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Abstract

We present in this work some contributions made by various authors
in the last twenty years to understand how solutions of the Boltzmann
equation reach the equilibrium when the time tends to infinity. We are
interested here in the form of the limit as well as in various estimates
concerning the rate of convergence towards this limit.

1 Introduction

The dynamics of a rarefied gas is usually described by a density f(t,z,v)
of particles which at time ¢ and point 2 move with a given velocity v in
IR? (Cf. [Ce], [Tr, Mu], [Ch, Co]). The function f satisfies the Boltzmann
equation,

of

where () is a quadratic collision kernel taking in account any collisions pre-
serving momentum and kinetic energy, and acting only on the velocity vari-
able v,
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—f(v) f(v1)} B(lv = v, 8) dwdoy, (1.2)

and
v — U
cosf = |w-

. (1.3)
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When the colliding molecules are modelled by hard spheres, the cross section
B writes

B(|v — v1],0) = |v — v1] cos b, (1.4)

but when the interaction between the particles is due to a force proportional

th

to the inverse s* power of the distance, it becomes

B(lo — v1],0) = |v — 03] | cos 67T 5(8), (1.5)

where 3 is a bounded function (different from 0 at point 7) (Cf. [Ce]).
Since this cross section is very singular when 6 — 7, the traditional
angular cut—off assumption of Grad that

B(jv — v1],8) = |v— v |1 3(8), (1.6)

where 3" is a bounded function, is often made (Cf. [Gr]).
It is easy to prove that, at least at the formal level,

[, QU ey dv=0. (17)
veIR?

where
¢(U) = (17U17U27U37|U|2). (18)

We denote from now on ¢g(v) = 1, ¢;(v) = v; for i = 1 to 3 and 14 (v) = |v]%.
Eq. (1.7) simply shows that the mass, momentum and kinetic energy are
conserved by the collision term.

Moreover, according to Boltzmann’s H-theorem, the dissipation of en-
tropy is nonpositive:

|, QU0 log fv) dv <o, (19)
veIR3
and becomes 0 if and only if f is a Maxwellian function of v:
J(0) = et (1.10)
(27T)3/2 ' '



where p is the density, u the mean velocity and T the temperature. A
Maxwellian is said to be absolute when its parameters p, u and T do not
depend on the variables ¢ and =.

According to these properties of (), it is conjectured that, at least in some
situations (linearized or weakly nonlinear equation near a given absolute
Maxwellian, spatially homogeneous equation, full equation with periodic
boundary conditions), the solutions of eq. (1.1) should converge in some
sense to the absolute Maxwellian whose mass, momentum and energy are
the same.

In section 2, we recall the known facts about the linearized equation,
then we consider in section 3 the spatially homogeneous case. Sections 4
and 5 are devoted respectively to the study of the full nonlinear equation
near an absolute Maxwellian, and near vacuum. Finally, we conclude in
section 6 by some remarks on renormalized solutions of the full nonlinear
equation.

2 The Linearized, Spatially Homogeneous Equa-
tion

When eq. (1.1) is linearized around a given absolute Maxwellian Q(v), for
2

example e~ 7, the fluctuation g around the Maxwellian defined by
F(t.v) = (v) + Q) g (t, ) 2.1)
(Cf. [Caf 1]), satisfies in the spatially homogeneous case

99 _

where
Loy = [ [ o= o (0= ) @) 920+ o (0= )

+g(t, v+ (w- (v —101))w) Q20— (- (v—1v1))w)
— g(t,0) QY% (vy) — g(t, v1) QY2 W)} QY2 (vy) B(lv — 11|, 0) dwdvy.  (2.3)

The conservations of mass, momentum and energy (1.7) still hold, but the
H-theorem now becomes

/ g(t,v) Ly(t, v) dv < 0, (2.4)
veIR?



and there is equality in (2.4) if and only if ¢ is in the subspace spanned by
the functions ;, for ¢+ = 0 to 4.

Since the operator L is self-adjoint in L?(dv), the corresponding infor-
mation on its spectrum in this space is that it is included in IR_ and that 0 is
an eigenvalue, the corresponding eigenspace being spanned by the functions
s, for ¢+ = 0 to 4.

It is now classical that (under the cut-off assumption), eq. (2.1) can be
put under the form

dg _ .
5 = B9 -vv)g, (2.5)

where K is a compact operator of L%(dv) (Cf. [Gr] and [Df]) and

2
U1

V(o) :/ / =% B(jv = 1], 0) dwdoy. (2.6)
v EIR? JweS?

Therefore, in the case of hard spheres, cut—off hard potentials and
Maxwellian molecules,

Yo e IR?, 0 < v(0) <vv), (2.7)

and according to a classical theorem (Cf. [Sc] for example), the operator K
does not change the essential spectrum of —r(v), which implies that near
zero, only pointwise spectrum can exist.

The corresponding information about the decay of the solution of eq. (2.1)
is that there exists a strictly positive ag such that if ¢(0,v) is in L?(dv) and

AeJRS g(0,0) Pi(v)dv=0 for ¢=0,..,4, (2.8)

then
gt )| p2ga0y < €= 1g(0, )| L2(a0)- (2.9)
Note that in the case of Maxwellian molecules, the constant aq is known

explicitly, as is in fact the whole spectrum of L (Cf. [WCh, Uh]).
The case of soft potentials is more intricate, since

Yo IR®, 0<wv(v) <rv(0). (2.10)

According to (2.10), the continuous spectrum of L touches 0 and therefore
one cannot hope to find an exponential decay for the solutions of (2.1). How-
ever, Caflish was able to prove in 1980 (Cf. [Caf 1]) the following estimate:



If3<s5<50<a<1/4,g(0,0)is in L®(e* dv) and (2.8) holds, then
there exist C, A > 0 (A being known explicitly) such that

2s5—2

< (le— N '
lo(t, )z < O g0, e

This estimate is based on the fact that the operator K does not change in
an essential way the long time behavior of the solution h of the equation
oh
ot
The same kind of results can be obtained with another method (Cf. [De 1]).
The reader can also refer to [Pa], [KI] and [Cz, Pal] to obtain information
when a radial cut—off or no cut—off at all is assumed.

(2.11)

= —v(v) h. (2.12)

3 The Nonlinear, Spatially Homogeneous Equa-
tion

3.1 Position of the problem

The spatially homogeneous Boltzmann equation writes:

Ui
S=QU, (3.

where

QU= [ e e i) ) T e (0 0)) )

— ft,v) f(t,v1)} B(Jv — v1], 0)dwdu. (3.2)

Estimates (1.7) implies the following formal conservations,

/ g(t,v) Pi(v)dv = / g(0,v)(v)dv  for i=0,..,4. (3.3)
veIR3 veIR3

Moreover, the entropy inequality becomes
/ g(t,v) logg(t,v)dv < / g(s,v) logg(s,v)dv for s<t. (3.4)
veIR? veRS

The usual conjecture is that solutions of eq. (3.1) of finite mass, energy and
entropy should converge to the absolute Maxwellian m(v) of same mass,
momentum and energy. Of course, in order to prove such a conjecture, one
needs to know the existence of a solution of eq. (3.1). We give here the
results obtained in this direction for various types of cross sections and in
different spaces.



3.2 Hard spheres

For hard spheres, Carleman proved in 1933 (Cf. [Cal) the existence of a
solution f(¢,v) to eq. (3.1) when the initial datum f(0,v) is continuous and
satisfies
sup (1+]0|77) f(0,v) < +o0 (3.5)
veR?
for some € > 0. This solution converges to m(v) in L*(dv) when ¢ tends to
infinity.

3.3 Hard potentials with cut—off

For hard potentials with cut—off, there is a lot of results in various spaces,
among which the followings:

In an L™ setting, Maslova and Tchubenko extended in 1976 (Cf. [Ma, Tc])
the result of Carleman in the following way:
If the initial datum f(0,v) satisfies

sup (14 |[v]X) f(0,v) < 400, (3.6)
veEIR?

where y depends on the cross section B, then the same result as in the case

of hard spheres holds.

In an L! setting, Arkeryd proved in 1986 (Cf. [Ar 3]) that if the initial
datum f(0, v) satisfies

|1/ 1og f(0, 0)[|L1avy + [1F (O, ) Lagagupyany < o0 (3.7)

for some k > 2, then a solution of eq. (3.1) exists and tends to m(v) strongly
in L'((14]v]*")dv) when k" < k (The weak convergence was proved in earlier
papers (Cf. [Ar 1], [Ar 2])).

Moreover, this result was improved by Arkeryd in 1988 when f(0,v)
possesses moments of order high enough (Cf. [Ar 4]).

More precisely, if the mass, momentum and energy of f(0,v) are fixed,

there exists p > 0 and ko > 3:__17 such that if k& > kg and f(0, v) satisfies

[/ 1og f(0, 0)|| L1y + I1F (0, )14 upyan) < 00, (3.8)

then for any v < v, k' < k,
|| f(t,v) — m(v)||L1((1-|—|u|k/)dv)
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< Oy, £(0,)) e 10, 0) = m0) [ L1 (1 ol yaw) - (3.9)

This improvement is based on the fact that when ¢ is large enough, f(¢, v)
approximates m(v) in L! norm (because of the result mentionned above),
and therefore one can apply the theory of the linearized equation (although
with a lot of new difficulties).

This theorem is now improved by the results on moments obtained in
[De 4]. Namely, the conclusion (3.9) holds for any £’ > 0 as soon as estimate
(3.7) on the initial datum holds.

The same kind of results is now available in the L'NLP setting. Gustaffson
proved in 1988 (Cf. [Gu]) that for 1 < p < 400,k > 2, and =2 < k <

s—1 —
R L

[ 1og £(0, 0} vy + 17O, ) Lo yaoy O O Lo o)) <(+OO)7
3.10
then there exists a solution of eq. (3.1) such that f(¢,v) tends to m(v) in
LY (14]v)")dv)NLP((14-]v]|'P)dv) for every k', k) such that 0 < k| < k; and
0 < k' < k (for p = +oo, the initial datum f(0,v) must also be continuous).
This result was improved by Wennberg in 1992 (Cf. [We 1]) in order to
obtain the exponential decay in that kind of norms.
More precisely, if the mass, momentum and energy of f(0,v) are fixed,
if 1 < p< +4oo,and g > 0, then there exists u > 0 and kg > 5 — 3/p such
that if kg < k < k1 — g and f(0,v) satisfies

[ 1og f(0, )| L1 (aw) + [1F (O, ) Lragpopes+#)an)
+11£(0, U)||LP((1+|U|P(k+/3))du) < +00, (3.11)
then for any v < v, K < k, k{ < kq,
7€ 0) = (O g avyo o1 oy
< Ok KLy, £0,2)) € L0, 0) = m(0) [ pa (ol ya) nLp((14 ol yv)

(3.12)

Wennberg has also extended in 1993 the results of [De 4] in this context,
the assumption (3.11) can therefore be relaxed (Cf. [We 3]).

Finally, results about the uniformity of the decay were found by Carlen
(Cf. [Car]).



3.4 Maxwellian molecules

The case of Maxwellian molecules is well-adapted to the search of explicit
solutions. The exponential convergence of every moments of the solution of
(3.1), first discovered by Truesdell, is now well-known (Cf. [Tr]). Moreover,
we recall the BKW mode,

v 3

Flt0) = (2rr) e F (L (- - (e~ ) (3.13)

(Cf. [Bo 1] and [Kr, Wu]), where 7 = 1 — e~ and in which the exponential
convergence towards equilibrium is clear. Note also the following result by
Bobylev (Cf. [Bo 2]), based on explicit computations:

We consider an isotropic initial datum f(0, |v|) for equation (3.1) such that

[, £ e o = (1,0.0,0.3) 1)

We write then the Taylor expansion of its Fourier transform with respect to
the variable v:

. 2 F00 2n
f(0,6) = e—%gunw)i—!, (3.15)

and we assume that

sup [u, (0)]Y" < 1/3/7. (3.16)

nelN
Then there exists K > 0 (explicitely known), such that

|f(t, o)) = (27) 7327 | < eI (3.17)

Results in this direction are also proved by Toscani (Cf. [To 1]).

Moreover, Bobylev proved also the following result (Cf. [Bo 2]):

For every § € [0, K[, one can find an initial datum f(0,|v|) (with alge-
braic decay when |v| = +o00) and C1,C3 > 0 such that

N 2
Cre=® < |f(t,&) — e F| < Coe™®, (3.18)

This seems to imply that no uniformity can be obtained for the rate of
exponential convergence towards equilibrium unless some properties of nice
decay when |v| — 400 on the initial datum are assumed.

Finally, note also the results of Petrina and Mischenko in 1988
(Cf. [Pe, Mi]) about exponential convergence towards equilibrium for cross
sections of the type

B(lv —v1],0) = a1(8) + |v — v1|*02(8). (3.19)



3.5 Soft potentials

Solutions f(¢,v) of eq. (3.1) with that kind of potentials (with s > 3) are
known to exist (Cf. [Ar 5]), but no result of convergence of the complete
function f(¢,v) towards m(v) is proved. This is mainly due to the lack of
uniform estimates on the moments of order higher than 2 of f. One can
however prove that there exists a sequence t,, going to infinity, such that
fu(t) = f(t+t,) converges weakly to m(v) as soon as the moment of order
3 is initially bounded (Cf. [De 4]).

We have also the following estimate when f(t,v) > Ce
C1,C5 > 0, with or without the cut—off assumption (Cf. [De 2]):

2
—C21vl” for some

2t ds K
inf / / log f(s,v) — m(v e~ (Ot 7y, =2 < 222 (390
[ [ o .00 = (o) S< o e0)

m Maxwellian

for every € > 0, which seems to imply at least an algebraic decay (recall that
in the linearized case, the decay is proved to be superalgebraic).

Note also that Wennberg extended this kind of estimates in the case of
hard-spheres and hard potentials (Cf. [We 2]).

3.6 Hard potentials without cut—off

In that case, Arkeryd proved in 1982 (Cf. [Ar 2]), using non-standard
arguments, the existence of a solution of eq. (3.1) converging weakly in L'
to m(v) when t — +00 as soon as hypothesis (3.7) holds.

Elmroth gave also a standard proof in 1984 of the same result (Cf. [El]).

4 The Full Nonlinear Boltzmann Equation near a
Maxwellian

4.1 Position of the problem
Making in eq. (1.1) the change of variables (2.1), one gets

d
8—‘;]+v-ng=Lg+F(g7g)7 (4.1)
where L is defined in (2.3) and
P(g.9)(v) = Q712(v) Q(2'%9, Q1) (v). (+.2)



In order to study eq. (4.1), one has to do a thorough investigation of the
linearized equation

h
88_t +v-Vzh = Lh. (4.3)

When a good decay to 0 in some norm of the solution h of eq. (4.3) is
obtained when the time goes to infinity, it is sometimes possible to prove
the existence of a solution to eq. (4.1) when the corresponding norm of the
initial datum is small enough. Such a solution will generally have the same
behavior for large times as the solution of eq. (4.3).

We give various examples in which this program is carried out. The
following assumption on the initial datum is always made:

/er AeJRS g(0, z,v) ;(v) dvdx = 0, (4.4)

where O is the domain where the particles evolve.

4.2 The equation in a periodic box

The case of hard potentials with cut—off was studied by Ukai'in 1974 (Cf. [Uk]).
He proved that if 3 > 3/2, 1 > 1/2, € > 0, there exists ¢y > 0 such that if
the initial datum ¢(0, z, v) satisfies

1900, @, V) || oo((14 v B+ 1+ € ) dus it 14 (da)) < O (4.5)

then o, > 0 and a solution ¢(¢,z,v) to eq. (4.1) exist such that

Yy < p gt @, o)l peoqappulati+eyavmieite(day) < o€ (4.6)

Note that Shizuta proved a similar result in a paper appeared in 1983, but
with a different norm (Cf. [Sh]).

Caflisch extended this result in 1980 (Cf. [Caf 2]) in the case of cut—off
soft potentials with 3 < s < 5 in the following way:

Suppose that 0 < o < 1/4. Then, there exists ¢y > 0 such that if the
initial datum ¢(0, z, v) satisfies

||g(07 €z, v)||Loo(eav2d,U;H4(dl,)) < ¢, (4.7)

then C'; A > 0 and a solution g(¢, z,v) to eq. (4.1) exist such that

2s5—2

gt 2, 0)l| L2(dvs 4 (o)) < Ce ™M, (4.8)
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Note that in both cases, the same kind of decay is observed as in the
linearized, homogeneous case.

Note also that Asano and Shizuta have obtained in 1977 (Cf. [As, Sh])
the same kind of exponential decay as Ukal (but not with the same norm)
with cut—off hard potentials and in a bounded convex C® domain, with pos-
itive principal curvatures, together with specular reflexion boundary condi-
tions.

4.3 The equation in the whole space

The case of hard potentials with cut—off was treated by Imai and Nishida in
1976 (Cf. [Im, Ni]).

They proved that if [, m > 3, there exists ¢g such that if the initial datum
g(0, z, v) satisfies

1900, 2, )| L1(dwr2(av)) + 11900, 2, 0) | Lo (1 o)mydusiri (@) < €00 (429)
then C' > 0 and a solution g(¢, z,v) to eq. (4.1) exist such that

C
g (¢, 2, )| Loo (14 o)) dvs Y (de)) < (EEL (4.10)
If moreover
||g(07 Z, U)||L1(xdx;L2(dv)) < oo, (411)
then there exists D > 0 such that
D
g (¢, 2, )| Loo (14 o)) dv H (de)) < RENEG (4.12)

Note also that assumption (4.4) is not necessary to obtain estimate (4.10).
Finally, Ukai and Asano considered in 1982 (Cf. [Uk, As]) the case of cut—off

soft potentials with 7/3 < s < 5.
Assume that 6 = —zj, n> 2 a= min(%(% - %);1)7 [ > n/2 and
8 > n/2 — 4. Then there exists ¢g such that if the initial datum ¢(0, z,v)

satisfies

g (0, 2, )| z2(au;Lr () + 1190 2, ) poo( (1454 g mt(dnyy < 05 (4:13)
then C' > 0 and a solution g(¢, z,v) to equation (4.1) exist such that

C
g (8 @ N oo (14 o] (B2 ydos t (dary) < i+ (4.14)
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We can see that when 2 varies in the whole space IR3, the decays are
not as fast as in the linearized homogeneous case.

5 The Full Nonlinear Boltzmann Equation near
the Vacuum in the Whole Space

A lot of work has been done on this subject (Cf. [Ka, Shi], [II, Shi], [Be, To],
[Ha 1]), and note that in this situation, the solution f of eq. (1.1) is known
to go to 0 when the time becomes large. This is due to the fact that the
particles leave any bounded domain after some time. However, it is also
known that the function f(t,x,v) = f(t,z 4 vt,v) converges to a finite
limit f.(2z,v). It was wondered wether or not this limit was necessarily
a Maxwellian, since its associated entropy was proved to be nonincreasing.
Toscani gave a negative answer to this question in 1988 (Cf. [To 2]), its
proof is based on the fact that the limit f,, may not have the same decay
when v — +o00 as a Maxwellian. Note also the computations by Pitteri

(CE. [P1).

6 Renormalized Solutions

We recall that DiPerna and Lions proved in 1989 (Cf. [DP, L 1]) the existence
of a renormalized solution to eq. (1.1) for a large class of cross sections
(including cut—off hard and soft potentials for s > 2), as soon as the initial
datum has finite mass, energy, entropy and second moment in the z variable.

Hamdache extended this result to the case of a bounded domain with
various boundary conditions (including specular and reverse reflexion) in
1990 (Cf. [Ha 2]).

Mass and momentum are known to be preserved for renormalized solu-
tions, and the entropy is also known to be nonincreasing (Cf. [DP, L 2]),
but the energy might decrease. Therefore one cannot hope to identify the
Maxwellian limit (when it exists) of f. However, the same kind of theorems
as in the case of the homogeneous equation with soft potentials can be given.

In the case when z varies in the whole space IR®, the same kind of
pointwise decay to 0 of f will be observed as in the case of the equation
near vacuum. Therefore we shall concentrate on the equation in a bounded
domain.

Arkeryd proved in 1988, using non-standard analysis (Cf. [Ar 6]), that
in a periodic box, for every sequence ¢, going to infinity, there exists a

12



subsequence t,, and a global Maxwellian m(v) such that f, (¢, z,v) = f(t+
tn,, ,v) converges to m(v) in L'([0,7] x O x IR*) weak.

This result was extended by Desvillettes in 1990 (Cf. [De 3]) by stan-
dard arguments in the case of a domain with reverse or specular reflexion
boundary condition.

The reverse reflexion case is similar to the case of a periodic box, but in
the case of specular reflexion, the Maxwellian m may depend on z when the
domain has a symmetry of revolution. This is due to the existence in this
case of another conservation, the conservation of the kinetic momentum.

Note that in these works, the dependance of m(v) with respect to the
initial data would be completely known if the conservation of energy was
known to hold.

Finally, Arkeryd proved in 1991 that the above convergences held in
fact in L! strong, using non-standard arguments (Cf [Ar. 7]). This result
was also proved by standard techniques by Lions (Cf. [L]) in 1993, as a
consequence of compactness properties of the positive part of the Boltzmann

kernel ).
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