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Abstract

We prove in this work that under suitable assumptions, the so-
lution of the spatially homogeneous non cut-off Kac equation (or of
the spatially homogeneous non cut—off 2D Boltzmann equation with
Maxwellian molecules in the radial case) becomes very regular with
respect to the velocity variable as soon as the time is strictly positive.

1 Introduction

In the upper atmosphere, a gas is described by the nonnegative density

f(t, @, v) of particles which at time ¢ and point 2, move with velocity v. Such

a density satisfies the Boltzmann equation (Cf. [Ce], [Ch, Co], [Tr, Mu]):
of

where () is a quadratic collision kernel acting only on the variable v and
taking in account any collisions preserving momentum and kinetic energy:
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= 1.4
cost =0 - |Z:ZI|, (1.5)

and B is a nonnegative cross section. When the collisions in the gas come

out of an inverse power law interaction in & (with s > 2), the cross section

writes

B(x,0) = 27 b(9), (1.6)
where b € Li® (]0,7]) and
s+1
sin@b(8) ~ K(s) 6™ -1 (1.7)

for some K (s) > 0 when 6 — 0.

Most of the mathematical work about the Boltzmann equation is made
under the assumption of angular cut—off of Grad (Cf. [Gr]), which means
that bin eq. (1.6) is supposed to satisfy sin 8 6(8) € L'([0, 7]). Note that for
inverse power laws in T,L with s > 2, this assumption never holds (because
of the singularity appearing in eq. (1.7)).

For example, the existence of a global renormalized solution to the full
Boltzmann equation (1.1) is known under this assumption (Cf. [DP, L]),
but it is also the case with most of the works concerning the spatially ho-
mogeneous Boltzmann equation (Cf. [A 1], [A 3], [El], [De 1]):

af

E(tvv) :Q(f)(tvv)v (1'8)

with the noticeable exception of [A 2], where existence is proved for the non
cut—off equation (1.2) — (1.8) when s > 3.

We shall now concentrate on this spatially homogeneous equation (1.8).
When the cut—off assumption is made, it is possible to write

QU =QT ()= S LS. (1.9)
where

e =[_ [ Azof(v’)f(v;)B(|v—v*|,0) sin @ déddv.., (1.10)

and

Lf=Ax/, (1.11)



with -
Alz) = 277/ B(|z|, 6) sin 8 6. (1.12)
4

Then, the solution f(¢,v) of eq. (1.8) can be written under the form
'L d ! 'L d
Jit o) = F(0,0) I O [ Qr (s 0y e SO g (113)
0

But the operator QT is known to be regularizing with respect to the vari-
able v (at least when f € L%*(IR?), and when B satisfies some properties)
(Cf. [L 1]). Therefore, if f(0,v) is not regular (for example if it belongs to
L*(IR2) but not to H'(IR?)), the solution f(¢,v) of eq. (1.8) will at best keep
the regularity of f(0,v) when ¢ > 0. In particular, no regularizing effect is
expected for the solution of the cut—off homogeneous Boltzmann equation
(1.8).

On the other hand, one can hope some regularizing properties for the
solution of the non cut—off homogeneous Boltzmann equation (1.8), (1.2)
(when (1.6), (1.7) holds).

One of the reasons of assuming such a conjecture is that an asymptotics
of the Boltzmann equation when the cross section is concentrating on the
grazing collisions (these collisions are those that are neglected when the
cut—off assumption is made) leads to the Fokker-Planck-Landau equation
(Cf. [De 2], [Dg, Lu]), which is known to induce regularizing effects (or
at least compactness properties, even in the spatially inhomogeneous case

(CL. [L 2])).

This article is devoted to the proof of such a conjecture in the simpler
case of the spatially homogeneous Kac equation. We recall that the original
Kac model is used to describe a one-dimensional spatially homogeneous
gas in which the collisions preserve the mass and the energy, but not the
momentum (Cf. [K], [MK]).

Note also that the theorems of sections 2, 3 and 4 hold for the spatially
homogeneous non cut—off 2D radially symmetric solutions of the Boltzmann
equation with Maxwellian molecules, as is shown in Appendix C.

In the Kac model, the nonnegative density f(t,v) satisfies

af

5 (o) = K()(t,v), (1.14)



where

& dé
Koy = [ ] 0l - F) fe)) v, (115
and
v" = vcosf — v, sin b, (1.16)
v = vsin @ + v, cos b. (1.17)

The analysis leading to eq. (1.13) still holds in this case. Therefore, one
can at best hope that the regularity of f(0,v) is conserved for the solution
f(t,v) of eq. (1.14) when ¢t > 0. This affirmation is indeed easily proved
when f(0,v) € L*((1 + |v|?)dv) (Cf. theorem A.1 of Appendix A), but also
in the more difficult case when f(0,v) lies in some Hélder spaces (Cf. [G])
(Note also the results in the same spirit for the Boltzmann equation of [We]).
We will therefore concentrate in this work on the equation
of

E(t,v) = Kz(f)(t,v), (1.18)

where

Kooy = [ [ L) £ = F0) S0} B8 dbde, (1.19)

with
Bla) ~ 2™ (1.20)

when z — 0% and a €]1, 3].

This kernel is obtained by analogy with the non cut—off kernel (1.2),
(1.6), (1.7) of Boltzmann equation.

However, the analysis in the case when a = 3 (corresponding to the
Coulombian interaction in the case of the Boltzmann equation (Cf. [Dg, Lu]))
is very different from the analysis when « €]1,3[. Therefore, we will only
consider in the sequel the latter case.

We begin in section 2 by proving that the existence of a solution holds for
eq. (1.18) — (1.20). We prove then in section 3 our main theorem. Namely, if
7(0,v) € LY(IR,, (1 + |v]?)dv) for all v > 0, the solution f(¢,v) of eq. (1.18)
— (1.20) lies in C'*°(IR,) for all ¢ > 0. Finally, in section 4, we consider
the case when only a finite number of moments are known to be initially
bounded for f. The reader will also find for the sake of completeness some
classical results used throughout this work in appendix A and B at the end
of the paper, appendix C being devoted to the extension of the results to
the 2D radially symmetric Boltzmann equation with Maxwellian molecules.



2 Existence for the non cut—off Kac equation
We prove in this section the following theorem:

Theorem 2.1: Let fo > 0 be an initial datum such that

[ o) (1 ol + [Hog fo(o)) do < +ox. 21)
ve
and let B > 0 be a cross section satisfying the following property:

6o, f1 > 0, €]1, 3], Va €]0, 7], Bolz|™ < Bz) < frlz|™7. (2.2)

Then, there exists a nonnegative solution f(t,v) € L ([0, +ools; L1(IR,, (1+
[v]*)dv)) to eq. (1.18), (1.19), (2.2) with initial datum fo in the following
sense:

For all function ¢ € W5 (IR,), we have

g v v)dv = b u. v v o) do.dv
8t/ue]Rf(t’ ) o(v) d —/UER/U*GRA (v,0.) f(t,0) f(t, v.) doudv, (2.3)

where

Koo e) = [T {ole") = o0)} 3(61) db. (2.4)

=—T

The conservation of mass

/UERf(t,v) dv = /UER folwv) dv (2.5)

holds for these solutions, but the energy may decrease.
Moreover, if for some p € IN, there exists Cy1 > 0 such that

| Jolo) (L o) dv < Ca, 2.6
veEIR

one can find Cyo > 0 such that for allt > 0,
/ F(t,0) (14 [0]P) do < Cas. (2.7)
vER

Finally, if assumption (2.6) holds for some p > 2, the conservation of
energy

/UERf(t,v) |v|2dv:/ L Jo(w) ol av (2.8)

vE



holds.

Remark: The analogue of this theorem is proved in [A 2] for the Boltz-
mann equation (with s > 3). The proof given here is very similar to that of
[A 2].

The sense to give to the right term of definition (2.4) will become clear
in the sequel. Note however that because of the singularity of 3, this term
is not defined if ¢ is not regular (W?2°°).

Proof of theorem 2.1: We introduce for all n € IN* the truncated
sequence

Note that because of assumption (2.2), there exists for all ¥ > a—1 a strictly
positive Cy 3(7) such that for all n € IN*,

| 1= oo singP) Bu(l8) 8 < Cas(a). (2:10)
f=—m
It is also clear that
[ = cosor ™ [sinol) 15060) - 56D 1ds —» 0. (2.01)
f=—m n 00

Then, we consider the (unique) nonnegative solution f, (¢, v) of the clas-

%itn(t7 v) = Kg,(fn)(t,v) (2.12)

with initial datum fy (for the existence and uniqueness of such a solution,
Cf. theorem A.1 of Appendix A). This solution is known to satisfy the
conservation of mass and energy, and the entropy inequality (Cf. theorem

A.1 and A.2 of Appendix A):

sical Kac equation

/ Fult, 0) dv:/ fo(v) dv, (2.13)
vEeER vEeER
/ fn(t,v)|v|2dv:/ Folv) [o]? do, (2.14)
vEeER vEeER
/ Fult,0) Tog fu(t, v) dv < / fol(v) log fo(v) dv. (2.15)
velR vER



It is now classical (Cf. [De 3] for example) that eq. (2.13) — (2.15) ensure
the existence of a constant C5 4 such that

[ Flen) O+ P o 0 o < Coae (2.16)

Because of Dunford—Pettis theorem (Cf. [B]) and of estimate (2.16), one can
extract from (f,,),en asubsequence still denoted by (f,,)nen and converging
to a function f in L°([0, +oo[s; L1(IR,)) weak *.

Moreover, for all ¢ € L*([0,4oc[) and all ¢ € L ([0, +oo[;x IR,) such

loc
that
t
lim  sup [4(t, v)| =0, (2.17)
[v|=+00 teR |U|

we have

A+mQ@)AERﬁxuv)wﬁﬂﬁdmﬁn:jglfmq@)Aeﬁfﬁﬂﬁ¢@w)MdL

(2.18)
Denoting for all ¢ € W**°(IR,)
K{(v.0) = [ {0(") = 6(0)} B (10]) . (219
it is clear that (using the change of variables (v, v.,8) — (v, v, —8)),
ﬁ/ ﬁ@mwmmz/ / K2 (0, 0) fults v) fult, v.) dosdo,
ot vER vER Jux€ER

(2.20)
We shall now prove that when ¢ € W% (IR,), it is possible to pass to the
limit in eq. (2.20) and to obtain eq. (2.3). We begin by the

Lemma 1: There exists a constant Cy5 > 0 (depending on o) and a
sequence C'y 5(n) converging to 0 such that the following estimates hold:

1. for all € W5 (IR,),

K2 (0,02)] < Cos (14 [0 + [0 ) |6l lwoce (s (2:21)
2. for all € W3 (IR,),
K20, 0.) = K2 (0,0)] < Cas(n) (1+ [0]F 4 [0 5) [|6]lw2.oe (120 -

(2.22)



Proof of lemma 1: Note that
P(v") — ¢(v) = d(vcosd — v, sin 0) — P(v)
= (v(cosf — 1) — v, sin ) ¢'(v) 4+ (v(cosf — 1) — v, sin §)*
x /ul (1) qb"(v +u (v(cosf — 1) — v, sin 0)) du. (2.23)

=0
Therefore, for all § €]0, 1],

[6(0") = $(v) + vasin 8 ¢ (v)] < [S(0") = G(v) + vosin § ' (v)]

x |v(cos® —1) ¢'(v) + (v(cosf — 1) — v, sin §)*

§

X /ul (1—w) (b”(?}—l—u(U(COSH —1) — . sin@))du

=0

< 8 (L [0"7) (3 116llwrooqany) ([ cos b — 117 + [ sin 6]%)
(L [l + [0 20) 1]y e
< Cos lI6llwace (| cosf — 1 + [ sin 6 (1 + o] ¥ + [0 (2.24)

for some strictly positive constant C'5¢. But 8 — sin 8 is odd and therefore

i e =1 [ 460" = o(o)} Bu(l8) d8

[T {60") = 6(v) + vasin 0 (1)} B.(16]) d6)

0=—m

Kis

< Cys ||¢||W2,00(Rv)/€ (| cos® — 11° + |sin 8]%°) 5,,(|0]) a6

X (1 o1 4 o T, (2.25)
We now use eq. (2.10) with § = 142 and obtain

ats ats
) Coe (L4 o]0 + v ) (|l lw2co (), (2.26)

1+ o

|K7?(U7U*)| <2C53( 5

which clearly implies estimate (2.21). In order to get estimate (2.22), we
use exactly the same proof, except that eq. (2.10) is replaced by eq. (2.11).



Lemma 2: There exists a constant Co7 > 0 (depending on «) such that
when ¢ € W (IR,) satisfies

, Pl

<+ 2.27
ol = sup 5 < oc 2.27)

one has the following estimate:
K5 (0, 0] < Cor (116" ooy + I (14 o + o). (2.28)

Proof of lemma 2: According to eq. (2.23),

|6(0") = &(v) + vusin ¢/ (v)] = |v (cosd — 1) ¢/ (v)

1
+ (v(cosf — 1) — v, sin 0)2/ (1 —u) ¢"(v+u(v(cos@ — 1) — vy sin b)) du
u=0
< Jcosd — 1[[ol [§/(0)] + 4 (Jcosb — 1] + [sin 62) (Jof? + [0} 116”]
< Cas(leosf — 1+ [sin 0%) (L+ [0 + [0u]*) (116"l oo,y + 111611 (2:29)

for some constant Cy g > 0.
Using now the oddity of § — siné as in lemma 1, and estimate (2.10)

for v = 2, we get estimate (2.28).

We now come back to the proof of theorem 2.1.
Suppose that ¢ € W2*(IR,), ¢ € L'([0,+oc[), and v € IR. Then,

because of lemma, 1,

/t /U*ER (v, 02) fult, vs) dvs q(t) dt

/ / (0, 0.) f(t, v.) dv. g(t) di

t vxER

< / S I = KO0 altv.) do.g(0) dr
t=0 vxER

+oo
[ KO0 (altv) = (e e} do-g(0) dif
= vx€IR

< o lalliagoocto 16wy [ (1101 10 )t 02) o

Ux



+| " / K?(v,0.) {fu(t, v0) — f(t,00) ) dvsq(t) dt|. (2.30)
t=0 Jux€R

But the first term of eq. (2.30) tends to 0 because of estimate (2.16). More-
over, because of lemma 1, we have for all v € IR,

i |K¢(v72v*)|
vel2+oo |vs]

=0. (2.31)

Therefore, estimate (2.18) ensures that the second term of eq. (2.30) tends
to 0. Finally, we obtain for all ¢ € W2 (IR,) and v € IR, the convergence
in L ([0, +oo[;) weak * of

L9(t,0) = / K2 (v,0) fult, v.) do, (2.32)
v« €ER
towards
L4(t,0) = / K (v, v.) f(t, vs) dos. (2.33)
v« €EIR

We now observe that for all ¢ € W2°°(IR,) and v € IR, the sequence

2159
07 (v, v.) = 8@? (v, v2) (2.34)

is bounded in L™ (IR,). More precisely,

I*K? L
S ol =1 [ sin? 67" 3.(161) do
< Co3(2) 19”1 () (2.35)
Moreover,
OK¢

Gl =1 [ —sin0d ") Bl do

=17 s 0o ) = o)} (18] d

g/ | sin ] {|v| lcosf— 1| + o] |sin0|}
f=—m

1
>< /
u=0

(b”(v + u(v(cosf — 1) — v, sin 0)) du 3,(|6]) d6

< 2C25(2) [|¢"]1n (1+ o]+ [os]) (2.36)

10



because of estimate (1.10).
Therefore, using lemma 2, for all ¢ € W% (IR,) and v € IR,

dL; g
n(t )| = |— K?(v,0,) fo(t,v.) dv,
Sl =15 [ ) ) o

|AEIRA*GRKB (w,vs) folt,w) folt, vs) dvdw]

I*KY .
<[ ] Con (15 o s + L)
weER Jui€R

X (14 |w]? + |v.)? )fn(t7 w) fo(t, ve) doudw

< CF 4 Cor{Cas2|9" Lo (o) + 2 C2.3(2) Cos (14 [0]) 19" oo (1) }-
(2.37)

It is also clear that

L2 <1 [ Cos (41l 410l £t v o lldllwormr,

a+5
< CraCos (L+[v]77) [|9llw2eo(ry)- (2.38)

Therefore, for all ¢ € W%*(IR,) and v € IR, the sequence L%(-,v) is
bounded in W'°([0, +oo[;). Using now the weak convergence (2.33) and
Rellich theorem (Cf. [B]), it is clear that for all ¢ € W?*(IR,), and
a.e. (t,v) € [0,+oo[;xIR,, the sequence L? tends to L?. Therefore, for
all ¢ € L1([0, +o0[) and all T'> 0 such that Supp ¢ C [0,7],

+oo
¢
/75:0 {AeJR A*GRKn(%U*) fu(t,0) fu(t, vi) dudo.

_ AER /U*ER K% (v, v.) f(t,0) f(t, 0.) dodo.) q(t)dt‘

[ e nend- [t s

< s { [ Rm(t 0) = L0, 0) fults0) o lallzso.soct

te[0,1]

_I_

{/ ) (falt,0) = F(t,0)) dv}g(t) dt‘. (2.39)

11



But according to estimate (2.38),

lim sup  sup ———— = 0. (2.40)
lval=+00 te[0,400[ neN* U]

Therefore, estimate (2.18) ensures that the second term of (2.39) tends to 0.
We finally use Egorov’s theorem, estimate (2.38), the equiintegrability
of the sequence f, (obtained by estimate (2.16)) and the convergence a.e.
of L to L?, in order to obtain the convergence of the first term of (2.39)
to 0.
As announced before, we can now pass to the limit in eq. (2.20) and
obtain the first part of theorem 2.1.

In order to prove the second part of theorem 2.1, we observe that if
assumption (2.6) holds, then theorem A.2 (Cf. Appendix A) ensures the
existence of C'4.3 > 0 such that

/ Fult,0) (14 o)) dv < Cas (2.41)
vER

(note that C'4 3 does not depend on n).
But estimates (2.18), (2.20) and (2.21) imply for a.e. ¢ > 0 the conver-

gence of [ _p fu(t,v)x(v)dv to [, p f(t,0)x(v)dv when x € CZ(IR,).
Therefore, for all R > 0,t > 0,

[ a0 0+ e do < Cas, (2.42)
lv|<R

Then, estimate (2.7) holds because of Fatou’s lemma.

Finally, we prove the conservation of mass (2.5). We observe that for
some function Yg € C*(IR,) such that Supp (xygr) C [-R— 1, R+ 1],

1 2
[ feoa= [ )l < ﬁ/w{fn(m+f<t,v>}|v| dv

+ |/ o) Loty 0) = f(t, 0)} do] (2.43)

for any R > 0. But according to the properties used in the proof of estimate
(2.42), estimate (2.43) ensures that the conservation of mass (2.5) holds.

In the same way, we can see that under assumption (2.6) with p > 2, the
conservation of energy (2.8) holds.

12



3 Regularization properties when all polynomial
moments are initially bounded

This section is devoted to the proof of the following theorem:

Theorem 3.1: Let fo > 0 be an initial datum such that for all p € IV,
there exists Cs1(p) > 0 satisfying

/U o) (L4 1" oz fo(w) v < Coa(p), (3.1)

and let 3 > 0 be a cross section satisfying estimate (2.2).

Then, if f(t,v) is a nonnegative solution of eq. (1.18), (1.19), (2.2) in
the sense of eq. (2.3) with initial datum fo, we have for allt > 0 and all
g€ IN:

f(t,v) € L*([t, +oo[s CU(IRy)), (3.2)

or in abridged form,

f(t,v) € L7(]0, +oofs; C*(IRy)). (3:3)

Proof of theorem 3.1: According to theorem 2.1, we know that for all
p € IN, there exists C52(p) > 0 satisfying

vt € [0, +ool, / T () Ao Caglp). (34)

ve

Therefore, the Fourier transform
fg = [ e g v (3.5)

veER
of f is such that for all p € IV,

o f

|8—€p(t’€)| < Csa(p). (3.6)

But v — €7 lies in W*°°(IR,), and therefore it is possible to use eq. (2.3).
Then, a simple calculation leads to the following equation for the Fourier
transform of f:

of

SO = [ {tEcos8) . gsing) - F(1,0)f(1.) 56 . (37)
O=—m

13



Note that this equation is used in [G], and that it also appeared in [De 1],
though for the Laplace transform of f. We rewrite it under the form

3f

o 2/ . f(t.&sin6) + f(t, ~¢sin6) —2f(¢,00} (161) a6 f(t,€)

+/e {f(t,&cos ) — f(£,€)} f(t,&5in 60) 5(10]) do. (3.8)

We now use the notations

a(t,§) =

Kis

5 [ {F(gsing) & 1. ~€sing) — 2 (1,00} (61) db, (3.9)

and

0.6 = [ (F(t.ccost) = F1.€)) it sin) (8D b (3.10)

Therefore,
O 11,6 = —a(t,€) F.)+ bit €, (3.11)
and
f(. = fo.¢ ““”r/ Sl g, (3.12)
But
f(t, &sin ) + f(t, —Esin ) — 2f(2,0) < 0, (3.13)

because f > 0. Therefore, a(t,&) is real and

s

0,625 [T (2000~ J(t.Esme) — €} 5(0) do. (311

Then, we make the change of variables
u = €] sin 6. (3.15)

We get

1 rlel 5 ;
> A:_|£|{2f(t70)—f(t7U) J(t;—u)} Baresin Wm

(3.16)

14



But for any z € [0, 7],
B(z) > Bolz|™7, (3.17)

and therefore

.92 2 (7 2700~ i - fe -0y E g

Bo o1 [ " X . u
> e [T A0 = ) = f )l e 31)

And since
210,00~ fitw) — 5~ = 1ol [ (10 DLt vy
- _|u|2/;_ (1—|r |)Re(8€‘§(t ru)) dr (3.19)

we get

Bo ay [l e 9% f
o062 I [T WP [ (I Re(= G () drdu

(3.20)
But ,
0*f 2
~5ga 0 = /JERf(t, o) |o]? dv, (3.21)
and estimate (2.8) ensures that
e = [ g o (322
o2 ver”’ ' '
Moreover, if we denote
F= / folv) [v]2do, (3.23)
vER
we get (thanks to estimate (3.6)), that for any 7 such that
(3.24)



the estimate

2 f FE
_ 2L > = .
Re( 852(tﬂ?))._ 5 (3.25)
holds. But estimates (3.20) and (3.24) ensure that
nf(|¢], 75 7)
alt,€) > B piget [T e,
u=- 1nf(|f|vm)
fo 193— ( L )3_a
>0 ple|e1237( inf —_— . 2
> o Ele it (1€l o) (3.20

Therefore, there exists C33 > 0, C'5 4 > 0, such that when || > Cs3, t > 0,
a(t,§) > Ca4]|"7". (3.27)

We will now use eq. (3.12) and estimate (3.27) to prove theorem 3.1 by
induction.

Lemma 3: We make the assumptions of theorem 3.1. We suppose
moreover that there exists § > 0 such that for all t; > 0, ¢ > 0, we can find
Css(e1,t1) > 0 satisfying

Css(€1,t1)

V¢ € IR, sup | f < . 3.28
¢ sup s €)1 < T (3.29)
Then, for all ty > 0, €1 > 0, we can find Cs¢g(€1,t1) > 0 satisfying
. C t
vee R, suplfis )] < —2olal) (3.20)
52t L[t

Proof of lemma 3: We fix t; > 0,¢; > 0. According to eq. (3.12), for
any t > ¢y,

fwazﬂ 0, ¢t
+/ i fﬁ@+/ —[lem0d g (3.30)

Therefore, estimate (3.27) ensures that for any ¢ > ¢1, [£| > Cs5 3,

|a—1

|f(t,€)| < |f(07€)| e—Caatlé

16



t o t o
_I_ Sup _1 |b(87€)| 6_034%|£| ! _I_ Sup |b(87€)| /t 6_(t—5) C43.4 |£| 1d8.
56[0,%1] 2 52% >

(3.31)
But for all s € [0,4+[,¢ € IR,

|b(s,8)] =

/; {f(s,&cos ) = f(5,6)} f(s 58in0)ﬂ(|0|)d0‘

=—T

s 1 ¢
/ g(coso—1)/ gf( 4wk (cosd—1))du f(s §sin0)ﬂ(|0|)d0‘
0:—7’[‘ u=0 g

< C3(2) C3.2(0) C30(1) €] (3.32)
Therefore, estimate (3.31) implies that for any ¢ > t1, |£] > Cs.3,

2 a— t t a—
[F(1,6)] < Caa(0) @I 4y 5(2) C(0) Cn(1) €] B0 T

|b(875)|

According to assumption (3.28)7 we have for all € > 0,

Css(e, %)

V¢ € IR, SUP|f( )|_1_|_|€|5 €

3]
s> 5

(3.34)

Therefore, using corollary B.3 of Appendix B and assumption (3.1), there
exists for all € > 0 a strictly positive constant Cs 7(e,¢1) such that

Csr(€,t1)

of
V¢ € IR, sup | == T+ e

P l5¢ (3.35)
s> 5 -L

L (s.)l <

We now compute (for all |£] > C53, € > 0),

sup [b(s,§)| = sup
5271 52%

| A7 geos0) = Fs, ) F s, 5in0) (1) dt

=—T

1

¢ T cosf — 1]

< sup /j |F(s, €cos8) — f(s, )"~

I [ s cost—vyan] = s im0 ao
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bsup [ [f(sigcost) = f(s. ) (s €sind)| 5(18])
10+31<%

52%
boup [ (f(s€eos) = fls,€)] 1f(s.Esin )| B(6) d6. (3.36)
52%1 r<ol<n
We now use estimates (3.34), (3.35) and resume the computation (for all

|€| Z 03.376 > 0)

sup [b(s,€)| < 2Cy5 (a — 1+ 2¢) €] T C3.5(0)

3]
2 5

% (M 1—(25%+e) (M e

L el L+ 4l
T —o Cas(e, &) 3T, 4 Cas(e, L)
+2 81 (=) 77 C32(0) ——F2— 4 261 (—) " U35(0) ——"2—
4 L el ! Ll
a=—1 —e t _(e=l., a=l_.
<205 3(2) |€|T_5+26 C3.2(0)262 (Cs.5(e, 51))1 %3 +)(C3.7(€7t1)) 7t

—a —Ste oiz=¢ t
+481(5) 7 Coal0) g2 Csle, )

< Cysle,ty) 6|57 0% (3.37)

for some strictly positive constant Cs s(e, t1).
We now use estimate (3.37) to precise estimate (3.33). We get for all
t> 1, |€| > 03.37 €> 07

|a—1

. a— t ¢
|F(8,€)] < Ca2(0) e+ EI 4 € 5(2) C3.2(0) Cs(1) 51 ¢l e=Coaz e

Csgle,t ac
e N (3.38)
C3.4
Taking ¢ = %, we get some strictly positive constant Csg(eq,t1) such that

when ¢ > ty, |£] is large enough,
~ a—1
[F(L )] < Cagler ta) 6775 774 (3.39)
Finally, using estimate (3.6) for p = 0, we obtain estimate (3.29).

We now come back to the proof of theorem 3.1. We already know (be-
cause of estimate (3.6) when p = 0) that assumption (3.28) holds when

18



d = 0. Then, lemma 3 clearly implies by induction that for any ¢ > 0,4 > 0,
there exists a strictly positive constant C's 10(, ¢) such that

VEER,  sup|f(t,&)] < Cs0(l,9)

3.40
tzt EarT (3.40)

Using now the Sobolev inequalities (or more simply the fact that H*(IR) =
C*(IR)), we get theorem 3.1.

4 Regularization properties when some polynomial
moments are initially bounded

We extend in this section the results of section 3 when assumption (3.1)
does not hold any more.

Theorem 4.1: Let fo > 0 be an initial datum such that

3N 22,Caa >0, [ fo() (L ol + [log fo(v)) do < Caa,
vERR

(4.1)
and let 3 > 0 satisfy (2.2). Then, if f(t,v) is a nonnegative solution of eq.
(1.18), (1.19), (2.2) in the sense of eq. (2.3) with initial datum fy, we have
for allt > 0 and all ¢ > 0:

f(t,0) € L°([T,+ool;; H¥~2(IR,)). (4.2)

Corollary 4.2: In particular, under the assumptions of theorem 4.1,
we have for allt > 0 and all € > 0:

ft,v) € L([%, +oo[; C* 21 (IR,)). (4.3)

Proof of theorem 4.1: Corollary 4.2 is a straightforward consequence
of theorem 4.1 and of classical Sobolev inequalities (Cf. [B]).

We now prove theorem 4.1. We use the same strategy as in theorem 3.1.
Estimates (3.4) and (3.6) still hold, but only for p < 2r. Moreover, eq. (3.9),
(3.10), (3.12) also hold, and lead to estimate (3.27) as in theorem 3.1.
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However, lemma 3 is changed in the following way:

Lemma 4: We make the assumptions of theorem 4.1. We suppose
moreover that there exists § > 0 such that for all t; > 0, ¢ > 0, we can find

Cyz(er,t1) satisfying

P Caal€r,tr)
V¢ € IR, su 5,8)| < —=—1—=. 4.4
¢ sup |7(s, )] < PG (4.4
Then, for all ty > 0, ¢ > 0, we can find Cy3(€1,t1) satisfying
A Casler,t)
V¢ € IR, su s, < — — . 4.5
g 52£|f( €)| 1+|€|5{1_# 21}+ 21_El ( )

Proof of lemma 4: We fix t; > 0,¢; > 0. It is clear that estimate
(3.33) still holds. However, using theorem B.2 of Appendix B, we only get
for all € > 0 a strictly positive constant Cy 4(¢,?;) such that

of Cyale,t
V¢ € IR, sup |8—f(875)| < 4'45((61_12)_6.
52% ¢ 1+ [¢] 2

(4.6)

Then, we note that estimate (3.36) still holds, but estimate (3.37) becomes
(for all |£] > C53,€ > 0),

sup [b(s,€)| < 2Cy5 (a — 1+ 2¢) €] T C3.5(0)

3]
2 5

Caale, %) 1-(25L 4e) Caale,tr) )QT_l‘l'E

S iy Py I
1+ |5§€|5—e 14+ |3§€|5(1—5)—5

Claal(e, %1) 37 o

04.2(67 t—l)
——— 4+ 20 () 2
1 + |\é§€|5—e 4

Caa(0) —2 22
L [

+241(7)7" Cas(0)

a—1 1

< Cusle ty) €T P+ 3+ (24 gp)e (4.7)

for some strictly positive constant Cy5(e, t1).
Then, estimate (3.38) becomes for all [£| > C53,¢ > 0,

|a—1

. am t ¢
F O] < Con(0) 4 K™ 4 € 5(2) Ca(0) Cal1) 5 €] e P07

20



C 7t _a=1_ _a—11 —)e
+%|€| P51 o5 Ly )e, (1.8)

Taking € = ¢ (2 + %)_1, we get some strictly positive constant Cy¢(e,t)

such that when t > ¢y, |£] is large enough,

a

1F(1,6)] < Cugle,t) €757~ 055 5154, (4.9)
Then, lemma 4 is obtained exactly as lemma 3.

We now come back to the proof of theorem 4.1. We already know that
assumption (4.4) of lemma 4 holds when 6 = 0. Moreover, using lemma 4
by induction, we can see that for all {; > 0,¢; > 0,n € IV, there exists a
strictly positive constant Cy.7(e1,¢1, ) such that

Car(er,ty,n)

V¢ € IR, f(t, )| < , 4.10
¢ sup Ol < 7 HERE (4.10)
where (6,)nemv is the sequence defined by
5o =0, (4.11)
o=ty ozt (4.12)

2 2r 2
But this sequence is strictly increasing and converges to 2r. Therefore for
all € >0, > 0, there exists Cy5(¢,t) such that

; Cys(et)
V€ e IR,  sup|f(s,§)]< - (4.13)
s>t 1+ |€|27’ 2
Finally, estimate (4.13) ensures that
F(1,€) € L ([T, ool H¥' 727 (), (4.14)

and theorem 4.1 is proved.

Appendix A: Standard properties of the classical Kac equa-
tion

We prove in this appendix some classical facts about the spatially homo-

geneous Kac equation, and present some others that can easily be deduced
from the theory of the Boltzmann equation (Cf. [A 1]).
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Theorem A.1: Let fo > 0 be an initial datum such that
/ (o) (L4 o) dv < +o0. (A1)
Ve

Then, there exists a unique nonnegative solution f(t,v) of eq. (1.18), (1.19)
in L ([0, +ools, LY(IR,, (1 + |v]?)dv)) with initial datum fo as soon as the
cross section [ in (1.19) belongs to L*([0, 7]).

This solution satisfies the conservation of mass and energy for allt > 0:

/Jer(t, v) dv = AER fo(v) du, (A.2)
[ reabta= [P "

Proof of theorem A.1: We introduce the sequence (f,(¢,v))nen, de-
fined by

folt,v) = fo(v), (A.4)
Fratto) = fole) + [ [ ) fatsel)
_fn-l-l (va) fn+1(svv*)}ﬁ(|0|) deU*ds, (A'5)

and present a proof of existence in the Cauchy—Lipschitz style.
Note that it is easy to obtain (by induction) the conservation of mass
and energy for f,:

/UEB falt,v)dv= /UER fo(v) du, (A.6)

/ fn(t,v)|v|2dv:/ folv) [v]? do. (A7)
vEeER vEeER

Therefore, it is possible to write explicitly f,4+1 as a function of f,,, and the
sequence (A.4), (A.5) is well defined. It is also clear that f, > 0.
Then, we define for all n € IN*,

w) = [ 1l = fao () (4 oy (A)

We get

w0 < [ [ s )~ (o)
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X{ / (1 + |v]* cos® 8 4 |v.|*sin? §) 3(|0)) dO} dvdv,ds
O=—m

+ /::0 /UEIR /U*ER fa=1(5,0) | fa(s,0:) = fa1(s,04)]

X{ / (1 + |v|* cos? 8 + |v.|* sin? 0) 3(|6]) dO} dvdv,ds
4

=—T

s e a0 = L)
< (14 |v|2){ /;_W 5(16)) dO} dvdo.ds

s s s o) — fuls o)
(14 [v[?) /W_W {ﬂ(|0|) dO} dvdv.ds

<Cya t {1 (8) + upny1(s)} ds, (A.9)

5=0
for some strictly positive constant C'4.1. Moreover, we can prove in the same
way that for all ¢ > 0,
U1 (t) S CA.Q t, (Al())

where C'4 5 > 0.
But estimate (A.9) ensures that (when ¢t € [0,7], n > 1),

1
i1 (£) < (Ca + €Y T T) / () s (A.11)

Therefore, for all T' > 0, s € [0,T],n > 1,

15"

Uy (s) < (Caq+ CG Te“21T) o

C'4a. (A.12)
This estimate ensures that the sequence (f,),en satisfies the Cauchy prop-
erty in L5 ([0, +oo[t, LY(R,, (1 + |v]*)dv)). Its limit f clearly satisfies
eq. (1.18), (1.19). Moreover, f > 0 and the conservation of mass and energy
(A.3), (A.4) holds. The last property also ensures that
Je€ LOO([Ov —I'Oo[l‘v Ll(va (1 + |U|2)dv))'

The uniqueness of such a solution is then directly obtained by a Cauchy—
Lipschitz type argument.
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We now consider the polynomial moments of the solution of the spatially
homogeneous Kac equation.

Theorem A.2: Let fo > 0 be an initial datum such that
[ o) (1 ol + [Hog fo(v)) do < +ox. (4.13)
vE
Then, for allt > s > 0, the unique nonnegative solution f(t,v) of eq. (1.18),
(1.19) with initial datum fo (when the cross section 3 in (1.19) belongs to

L*>([0, 7])) satisfies

/ f(t,v) log f(t,v) dv < / f(s,v) log f(s,v)dv
vER R

vE
< / _ Jo(v) 108 1) dv < 42c. (A.14)
Moreover, if
3r € IV, /UER Fo(v) (14 0f?7) dv < +oo, (A.15)

there exists C'43 > 0 (independent of 3) such that for allt > 0:

/ F(t,0) (L4 o) dv < Caa. (A.16)
veER

Proof of theorem A.2: For estimate (A.14), we refer to [A 1], where it
is proved for the Boltzmann equation (for example for Maxwellian molecules
with an angular cut—off).

We now prove estimate (A.16) in the case when r = 2. We can write

2/ f(t,v)|v|4dv:/ / / (|vcos® — v, sin 0]* — |v|*)
ot vER vER Jus€R Jl=—7

X f(t,v) f(t,v) B(|0]) dOdv.dv

:/7r {cos40—|—sin40—1}ﬂ(|0|)d0/ f(t,v)|v|4dv/ F(t, ) do
0=—m vER v

eER

—|—6/€i_ cos2esin29ﬁ(|o|)d0(/ () ol dv)’

vE
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= {/9:_7r cos® 0 sin” 0 3(]6]) dO} { — Q/UERf(t,v) lv|* dv /UeRf(t,v) dv
+6(/JERf(t,v) |v|2dv)2}. (A.17)

Therefore, a simple application of the maximum principle yields

(Joer [, V) |U|2dv)2)
Joer F(t,v) dv '

/ f(t,v)|v|4dv < sup (/ fo(v) |v|4dv7 3
veER vERR
(A.18)

Finally, when r > 2, the same kind of computation can be done. Note
that a rigorous proof is given in the case of the Boltzmann equation with
Maxwellian molecules in [Tr].

Appendix B: Interpolation between derivatives

We give here for the sake of completeness the proof of some classical
results used in sections 2, 3 and 4.

Theorem B.1: Let f lie in C*(IR) and satisfy

1. There exists C'g1 > 0, > 0, such that

Cpa
Vo € IR, < —, B.1
: )] < 72 (B.1)
2. There exists C'go > 0, such that
Ve € IR, |/ (z)] < Cp.a. (B.2)

Then,
8Cp1CBa
Vo € IR ! < == B.3
: £l <P (B3)

Proof of theorem B.1: Suppose that

[8CB.1CB.2
! > —. B4
|f ($0)| 1_|_|$0|oz ( )
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Then, because of estimate (B.2), for all ¢ € [0, 1],

2C
f/<x0—|—t sgn ($0)¢CB.2 (1 f~|1x0|a) ) . f’(JCO) <

But estimate (B.5) ensures that

2C5, 2CB1CRa
"z 4+t sgn (x )‘ > —
e (WGB.QQHJ;OW) 2\ Tzl
Therefore,
2CBa )
[ = _
‘f($0+ sgn (xO)\/CB2(1‘|‘ |$0|O‘) f($0)
2CBa
T 14 ol
But
2CBa )‘
1<
< |70+ sen <wo>¢ ramm B IRIHED]
2CBa
14 |zol™

Thus, we get a contradiction and conclude that theorem B.1 holds.

(B.8)

Theorem B.2: Letp € IN, p > 2, and f lie in CP(IR). If f satisfies

the following properties:
1. There exists C'g3 > 0, > 0, such that

CB.3
L4 [z]~

Ve e R, |f(z)| <
2. There exists C'g.4 > 0, such that
YgellplVee R, |f9) < Cha.
Then, for all € > 0, there exists Cps(€) > 0, such that

vee R, |ff(e) < —d
1 o) Cmo)t
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Proof of theorem B.2: We use theorem B.l and give a proof by
induction. We know that if there exists Cgg > 0 and a finite sequence
(tg)qef0,p) Such that for all ¢ € [0, p],

C
(9) < _2B6 B.12
then there exists C'g.7 > 0 such that for all ¢ € [0, p],
Ve € IR 1F19 ()] < _Cbr_ (B.13)
' T ||l

where
vy = @, Vie[l,p—1], v; = %(ui_1+ui+1), v, = 0. (B.14)
Therefore, we define by induction the sequence
ro(0) =,  Vie[l,p],r(0) =0, (B.15)
and

. 1
ro(n+l) =, Viel[l,p—1], ri(n+l) = §(ri_1(n)—|—ri+1(n)), rp(n+1) = 0.
(B.16)
It is clear that for all n € IN, there exists C'gs(n) > 0, such that for all

q €10, p],

Vo € B, |f(q)($)| < 1CB.8(n)

W. (B.l?)

But for all 7 € [0, p], the sequence (r;(n)),en tends towards r;, where
. 1
ro = @, Vie[l,p—1],r = 5(7‘2'_1 + rit1), rp, =0. (B.18)
Therefore,
1
rn=(1--)a, (B.19)
p
which yields theorem B.2.

Finally, using theorem B.2 by induction, we get the

Corollary B.3: Let f lie in C*°(IR) and satisfy:
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1. There exists C'gg > 0, > 0, such that

Ch.y
Vo € IR, < 9 B.20
: o)l < T2 (B.20)
2. For all g € IN, there exists Cp.10(q) > 0, such that
Vee R, |f92)| <Chiolg). (B.21)
Then, for all € > 0, there exists Cp.11(€) > 0, such that
CB.5(€)
Ve € IR ! < — B.22
: ol < (R (B.22)

Appendix C: The case of the radially symmetric 2D Boltz-
mann equation with Maxwellian molecules

We consider now the radially symmetric solutions of the 2D spatially ho-
mogeneous Boltzmann equation with Maxwellian molecules (Note that one
can prove the existence of such solutions exactly as in section 2, provided
of course that the initial datum is radially symmetric). The corresponding
Boltzmann kernel can be written

Qi) = [ |7 LR = F0) ()} b8 sinbdbdv, (C1)

with
U+ U, UV — Uy

!
= 2
; U+ U, VU — U,
= - R . C.3
o= U gy(U ©3)
We suppose moreover that b satisfies
sin 0b(|0|) ~ K |67 (C.4)

for some K > 0 when # — 0 (this is the non cut—off case) and that b is
regular outside 0.

Using the fact that f is radially symmetric, one can recast the kernel @)
under the form:

anw=[ [ {rG+ R+ 5+ Rea5)

28



v

2

U

F(G+ Ro-r ;

)+ Rol20) = S0 (02) b b(lo) sind dode.

0

f(Rg_ (v) sin (5) + Rg(v*) cos (g)) — f(v)f(v*)} b(|0]) sin 6 dfdv.,

[ME]

= A*ERZ) /ei_w {f(v cos (g) — v, sin (g))f(vsin (g) + v, cos (g))

_ f(v)f(v*)} b(]6]) sin 6 dfdo. (C5)

Thus, we can see that the equation is very similar to the Kac equation.
The main difference is simply that now v is in IR? instead of IR. It is then
possible to prove all the theorems of the previous sections with exactly the
same proof.

Note however that for the 3D radially symmetric solutions of the spatially
homogeneous Boltzmann equation with Maxwellian molecules, the analogy
with the Kac equation is not so clear. This case shall be discussed in a
future work.
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