inequality

D(n1, n2) ≥ C
[
E(n1, n2)− E(n∗1, n

∗
2)
]
, (14)

with

C = min

{
min

{
1,

2 + γ

6

} d1

2P (Ω)
, min

{1

2
,

2 + γ

6 γ

} d2

P (Ω)
,

2 + γ

6
d3

}
,

(15)

where P (Ω) is the Poincaré constant of Ω, and d3 is a positive lower bound

for P(n1, n2).

Proof. By direct computation, the entropy dissipation reads as

D(n1, n2) =
d1

2

∫
Ω

|∇xn1|2dx+d2 γ

∫
Ω

|∇xn2|2dx+

∫
Ω

(n1−γ n2)2 P(n1, n2) dx.

Thanks to Poincaré’s inequality and to the lower and upper bounds for n1

and n2 given in Theorem 2.1, we have

D(n1, n2) ≥ d1

2P (Ω)
‖n1 − n̄1‖22 +

d2 γ

P (Ω)
‖n2 − n̄2‖22 + d3‖n1 − γ n2‖22 ,

where n̄i denotes the total number of atoms/molecules of species i in the

domain Ω. Thanks to the inequality |ni − n∗i |2 ≤ 2
[
|ni − n̄i|2 + |n̄i − n∗i |2

]
,

in order to prove Lemma 3.2 it suffices to show that

I :=

∫
Ω

[
d1

2P (Ω)
|n1 − n̄1|2 +

d2 γ

P (Ω)
|n2 − n̄2|2 + d3|n1 − γ n2|2

]
dx

≥ C
∫

Ω

[
1

2
|n1 − n̄1|2 + γ |n2 − n̄2|2 +

1

2
|n̄1 − n∗1|2 + γ |n̄2 − n∗2|2

]
dx .

It obviously holds

1

2
I ≥ C1

∫
Ω

[
1

2
|n1 − n̄1|2 + γ |n2 − n̄2|2

]
dx with C1 =

min{d1, d2}
2P (Ω)

.

It remains to prove that

1

2
I ≥ C2

[
1

2
|n̄1 − n∗1|2 + γ |n̄2 − n∗2|2

]
, (16)

and to take C = min{C1, C2}. It can be easily checked that |n̄1 − n1|2 +

|n1 − γ n2|2 + γ2 |n2 − n̄2|2 ≥ 1
3 |n̄1 − γ n̄2|2; moreover, bearing in mind the

expressions of (n∗1, n
∗
2) together with the fact that n∗1+2n∗2 = n̄1+2 n̄2 = n̄0,

we get
n̄1 − γ n̄2 =

2 + γ

2
(n̄1 − n∗1) = − (2 + γ) (n̄2 − n∗2) .
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Therefore (16) becomes

|n̄1 − n∗1|2 ≥
6

2 + γ

1

min
{

d1
2P (Ω) ,

d2
γ P (Ω) , d3

} C2 |n̄1 − n∗1|2 ,

that is true once we put

C2 =
2 + γ

6
min

{
d1

2P (Ω)
,

d2

γ P (Ω)
, d3

}
.

Taking C = min{C1, C2} concludes the proof of Lemma 3.2.

Theorem 3.1 (Exponential convergence to equilibrium).

Let d1, d2 > 0, and Ω be a bounded regular (C2) open set of RN . Let

(n1(t,x), n2(t,x)) be a strong solution (that is, in C2(R+ × Ω̄)) to sys-

tem (1) with homogeneous Neumann boundary conditions and with initial

conditions (5). Then, this solution satisfies the following property of expo-

nential decay towards equilibrium:
1

4
‖n1 − n∗1‖22 +

γ

2
‖n2 − n∗2‖22 ≤

(
E(n0

1, n
0
2)− E(n∗1, n

∗
2)
)

e−C t, (17)

where C is given explicitly in (15).

Proof. Thanks to Lemma 3.2 we have

∂t

[
E(n1, n2)− E(n∗1, n

∗
2)
]
≤ −C

[
E(n1, n2)− E(n∗1, n

∗
2)
]
,

thus, by applying Gronwall’s lemma and bearing in mind the explicit rela-

tive entropy (12), we get the sought inequality (17).

Unfortunately, in the case of chemically reacting background, the equi-

librium state (still unique) is not available in explicit form.3 However, the

strategy presented in this paper, with some additional technicality, allows

again explicit estimates on the large time behavior of the relevant solutions.
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