
CONVERGENCE TO EQUILIBRIUM INVARIOUS SITUATIONS FOR THE SOLUTIONOF THE BOLTZMANN EQUATIONLaurent DesvillettesECOLE NORMALE SUPERIEURE45, Rue d'Ulm75230 Paris C�edex 05October 31, 2000AbstractWe present in this work some contributions made by various authorsin the last twenty years to understand how solutions of the Boltzmannequation reach the equilibrium when the time tends to in�nity. We areinterested here in the form of the limit as well as in various estimatesconcerning the rate of convergence towards this limit.1 IntroductionThe dynamics of a rare�ed gas is usually described by a density f(t; x; v)of particles which at time t and point x move with a given velocity v inIR3 (Cf. [Ce], [Tr, Mu], [Ch, Co]). The function f satis�es the Boltzmannequation, @f@t + v � rxf = Q(f; f); (1:1)where Q is a quadratic collision kernel taking in account any collisions pre-serving momentum and kinetic energy, and acting only on the velocity vari-able v,Q(f; f)(v) = Zv12IR3 Z!2S2 ff(v � (! � (v � v1))!)f(v1+ (! � (v � v1))!)1



�f(v) f(v1)gB(jv � v1j; �) d!dv1; (1:2)and cos � = j! � v � v1jv � v1j j: (1:3)When the colliding molecules are modelled by hard spheres, the cross sectionB writes B(jv � v1j; �) = jv � v1j cos �; (1:4)but when the interaction between the particles is due to a force proportionalto the inverse sth power of the distance, it becomesB(jv � v1j; �) = jv � v1j s�5s�1 j cos �j� s+1s�1�(�); (1:5)where � is a bounded function (di�erent from 0 at point �2 ) (Cf. [Ce]).Since this cross section is very singular when � �! �2 , the traditionalangular cut{o� assumption of Grad thatB(jv � v1j; �) = jv � v1j s�5s�1�0(�); (1:6)where �0 is a bounded function, is often made (Cf. [Gr]).It is easy to prove that, at least at the formal level,Zv2IR3 Q(f; f)(v) (v)dv = 0; (1:7)where  (v) = (1; v1; v2; v3; jvj2): (1:8)We denote from now on  0(v) = 1;  i(v) = vi for i = 1 to 3 and  4(v) = jvj2.Eq. (1.7) simply shows that the mass, momentum and kinetic energy areconserved by the collision term.Moreover, according to Boltzmann's H{theorem, the dissipation of en-tropy is nonpositive: Zv2IR3 Q(f; f)(v) log f(v) dv � 0; (1:9)and becomes 0 if and only if f is a Maxwellian function of v:f(v) = �(2�T )3=2e� jv�uj22T ; (1:10)2



where � is the density, u the mean velocity and T the temperature. AMaxwellian is said to be absolute when its parameters �, u and T do notdepend on the variables t and x.According to these properties ofQ, it is conjectured that, at least in somesituations (linearized or weakly nonlinear equation near a given absoluteMaxwellian, spatially homogeneous equation, full equation with periodicboundary conditions), the solutions of eq. (1.1) should converge in somesense to the absolute Maxwellian whose mass, momentum and energy arethe same.In section 2, we recall the known facts about the linearized equation,then we consider in section 3 the spatially homogeneous case. Sections 4and 5 are devoted respectively to the study of the full nonlinear equationnear an absolute Maxwellian, and near vacuum. Finally, we conclude insection 6 by some remarks on renormalized solutions of the full nonlinearequation.2 The Linearized, Spatially Homogeneous Equa-tionWhen eq. (1.1) is linearized around a given absolute Maxwellian 
(v), forexample e� v22 , the 
uctuation g around the Maxwellian de�ned byf(t; v) = 
(v) + 
(v)1=2g(t; v) (2:1)(Cf. [Caf 1]), satis�es in the spatially homogeneous case@g@t = Lg; (2:2)whereLg(t; v) = Zv12IR3 Z!2S2 fg(t; v � (! � (v � v1))!) 
1=2(v1 + (! � (v � v1))!)+ g(t; v1+ (! � (v � v1))!) 
1=2(v � (! � (v � v1))!)� g(t; v) 
1=2(v1)� g(t; v1) 
1=2(v)g
1=2(v1)B(jv � v1j; �) d!dv1: (2:3)The conservations of mass, momentum and energy (1.7) still hold, but theH{theorem now becomesZv2IR3 g(t; v)Lg(t; v)dv � 0; (2:4)3



and there is equality in (2.4) if and only if g is in the subspace spanned bythe functions  i, for i = 0 to 4.Since the operator L is self{adjoint in L2(dv), the corresponding infor-mation on its spectrum in this space is that it is included in IR� and that 0 isan eigenvalue, the corresponding eigenspace being spanned by the functions i, for i = 0 to 4.It is now classical that (under the cut{o� assumption), eq. (2.1) can beput under the form @g@t = Kg � �(v) g; (2:5)where K is a compact operator of L2(dv) (Cf. [Gr] and [Df]) and�(v) = Zv12IR3 Z!2S2 e� v212 B(jv � v1j; �) d!dv1: (2:6)Therefore, in the case of hard spheres, cut{o� hard potentials andMaxwellian molecules, 8v 2 IR3; 0 < �(0) � �(v); (2:7)and according to a classical theorem (Cf. [Sc] for example), the operator Kdoes not change the essential spectrum of ��(v), which implies that nearzero, only pointwise spectrum can exist.The corresponding information about the decay of the solution of eq. (2.1)is that there exists a strictly positive �0 such that if g(0; v) is in L2(dv) andZv2IR3 g(0; v) i(v)dv = 0 for i = 0; ::; 4; (2:8)then jjg(t; v)jjL2(dv) � e��0t jjg(0; v)jjL2(dv): (2:9)Note that in the case of Maxwellian molecules, the constant �0 is knownexplicitly, as is in fact the whole spectrum of L (Cf. [WCh, Uh]).The case of soft potentials is more intricate, since8v 2 IR3; 0 < �(v) � �(0): (2:10)According to (2.10), the continuous spectrum of L touches 0 and thereforeone cannot hope to �nd an exponential decay for the solutions of (2.1). How-ever, Ca
ish was able to prove in 1980 (Cf. [Caf 1]) the following estimate:4



If 3 < s < 5; 0 < � < 1=4, g(0; v) is in L1(e�v2dv) and (2.8) holds, thenthere exist C; � > 0 (� being known explicitly) such thatjjg(t; v)jjL2(dv) � Ce��t 2s�2s+3 jjg(0; v)jjL1(e�v22 dv): (2:11)This estimate is based on the fact that the operator K does not change inan essential way the long time behavior of the solution h of the equation@h@t = ��(v) h: (2:12)The same kind of results can be obtained with another method (Cf. [De 1]).The reader can also refer to [Pa], [Kl] and [Cz, Pal] to obtain informationwhen a radial cut{o� or no cut{o� at all is assumed.3 The Nonlinear, Spatially Homogeneous Equa-tion3.1 Position of the problemThe spatially homogeneous Boltzmann equation writes:@f@t = Q(f; f); (3:1)whereQ(f; f)(t; v) = Zv12IR3 Z!2S2 ff(t; v� (! � (v�v1))!) f(t; v1+(! � (v�v1))!)� f(t; v) f(t; v1)gB(jv � v1j; �)d!dv1: (3:2)Estimates (1.7) implies the following formal conservations,Zv2IR3 g(t; v) i(v)dv = Zv2IR3 g(0; v) i(v)dv for i = 0; ::; 4: (3:3)Moreover, the entropy inequality becomesZv2IR3 g(t; v) log g(t; v)dv � Zv2IR3 g(s; v) log g(s; v)dv for s � t: (3:4)The usual conjecture is that solutions of eq. (3.1) of �nite mass, energy andentropy should converge to the absolute Maxwellian m(v) of same mass,momentum and energy. Of course, in order to prove such a conjecture, oneneeds to know the existence of a solution of eq. (3.1). We give here theresults obtained in this direction for various types of cross sections and indi�erent spaces. 5



3.2 Hard spheresFor hard spheres, Carleman proved in 1933 (Cf. [Ca]) the existence of asolution f(t; v) to eq. (3.1) when the initial datum f(0; v) is continuous andsatis�es supv2IR3(1 + jvj6+�) f(0; v)< +1 (3:5)for some � > 0. This solution converges to m(v) in L1(dv) when t tends toin�nity.3.3 Hard potentials with cut{o�For hard potentials with cut{o�, there is a lot of results in various spaces,among which the followings:In an L1 setting, Maslova and Tchubenko extended in 1976 (Cf. [Ma, Tc])the result of Carleman in the following way:If the initial datum f(0; v) satis�essupv2IR3(1 + jvj�) f(0; v)< +1; (3:6)where � depends on the cross section B, then the same result as in the caseof hard spheres holds.In an L1 setting, Arkeryd proved in 1986 (Cf. [Ar 3]) that if the initialdatum f(0; v) satis�esjjf log f(0; v)jjL1(dv) + jjf(0; v)jjL1((1+jvjk)dv) < +1 (3:7)for some k > 2, then a solution of eq. (3.1) exists and tends tom(v) stronglyin L1((1+jvjk0)dv) when k0 < k (The weak convergence was proved in earlierpapers (Cf. [Ar 1], [Ar 2])).Moreover, this result was improved by Arkeryd in 1988 when f(0; v)possesses moments of order high enough (Cf. [Ar 4]).More precisely, if the mass, momentum and energy of f(0; v) are �xed,there exists � > 0 and k0 � 3s�7s�1 such that if k � k0 and f(0; v) satis�esjjf log f(0; v)jjL1(dv) + jjf(0; v)jjL1((1+jvjk)dv) < +1; (3:8)then for any 
 < �, k0 < k,jjf(t; v)�m(v)jjL1((1+jvjk0)dv)6



� C(k0; 
; f(0; :)) e�
t jjf(0; v)�m(v)jjL1((1+jvjk0)dv): (3:9)This improvement is based on the fact that when t is large enough, f(t; v)approximates m(v) in L1 norm (because of the result mentionned above),and therefore one can apply the theory of the linearized equation (althoughwith a lot of new di�culties).This theorem is now improved by the results on moments obtained in[De 4]. Namely, the conclusion (3.9) holds for any k0 > 0 as soon as estimate(3.7) on the initial datum holds.The same kind of results is now available in the L1\Lp setting. Gusta�sonproved in 1988 (Cf. [Gu]) that for 1 < p � +1; k1 � 2, and s�5s�1 � k �k1 � s�5p(s�1) , ifjjf log f(0; v)jjL1(dv)+ jjf(0; v)jjL1((1+jvjk1)dv)+ jjf(0; v)jjLp((1+jvjkp)dv) < +1;(3:10)then there exists a solution of eq. (3.1) such that f(t; v) tends to m(v) inL1((1+jvjk01)dv)\Lp((1+jvjk0p)dv) for every k0; k01 such that 0 � k01 < k1 and0 � k0 < k (for p = +1, the initial datum f(0; v) must also be continuous).This result was improved by Wennberg in 1992 (Cf. [We 1]) in order toobtain the exponential decay in that kind of norms.More precisely, if the mass, momentum and energy of f(0; v) are �xed,if 1 < p < +1, and � > 0, then there exists � > 0 and k0 � 5 � 3=p suchthat if k0 < k < k1 � �p and f(0; v) satis�esjjf log f(0; v)jjL1(dv) + jjf(0; v)jjL1((1+jvjk1+�)dv)+ jjf(0; v)jjLp((1+jvjp(k+�))dv) < +1; (3:11)then for any 
 < �, k0 < k, k01 < k1,jjf(t; v)�m(v)jjL1((1+jvjk01)dv)\Lp((1+jvjpk0)dv)� C(k0; k01; 
; f(0; :)) e�
t jjf(0; v)�m(v)jjL1((1+jvjk1 )dv)\Lp((1+jvjpk)dv):(3:12)Wennberg has also extended in 1993 the results of [De 4] in this context,the assumption (3.11) can therefore be relaxed (Cf. [We 3]).Finally, results about the uniformity of the decay were found by Carlen(Cf. [Car]). 7



3.4 Maxwellian moleculesThe case of Maxwellian molecules is well{adapted to the search of explicitsolutions. The exponential convergence of every moments of the solution of(3.1), �rst discovered by Truesdell, is now well{known (Cf. [Tr]). Moreover,we recall the BKW mode,f(t; v) = (2��)�3=2e� v22� f1 + (1� � 1)( v22� � 32)g (3:13)(Cf. [Bo 1] and [Kr, Wu]), where � = 1�e��t, and in which the exponentialconvergence towards equilibrium is clear. Note also the following result byBobylev (Cf. [Bo 2]), based on explicit computations:We consider an isotropic initial datum f(0; jvj) for equation (3.1) such thatZv2IR3 f(0; v) (v)dv = (1; 0; 0; 0; 3): (3:14)We write then the Taylor expansion of its Fourier transform with respect tothe variable v: f̂ (0; �) = e� �22 +1Xn=0 un(0)�2nn! ; (3:15)and we assume that supn2IN jun(0)j1=n � q3=7: (3:16)Then there exists K > 0 (explicitely known), such thatjf(t; jvj)� (2�)�3=2e� v22 j � Ce�Kt: (3:17)Results in this direction are also proved by Toscani (Cf. [To 1]).Moreover, Bobylev proved also the following result (Cf. [Bo 2]):For every � 2 [0; K[, one can �nd an initial datum f(0; jvj) (with alge-braic decay when jvj ! +1) and C1; C2 > 0 such thatC1e��t � jf̂(t; �)� e� �22 j � C2e��t: (3:18)This seems to imply that no uniformity can be obtained for the rate ofexponential convergence towards equilibrium unless some properties of nicedecay when jvj ! +1 on the initial datum are assumed.Finally, note also the results of Petrina and Mischenko in 1988(Cf. [Pe, Mi]) about exponential convergence towards equilibrium for crosssections of the typeB(jv � v1j; �) = �1(�) + jv � v1j2�2(�): (3:19)8



3.5 Soft potentialsSolutions f(t; v) of eq. (3.1) with that kind of potentials (with s > 3) areknown to exist (Cf. [Ar 5]), but no result of convergence of the completefunction f(t; v) towards m(v) is proved. This is mainly due to the lack ofuniform estimates on the moments of order higher than 2 of f . One canhowever prove that there exists a sequence tn going to in�nity, such thatfn(t) = f(t+ tn) converges weakly to m(v) as soon as the moment of order3 is initially bounded (Cf. [De 4]).We have also the following estimate when f(t; v) � C1e�C2jvj2 for someC1; C2 > 0, with or without the cut{o� assumption (Cf. [De 2]):infm Maxwellian Z 2tt Zv2IR3 j log f(s; v)�m(v)j e�(C2+�)jvj2 dvdst � K�pt (3:20)for every � > 0, which seems to imply at least an algebraic decay (recall thatin the linearized case, the decay is proved to be superalgebraic).Note also that Wennberg extended this kind of estimates in the case ofhard{spheres and hard potentials (Cf. [We 2]).3.6 Hard potentials without cut{o�In that case, Arkeryd proved in 1982 (Cf. [Ar 2]), using non{standardarguments, the existence of a solution of eq. (3.1) converging weakly in L1to m(v) when t ! +1 as soon as hypothesis (3.7) holds.Elmroth gave also a standard proof in 1984 of the same result (Cf. [El]).4 The Full Nonlinear Boltzmann Equation near aMaxwellian4.1 Position of the problemMaking in eq. (1.1) the change of variables (2.1), one gets@g@t + v � rxg = Lg + �(g; g); (4:1)where L is de�ned in (2.3) and�(g; g)(v) = 
�1=2(v)Q(
1=2g;
1=2g)(v): (4:2)9



In order to study eq. (4.1), one has to do a thorough investigation of thelinearized equation @h@t + v � rxh = Lh: (4:3)When a good decay to 0 in some norm of the solution h of eq. (4.3) isobtained when the time goes to in�nity, it is sometimes possible to provethe existence of a solution to eq. (4.1) when the corresponding norm of theinitial datum is small enough. Such a solution will generally have the samebehavior for large times as the solution of eq. (4.3).We give various examples in which this program is carried out. Thefollowing assumption on the initial datum is always made:Zx2O Zv2IR3 g(0; x; v) i(v) dvdx= 0; (4:4)where O is the domain where the particles evolve.4.2 The equation in a periodic boxThe case of hard potentials with cut{o� was studied by Uka�� in 1974 (Cf. [Uk]).He proved that if � � 3=2, l � 1=2, � > 0, there exists c0 > 0 such that ifthe initial datum g(0; x; v) satis�esjjg(0; x; v)jjL1((1+jvj�+1+�)dv;H l+1+�(dx)) � c0; (4:5)then �; � > 0 and a solution g(t; x; v) to eq. (4.1) exist such that8
 < �; jjg(t; x; v)jjL1((1+jvj�+1+�)dv;H l+1+�(dx)) � �e�
t: (4:6)Note that Shizuta proved a similar result in a paper appeared in 1983, butwith a di�erent norm (Cf. [Sh]).Ca
isch extended this result in 1980 (Cf. [Caf 2]) in the case of cut{o�soft potentials with 3 < s < 5 in the following way:Suppose that 0 < � < 1=4. Then, there exists c0 > 0 such that if theinitial datum g(0; x; v) satis�esjjg(0; x; v)jjL1(e�v2dv;H4(dx)) � c0; (4:7)then C; � > 0 and a solution g(t; x; v) to eq. (4.1) exist such thatjjg(t; x; v)jjL2(dv;H4(dx)) � C e��t 2s�2s�3 : (4:8)10



Note that in both cases, the same kind of decay is observed as in thelinearized, homogeneous case.Note also that Asano and Shizuta have obtained in 1977 (Cf. [As, Sh])the same kind of exponential decay as Uka�� (but not with the same norm)with cut{o� hard potentials and in a bounded convex C3 domain, with pos-itive principal curvatures, together with specular re
exion boundary condi-tions.4.3 The equation in the whole spaceThe case of hard potentials with cut{o� was treated by Ima�� and Nishida in1976 (Cf. [Im, Ni]).They proved that if l;m � 3, there exists c0 such that if the initial datumg(0; x; v) satis�esjjg(0; x; v)jjL1(dx;L2(dv)) + jjg(0; x; v)jjL1((1+jvjm)dv;H l(dx)) � c0; (4:9)then C > 0 and a solution g(t; x; v) to eq. (4.1) exist such thatjjg(t; x; v)jjL1((1+jvjm)dv;H l(dx)) � C(1 + t)3=4 : (4:10)If moreover jjg(0; x; v)jjL1(xdx;L2(dv)) < +1; (4:11)then there exists D > 0 such thatjjg(t; x; v)jjL1((1+jvjm)dv;H l(dx)) � D(1 + t)5=4 : (4:12)Note also that assumption (4.4) is not necessary to obtain estimate (4.10).Finally, Uka�� and Asano considered in 1982 (Cf. [Uk, As]) the case of cut{o�soft potentials with 7=3 < s < 5.Assume that � = � s�5s�1 , n � 2, � = min (n2 (1p � 12); 1), l � n=2 and� � n=2 � �. Then there exists c0 such that if the initial datum g(0; x; v)satis�esjjg(0; x; v)jjL2(dv;Lp(dx)) + jjg(0; x; v)jjL1((1+jvj(�+��))dv;H l(dx)) � c0; (4:13)then C > 0 and a solution g(t; x; v) to equation (4.1) exist such thatjjg(t; x; v)jjL1((1+jvj(�+��))dv;H l(dx)) � C(1 + t)� : (4:14)11



We can see that when x varies in the whole space IR3, the decays arenot as fast as in the linearized homogeneous case.5 The Full Nonlinear Boltzmann Equation nearthe Vacuum in the Whole SpaceA lot of work has been done on this subject (Cf. [Ka, Shi], [Il, Shi], [Be, To],[Ha 1]), and note that in this situation, the solution f of eq. (1.1) is knownto go to 0 when the time becomes large. This is due to the fact that theparticles leave any bounded domain after some time. However, it is alsoknown that the function ~f(t; x; v) = f(t; x + vt; v) converges to a �nitelimit f1(x; v). It was wondered wether or not this limit was necessarilya Maxwellian, since its associated entropy was proved to be nonincreasing.Toscani gave a negative answer to this question in 1988 (Cf. [To 2]), itsproof is based on the fact that the limit f1 may not have the same decaywhen v ! +1 as a Maxwellian. Note also the computations by Pitteri(Cf. [Pi]).6 Renormalized SolutionsWe recall that DiPerna and Lions proved in 1989 (Cf. [DP, L 1]) the existenceof a renormalized solution to eq. (1.1) for a large class of cross sections(including cut{o� hard and soft potentials for s > 2), as soon as the initialdatum has �nite mass, energy, entropy and second moment in the x variable.Hamdache extended this result to the case of a bounded domain withvarious boundary conditions (including specular and reverse re
exion) in1990 (Cf. [Ha 2]).Mass and momentum are known to be preserved for renormalized solu-tions, and the entropy is also known to be nonincreasing (Cf. [DP, L 2]),but the energy might decrease. Therefore one cannot hope to identify theMaxwellian limit (when it exists) of f . However, the same kind of theoremsas in the case of the homogeneous equation with soft potentials can be given.In the case when x varies in the whole space IR3, the same kind ofpointwise decay to 0 of f will be observed as in the case of the equationnear vacuum. Therefore we shall concentrate on the equation in a boundeddomain.Arkeryd proved in 1988, using non{standard analysis (Cf. [Ar 6]), thatin a periodic box, for every sequence tn going to in�nity, there exists a12



subsequence tnk and a global Maxwellian m(v) such that fnk(t; x; v) = f(t+tnk ; x; v) converges to m(v) in L1([0; T ]�O � IR3) weak.This result was extended by Desvillettes in 1990 (Cf. [De 3]) by stan-dard arguments in the case of a domain with reverse or specular re
exionboundary condition.The reverse re
exion case is similar to the case of a periodic box, but inthe case of specular re
exion, the Maxwellian m may depend on x when thedomain has a symmetry of revolution. This is due to the existence in thiscase of another conservation, the conservation of the kinetic momentum.Note that in these works, the dependance of m(v) with respect to theinitial data would be completely known if the conservation of energy wasknown to hold.Finally, Arkeryd proved in 1991 that the above convergences held infact in L1 strong, using non{standard arguments (Cf [Ar. 7]). This resultwas also proved by standard techniques by Lions (Cf. [L]) in 1993, as aconsequence of compactness properties of the positive part of the Boltzmannkernel Q.
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