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atoms in a certain state. We also prove the validity of the quasi-static approx-
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1. Introduction

We consider a coupling between a radiating field and a plasma. The radia-

tion is described by the following transport equation

1

c
∂tf + v · ∇xf = η − χf, (1)

where the constant c is the speed of light, v ∈ S2 is the direction of prop-

agation of photons, η is the emission coefficient (or emissivity) of matter,

χ is the absorption coefficient (or extinction coefficient) of matter, and the

unknown is the specific intensity f := f(t, x, v, ν) which is a function of

time t ∈ R+, space position x ∈ X ⊂ R3, velocity direction v ∈ S2, and

frequency ν ∈ R+.

If we consider the coefficients η and χ as given, the transfer equation

(1) is linear and its solution can be written explicitly by integrating along

the characteristics. These coefficients depend however in reality upon the

internal excitation and ionization states of the plasma. These states are

fixed in part by radiative processes that populate and depopulate atomic

levels. For the line radiative transfer (bound-bound transitions without ion-
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ization), they depend on the Einstein coefficients, the spontaneous emission

probability Aji (with i, j ∈ {1, ..,K}, i < j), the absorption probability Bij

and the induced (stimulated) emission probability Bji, and can be written

as

η =
∑

i

∑

j>i

njAjihνφij(ν), (2)

χ =
∑

i

∑

j>i

(niBij − njBji)hνφij(ν), (3)

where ni (respectively nj) denotes the population density at the atomic level

i = 1, ..,K (respectively j), and φij(ν) represents the line profile for these

transitions (it can for example be approximated by a Gaussian function

of ν centered around the frequency νij of the transition). Finally, h is the

Planck constant.

The population density ni at level i satisfies the following rate equation,

in a static medium,

∂ni

∂t
=

∑

j 6=i

njPji − ni

∑

j 6=i

Pij , (4)

where Pij denotes the total (radiative plus collisional) transition rate from

level i to level j. Note that the total population of atoms n :=
∑K

i=1 ni is

clearly conserved along time.

Bound-bound transitions (line transitions) between the lower energy

level i and the upper energy level j may occur as radiative excitation, spon-

taneous radiative de-excitation, induced radiative de-excitation, collisional

excitation and collisional de-excitation. Let us denote Cij (respectively Cji)

the rate of collisional excitation (respectively the rate of collisional de-

excitation). In (4), the total excitation rate Pij and the total de-excitation

rate Pji can be written as

Pij = Bijρij + Cij , Pji = Aji +Bjiρij + Cji, (5)

where ρij is the integrated mean intensity over the line profile φij(ν) :

ρij(t, x) =

∫

R+

∫

S2

f(t, x, v, ν)φij(ν) dvdν, (6)

with dv denoting the normalized Lebesgue measure on S2. For the physical

background underlying eq. (1) – (6), we refer to to9 §85,10 §2.6.

In general, the radiation field and the internal state of the matter must

be determined simultaneously and self-consistently. In many situtions, the



November 20, 2007 22:9 WSPC - Proceedings Trim Size: 9in x 6in qu17

3

characteristic time of the excitation and de-excitation processes of the mat-

ter is much smaller than the characteristic time of the evolution of the ra-

diative field. After adimensionalizing the time variable in eq. (1) and (4), it

is therefore possible to introduce a parameter ǫ > 0 such that our coupled

system becomes






























1

c
∂tf

ǫ + v · ∇xf
ǫ

=
∑

i

∑

j>i

nǫ
jAjihνφij(ν) −

∑

i

∑

j>i

(

nǫ
iBij − nǫ

jBji

)

hνφij(ν)f
ǫ,

ǫ
∂nǫ

i

∂t
=

∑

j 6=i

nǫ
jPji −

∑

j 6=i

nǫ
iPij .

(7)

We consider the system (7) in the case when the position variable x

varies in a bounded (regular, open) domain X ⊂ R3. We add therefore the

initial condition

f ǫ(0, x, v, ν) = f0(x, v, ν), (8)

and the incoming boundary condition

f ǫ|R+×(∂X×S2)−×R+ = g(t, x, v, ν), (9)

where (∂X×S2)− :=
{

(x, v) ∈ ∂X × S2 : Γx · v < 0
}

, with Γx denoting the

outward normal to X at the point x ∈ ∂X. Finally, the initial population

densities nǫ
i(0, x) are given by

∀i = 1, ..,K, nǫ
i(0, x) = ni0(x) ≥ 0. (10)

We are interested in the existence of solutions f ǫ, (nǫ
i)i=1,..,K , to (5) – (10)

(when ǫ > 0 is fixed), and in the behavior of the solutions f ǫ, nǫ
i , as ǫ→ 0

(quasi-stationary approximation).

In the sequel, we shall consider the following assumption on the data:

Assumption A: The initial condition f0 and the boundary condition

g satisfy

0 ≤ f0 ∈ L∞(X×S
2×R

+), 0 ≤ g ∈ L∞(R+×(∂X×S
2)−×R

+), (11)

and the initial occupation numbers ni0 are such that n(x) =
∑K

i=1 ni0(x) ∈

L∞(X).

The Einstein Coefficients Aji, Bij and Bji are (strictly positive) con-

stants, and the collisional coefficients Cij and Cji are (nonnegative) func-

tions of the position x ∈ X verifying

δ∗ ≤ Cij(x), Cji(x) ≤ δ∗, (12)
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for some δ∗, δ
∗ > 0.

Finally, the line profile φij is integrable on R+ and satisfies, for some

δ > 0,

∀ν ∈ R
+, 0 ≤ φij(ν)hν ≤ δ. (13)

Our main result is stated as

Theorem 1.1. Let assumption A on the data be satisfied. Then, for any

given T > 0, there exists a unique nonnegative solution f ǫ, (nǫ
i)i=1,..,K , to

(5) – (10), which belongs to L∞([0, T ]×X×S
2×R

+)× (L∞([0, T ]×X))K.

Furthermore, as ǫ→ 0, this solution converges in L∞([0, T ]×X×S2×R+)×

(L∞([0, T ] × X))K weak * to f, (ni)i=1,..,K , unique nonnegative solution

in L∞([0, T ]×X × S2 × R+) × (L∞([0, T ]×X))K to the system


































1

c
∂tf + v · ∇xf

=
∑

i

∑

j>i

njAjihνφij(ν) −
∑

i

∑

j>i

(niBij − njBji)hνφij(ν)f,

0 =
∑

j 6=i

njPji −
∑

j 6=i

niPij ,

f(0, x, v, ν) = f0(x, v, ν), f |R+×(∂X×S2)−×R+(t, x, v, ν) = g(t, x, v, ν),
(14)

where Pji, Pij are given by formulas (5), (6).

Most of the rest of the paper is devoted to the proof of Theorem 1.1.

Existence and uniqueness of a solution to (5) – (10) (for a given ǫ) are

proven in section 2. At the end of this section, we also show a result of

existence and uniqueness for the limiting system (5), (6), (14).

Then, in section 3, we prove the validity of the quasi-stationary ap-

proximation, that is the convergence of solutions of (5) – (10) when ǫ→ 0

toward solutions of (5), (6), (14).

Finally, we present a numerical test in order to illustrate this conver-

gence in section 4.

In all the sequel, we shall restrict ourselves in the proof, for the sake of

simplicity, to a two-level molecular model (that is, K = 2). The proof in

the general case is identical.

In this paper we limit our discussion to the bound-bound transitions,

we refer for details on the bound-free transitions or the free-free transitions

to,9,10 or the papers.2,3,5
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We refer to1 for the existence theory of the radiative transfer equation

for a ’grey’ model, by using the compactness result introduced in,6,7 that

is, the averaging lemma.

In,4,11 the authors studied some numerical methods for the line radiative

transfer, and the comparison was given between a number of independent

computer programs for radiative transfer in molecular rotational lines. Our

numerical tests are inspired from the data introduced in.4,11

2. Proof of existence and uniqueness to system (5) – (10)

for a given ǫ

We begin with a classical explicit resolution of the linear kinetic equation.

Lemma 2.1. Let X be a bounded regular open set in R3. We consider the

following system:










1

c
∂tf + v · ∇xf = η − χf,

f(0, x, v, ν) = f0(x, v, ν) ≥ 0,

f |R+×(∂X×S2)−×R+(t, x, v, ν) = g(t, x, v, ν) ≥ 0,

(15)

where the initial data f0, the boundary data g, and the coefficients η, χ are

bounded.

Then, for any given T > 0, there exists a constant δ(T ) > 0 (depending

only on T and the L∞ norms of η, χ, f0 and g) such that

∀(t, x, v, ν) ∈ [0, T ]×X × S
2 × R

+, 0 ≤ f(t, x, v, ν) ≤ δ(T ). (16)

Proof of Lemma 2.1.

Let us denote Q = {(t, x)|t ∈ R+, x ∈ X}, and denote by Σ the bound-

ary of Q. The boundary Σ has thus two parts:

Σ = Σ1

⋃

Σ2 = {(0, x)|x ∈ X}
⋃

{

(t, x)|t ∈ R
+, x ∈ ∂X

}

.

Let us fix a point M∗ = (t∗, x∗) in Q, and introduce a characteristic line

through M∗ as

t 7−→ x(t) = x∗ − c v(t∗ − t). (17)

We look for the intersection of this characteristic line with Σ, the boundary

of Q. There are two cases: either the line remains in Q and intersects Σ1,

(that is, the plane t = 0) at the point x(0) = x0 = x∗ − c v t∗, or the

line intersects Σ2 = {(t, x)|x ∈ ∂X, t > 0} at some point (t0, x(t0)) with

0 ≤ t0 < t∗.
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In both cases, it is possible to write f explicitly in terms of f0, g, χ and

η using the characteristic lines (17) and Duhamel’s formula. The estimate

is obtained by taking L∞ norms in this explicit formulation of f . We refer

to8 for details.

Proof of Theorem 1.1: We begin by proving the existence of solutions

to system (5) – (10) (when ǫ is fixed) thanks to an iterative procedure. In

order to keep notations tractable, we denote f instead of f ǫ and ni instead

of nǫ
i .

This procedure is defined in this way:

For t ≥ 0, we set

f0(t, x, v, ν) = f0(x, v, ν), n0
i (t, x) = ni0(x), i = 1, 2;

For k = 0, 1, 2, ..., we assume that (fk, nk
1 , n

k
2) are defined. We define

fk+1, nk+1
1 , nk+1

2 by










1

c
∂tf

k+1 + v · ∇xf
k+1 =

(

nk
2A21 − (nk

1B12 − nk
2B21)f

k+1
)

φ12(ν)hν,

fk+1(0, x, v, ν) = f0(x, v, ν),

fk+1|R+×(∂X×S2)−×R+(t, x, v, ν) = g(t, x, v, ν),
(18)

and






ǫ∂tn
k+1
1 = nk+1

2 A21 + (nk+1
2 B21 − nk+1

1 B12)ρ
k+1 + (nk+1

2 C21 − nk+1
1 C12),

ǫ∂tn
k+1
2 = −

[

nk+1
2 A21 + (nk+1

2 B21 − nk+1
1 B12)ρ

k+1 + (nk+1
2 C21 − nk+1

1 C12)
]

,

nk+1
i (0, x) = ni0(x), i = 1, 2.

(19)

Note that nk+1
1 and nk+1

2 can be written explicitly in terms of fk+1 in

eq. (19) thanks to Duhamel’s formula.

Using Lemma 2.1 and the nonnegativity of the initial population den-

sities ni0 (and of f0), we see that (fk+1, nk+1
1 , nk+1

2 ) are well-defined, and

that

∀k ∈ N, i = 1, 2, nk
i ≥ 0, nk

1 + nk
2 = n10 + n20 = n.

Moreover, still thanks to lemma 2.1, we see that fk satisfies 0 ≤

fk(t, x, v, ν) ≤ δ(T ), for all (t, x, v, ν) ∈ [0, T ]×X × S2 × R+.

Using the equation satisfied by fk+1 − fk and the characteristics, it is

possible to show that (when t ∈ [0, T ])

∥

∥fk+1 − fk
∥

∥

L∞

x,v,ν

(t) ≤ ξ1(T )

∫ t

0

∥

∥

(

nk
1 − nk−1

1

)

(s)
∥

∥

L∞

x

ds, (20)

for some constant ξ1(T ) ≥ 0.
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Using then the equation satisfied by nk+1
1 − nk

1 , it is possible to show

that (when t ∈ [0, T ])

‖nk+1
1 − nk

1‖L∞

x
(t) ≤

ξ2(T )

ǫ
sup

s∈[0,t]

∥

∥

(

fk+1 − fk
)

(s)
∥

∥

L∞

x,v,ν

, (21)

for some constant ξ2(T ) ≥ 0. The proof of estimates (20) and (21) is detailed

in.8

Using (20) and (21), a classical induction argument shows that for all

k ∈ N, p ∈ N
∗,

‖nk+p
1 − nk

1‖L∞([0,T ]×X) ≤ Cst

k+p−1
∑

l=k

(ξ1(T ) ξ2(T )/ǫ)l

l!
.

Thus we obtain that (nk
1)k is a Cauchy sequence in L∞([0, T ] × X). The

same holds of course for (nk
2)k. Then, using estimate (20), we see that (fk)k

is also a Cauchy sequence in L∞([0, T ] ×X × S2 × R+). We can therefore

pass to the limit in (the Duhamel formulations of) equations (18) and (19),

and obtain a bounded solution f , n1, n2 to the coupled system (5) – (10).

Uniqueness is obtained by simply considering two solutions (f, n1, n2)

and (f, n1, n2) to (5) – (10) with the same initial and boundary condi-

tions, and by using estimates (20), (21) (with f , f instead of fk+1, fk,

and the same for the populations). This ends the proof of the first part of

theorem 1.1.

We conclude this section by observing that when we replace (19) by














nk+1
1 =

A21 +B21ρ
k+1 + C21

A21 + (B21 +B12)ρk+1 + C12 + C21
n,

nk+1
2 =

B12ρ
k+1 + C12

A21 + (B21 +B12)ρk+1 + C12 + C21
n,

(22)

the inductive procedure (18), (22) together with estimate (20) enables to

build a solution to system (5), (6), (14). Uniqueness for this system is also

a consequence of estimate (20). We refer to8 for details.

3. Quasi-stationary approximation, convergence

In this section, we prove the second part of Theorem 1.1, that is the con-

vergence of the solution f ǫ, (nǫ
i)i=1,2 toward the solution f, (ni)i=1,2 of the

limiting system (5), (6), (14).

We already know that for i = 1, 2, 0 ≤ nǫ
i(t, x) ≤ ||n||L∞ . As a conse-

quence of lemma 2.1 and this estimate, we obtain that (f ǫ)ǫ is bounded in
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L∞([0, T ]×X × S2 ×R+), so that
∫

R+ f
ǫ(t, x, v, ν)φ12(ν) dν is bounded in

L∞([0, T ]×X×S
2). Furthermore, this quantity solves the following system:















































1

c
∂t

∫

R+

f ǫφ12(ν)dν + v · ∇x

∫

R+

f ǫφ12(ν)dν

= nǫ
2A21

∫

R+

φ2
12(ν)hνdν − (nǫ

1B12 − nǫ
2B21)

∫

R+

f ǫφ2
12(ν)hνdν,

(
∫

R+

f ǫφ12(ν)dν

)

(0, x, v) =

∫

R+

f0(x, v, ν)φ12(ν)dν,
(

∫

R+

f ǫφ12(ν)dν

)
∣

∣

∣

∣

R+×(∂X×S2)−

=

∫

R+

g(t, x, v, ν)φ12(ν)dν.

Using the L∞ bounds of f ǫ, nǫ
i and the properties of φ12, we see that

(
1

c
∂t + v · ∇x)

∫

R+

f ǫφ12(ν)dν

is bounded in L∞([0, T ] × X × S2). Thanks to an averaging lemma (6,7),

we obtain that the family
∫

R+

∫

S2 f
ǫ(t, x, v, ν)φ(ν)dvdν = ρǫ(t, x) is strongly

compact in L2([0, T ] ×X). This ensures that ρǫ converges (up to a subse-

quence) a.e.

Thus (still up to a subsequence), we can assume that

nǫ
i ⇀ ni weakly∗ in L∞([0, T ]×X), i = 1, 2;

f ǫ ⇀ f weakly∗ in L∞([0, T ]×X × S
2 × R

+);

ρǫ → ρ strongly in L1([0, T ]×X),

where

ρ =

∫

R+

∫

S2

fφ12(ν)dvdν.

The sequence nǫ
iρ

ǫ converges therefore to niρ weakly in L1([0, T ]×X).

It remains also to pass to the limit in the quantity nǫ
i f

ǫ φ12(ν)hν. This is

done by observing that for any test function ψ1(v)ψ2(ν) (with ψ1, ψ2 ∈ D),

the quantity
∫

R+

∫

S2

f ǫ(t, x, v, ν)φ12(ν)hν ψ1(v)ψ2(ν) dvdν

converges for a.e. t, x. This is due to the fact that the quan-

tity
∫

R+ f
ǫ(t, x, v, ν)φ12(ν)hν ψ2(ν) dν satisfies a kinetic equation (like

∫

R+ f
ǫ(t, x, v, ν)φ12(ν) dν), so that it is possible to use an averaging lemma.

Finally, when ǫ tend to 0, the solution to (5) – (10) converges up to

extraction to a solution of (5), (6), (14).
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Thanks to the result of uniqueness for (5), (6), (14) obtained in the

previous section, the convergence is in fact not restricted to a subsequence.

This ends the proof of Theorem 1.1.

We notice that in the limiting equation, no initial data are needed for

the populations n1, n2. As a consequence, an initial layer appears if the

initial data of the problem for a given ǫ > 0 are not compatible with the

limiting equation.

4. Numerical simulation

We introduce a numerical test in order to see how the quasi-static approxi-

mation is valid in practice. This test is inspired from the problem that was

introduced in.4,11 It consists in a 3D computation with two populations of

atoms (K = 2), and no initial layer. For a detailed description of the data,

we refer to.8

The rate equations of the atomic populations are discretized with usual

methods for the ODEs, while for solving the kinetic equation, we use a

particle method.

In order to verify the convergence of solutions, we compute the (relative)

difference between nǫ
1 and n1, (solution of the limiting system) i.e

|nǫ
1(t, x) − n1(t, x)|

n1(t, x)
, (23)

obtained at a given time for different values of ǫ. This quantity is presented

as a function of |x|, for a given direction of the space variable.

The validity of the quasi-static approximation is observed on our sim-

ulation, see fig. 1. In practice, the value of ǫ is usually extremely small

(smaller than in the simulations presented here).
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