A RIGOROUS DERIVATION OF A LINEAR KINETIC
EQUATION OF FOKKER-PLANCK TYPE IN THE
LIMIT OF GRAZING COLLISIONS

L. DESVILLETTES AND V. RICCI

ABsTRACT. Werigorously derive a linear kinetic equation of Fokker-
Planck type for a 2-D Lorentz gas in which the obstacles are ran-
domly distributed.

Each obstacle of the Lorentz gas generates a potential EO‘V(@),

where V' is a smooth radially symmetric function with compact

support, and a > 0. The density of obstacles diverges as £9,

where § > 0. We prove that when 0 < o < 1/8 and § = 2« + 1,
the probability density of a test particle converges as ¢ — 0 to a
solution of our kinetic equation.

1. INTRODUCTION

In this paper we address the problem of a rigorous derivation of a
linear kinetic equation in the limit of grazing collisions, that is, when
each collision changes only slightly the velocity of a particle.

We consider the behavior of a test particle under the action of a 2 - D
random distribution of obstacles (also called scatterers). Given a small
parameter ¢ > 0, the potential generated from a scatterer at a position
¢ € R?%is of the form:

. e

(1) Vi(e —¢) = e V(

)7

and, for the sake of simplicity, we shall assume that the unrescaled
radial potential V' is a smooth function with compact support.

The distribution of scatterers is a Poisson law of intensity p. = e %,
where p,6 > 0 are fixed.

The Boltzmann-Grad limit would consist in making 6 = 1, a =
0 and letting ¢ — 0. The limit would then lead to the solution of
a linear Boltzmann equation (cf. [G], [Bo, Bu, Si], [De, Pu], [S1],
[S2]). In order to get an equation of Fokker-Planck type, we propose
a slightly different scaling, namely a > 0, § = 2« + 1. The fact that
a > 0 exactly means that we are in the limit of grazing collisions:
the potential created by a scatterer being weak, the particle will not

deviate very much from a straight trajectory. On the other hand, in
1
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order to get a finite effect at the end (we do not wish to get the solution
of the free transport equation), the density of scatterers has to grow
faster than in the Boltzmann—Grad limit when ¢ — 0. This explains
why § > 1. The extra technical assumption that a < 1/8 allows us to
rigorously prove the convergence toward the solution of a linear kinetic
equation of Fokker-Planck type of the test particle probability density
in the phase space.

The same problem for a@ = 1/2 was studied in [Du, Go, Le|, where
the convergence is obtained by proving compactness of the family of
measures associated to the stochastic processes describing the motion
of the light particle for & > 0. Here we use different techniques, related
to those developed in [G] to prove the validity of the linear Boltzmann
equation. Notice that we are allowed to use these techniques after
choosing a value for a such that the ratio between the mean free path
and the size of the obstacles diverges (for this we need in general a <
1/2), whereas in [Du, Go, Le] this ratio is constant. We are then in a
low density limit with respect to [Du, Go, Le].

As for the case of the long-range potentials considered in [De, Pu], it
does not seem possible to directly apply the techniques of [G], because
of the lack of a semi-explicit form of the solution of the limit equa-
tion. Therefore, we produce an explicit estimate of the non-Markovian
component of the distribution density, and use a semi-explicit form of
the solutions of a family of Boltzmann equations with a cross section
concentrating on grazing collisions.

Note also that in a forthcoming paper (Cf. [Pou, Va]), Poupaud
and Vasseur propose for closely related problems a different approach
consisting in passing to the limit directly in the equation, and not in a
semi-explicit form of its solution.

Note finally that for the nonlinear Fokker—Planck equation (also
called Landau equation) (Cf. [Lif, Pi], [De, Vi]), no rigorous deriva-
tion from an N-particle system exists, even in the framework of local in
time solutions, whereas such a result exists in the case of the Boltzmann
equation (Cf. [Lanf], [Ce, II, Pu]).

In section 2, we present our notations and our main theorem. Sec-
tions 3 and 4 are devoted to its proof. More precisely, in section 3, a
single grazing collision is studied, while in section 4 the collective effect
of collisions is taken into account.

The same technique can be applied in dimension d bigger than two,
where § = 2a + d — 1, by simply putting a little bit more effort in
evaluating the bound on the probability of recollisions, due to the fact
that now the trajectories don’t lie in general on a plane. In this case,
convergence is obtained for o < 1/4, the upper bound for a being
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fixed by the requirements that the probabilty of overlappings of two
obstacles met by the particle trajectory is negligeable in the limit.

2. NOTATIONS AND RESULTS

In the sequel we shall denote by B(z, R) = {y € R?/ |z — y| < R}
the open disk of center  and radius R, by (' any positive constant
(possibly depending on the fixed parameters, but independent of ¢),
and by ¢ = ¢(¢) any nonnegative function vanishing when ¢ — 0.

We fix an arbitrary time 7' > 0 and consider our dynamical problem
for times ¢ such that 0 < ¢ < T.

We use a Poisson repartition of fixed scatterers in R? of parameter
e = =%, where y1, 6 > 0 are fixed and ¢ €]0,1]. The probability dis-
tribution of finding exactly IV obstacles in a bounded (or more generally
of finite measure) measurable set A C R? is given by:

N
(2) P(dCN) = 6_M5|A|%dcl Ce dC]\f7

where ¢; ...cy = ¢y are the positions of the scatterers and |A| denotes
the Lebesgue measure of A.

The expectation with respect to the Poisson repartition of parameter
e will be denoted by E°.

We now introduce a radial potential V' (here, V' will at the same
time denote the function of two variables (x1,x3) and the function of
the radial variable r = y/x% 4+ 23, since no confusion can occur) such
that:

1. Ve C*R?;

2. V(0) > 0 and r — V/(r) is strictly decreasing in [0, 1];

3. suppV C [0, 1].

Then, we consider the Hamiltonian flow 77, (or more simply 7 when
no confusion can occur) generated by the distribution of obstacles ¢
and associated with the potential V. given in (1), that is T¢ (x,v) =
(xc(1),ve(t)), where xc(t), ve(t) satisfy the Newtonian law of motion:

(3) te(t) = wve(t),
(4) de(t) = —w—lZvv('“’;c'),

cec

(5) re(0) = a, ve(0) = v.
As discussed for example in [De, Pu], the quantity 77 (z,v) is well

defined for all t € R,z € R% v € S, except maybe when ¢ belongs to
a negligeable set with respect to the Poisson repartition.
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For a given initial datum f;, € L' N L= NC(R? x R?), we can define
the following expectation:

(6) feltsw,v) = B [fin( T (2, 0)].
The main result is then the following:

Theorem 1. Let a €]0,1/8] and § = 20+ 1, fi, be an initial datum
belonging to L* NW1>=(R?* x R?) and V' be a potential satisfying 1., 2.,
3. Then, for any T > 0, the quantity f. defined by ( 3) — ( 6) converges
when ¢ — 0 to h in C(]0,T]; I/VZZCQ’I(RQ x S1)), where h is the (unique)

weak solution of the following linear equation of Fokker-Planck type:
(0 +v-V)h(t,x,v) = (ALt x,v)
(7) h(0,2,v) = fin(x,v).

In (7), A, is the Laplace-Beltrami operator on S* (that is, if f(0) =
f(cos 0,sinf), then A, f(cos8,sin ) = f(0)), and

o e[ ([irdats)

Note that since r — r V'(r) is bounded, we have ( < 400. We also
obviously have ( > 0 under our assumptions on p and V.

The remaining part of this work will be devoted to the proof of
theorem 1.

3. STUDY OF GRAZING COLLISIONS

This part is devoted to the proof of the following proposition, which
explains the asymptotic behavior of the scattering angle as a function
of the impact parameter in the limit when the potential is rescaled as
V—e*V with e — 0, > 0.

Proposition 1. Consider the deflection angle 01(p,e) of a particle
with impact parameter p due to a scatterer generating a radial poten-
tial eV, where o > 0 and V' satisfies assumptions 1.,2.,3. Then, the
following asymptotic formula holds:

1
a P / P dw 2a
0 = —2 — — E——
1(/075) € /p wv <w> /71_102 ‘|‘O(€ )7

where the O(e**) is uniform in p (when p € [—1,1]).
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Proof of Proposition 1:
Note that for € > 0 small enough,
1
(9) e“V(0) < 3"
Therefore, the deflection angle is given (when p > 0) by the classical
formula:

+oo d
91(P75):7T_2/ 4 _Z
rmin (0:€) \/1 — f—z —2e2V(r)"

el

(10) Q/Tminma) dw
= T — R
0 \/1 —w2—2€aV(£)
P

where w = £ and rmin(p, €) is implicitly defined by

1 p* 1
1 s + £V (rmin(p, ) = 5.
" Sl o) =

We denote by K a constant related to the two first derivatives of V:

K = sup <|V(r)| +r |V ()] + r? |V"(r)|>,

ref0,1]

and we consider only parameters ¢ > 0 which are such that

(12) 2e" K < 1/2.
Then, we can perform the change of variables
(13) — = u,
V1 —=2e2V(E)
so that
aLy'(L
(14) du = ! {1— =V G ]dw
V1 =22V (2) 1 —2e2V(£)

We obtain for the deflection angle

1
0 75:7T_2/ a LyIL
1(p,e) D P e

1 1= 2:0V(2
/ L—e{2V(5) + SVI(5)/ V1 =2
(remember that V(2) = 0 for p > w (or p > u)).
Using the identity

=1+

1l —=a 1l —=a

Y
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and (12), we see that

1
PPy du
1\ = - V(=) — P,€),
(16) 01(p,¢) 25“/ V(=) + &** L(p, ¢)
w
o

W /1 —u?
with
|L(p,c)| <61 K>
Moreover, assumption (12) also ensures that
o —u| < 26 V(L) Juwl.
w

Then, using the fact that u > w, we get

Pyrly — By 2y

w w u u

< |lw —ul sup

refw,ul

2
CviEy+ v
r r r

<2 K|w| K sup (1/r)

refw,ul
< 2K%e”,
Finally, we can write
1
PP
17 0 = —2¢&" V(=
1) e =22 [ Ly

with

du

Nl " M(p,e),

Y du
M(p,e)| <671 K* +4K? / e
M(p,e)| < e
< 8w K2,
which ends the proof of the proposition when p > 0. We conclude by

noticing that #; is an even function, so that the estimate also holds
when p < 0.

Corollary 1. Let V' be a radial potential satisfying assumptions 1.,2.,3.
Then the scattering cross section V. associated with \75(: e V(L—')) lies
in L*([—m, 7)) (for a given ¢ > 0) and verifies

(18) Yl > 0,3e0(0o) > 0,Ye € [0, 20(b0)], W ([0, 7]) =0,
120 1. M e B
(19) c lim _We U.(0)do = ¢,

with ¢ defined by (8).
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Proof of corollary 1: We recall that W, is defined by the formula
wy=Lw. i <0
0 if 10| > 0,00,
where the deflection angle § corresponds to the impact parameter p, the
potential being V., and 8,,,, 1s the largest possible angle of deflection.
Note that 4 is a decreasing function of p, so that p is also a decreasing

function of 4, and j—z is well defined.
Then, it is easy to see that

U.(0) = .(0),
where @, is the scattering cross section associated with the potential
e”V (Cf. [De, Pu] for example).
Note first that according to proposition 1,

01(p,e) <me® sup [rV'(r)| + C e,
ref0,1]

with C' independant of p, so that 6,,,, < C"e¢”, and (18) clearly holds.
Moreover,

g/ memezgg/ 02®.(0) d

Kis Kis

1
:5%/ 0,(p,e)*dp
1

— 61—|—2a§ _I_ O(€1+3a),
which ends the proof of corollary 1.

4. PROOF OF THEOREM 1

In order to study the asymptotic behavior of f. when ¢ — 0, we
are led to compare f. to the solution h. of the following Boltzmann
equation:

(Or +v-Vy)h(t,z,v) = M/; I'-(]0]) {hs(t,x, Ry(v)) — hs(t,x,v)} do,

(20)  he(0,z,v) = fi(a,v).
Here, Ry denotes the rotation of angle § and I', = e™172* W_, where W,
is defined in corollary 1.
It is clear thanks to corollary 1 that I'. is a family of functions sat-
isfying

(21) V0 >0,  lim I.(0)db =0,

e—0 €0<|€|<7T
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(22) limg 02T.(0)do = C.

e—0

Such a family of cross sections is said (usually in a nonlinear context)
to “concentrate on grazing collisions” (Cf. [Vil]).

Formally, we can easily derive ( 7) from ( 20) by observing that
condition ( 21) allows us to consider only small rotation angles in the
integral. Then we can perform a Taylor’s expansion of h.(t,x, Rg(v))
with respect to the last argument

he(t,x, Rg(v)) = he(t,z,v)+ (Rg(v) —v) - V,h(t,2,v)
+%(R€(U) —0) @ (Ro(v) — ) : Vo Vihe(t, 2, 0) + O(|[ e (v) — )

and, by inserting this expression in the right-hand side of ( 20), we
obtain

/,L/;r F5(|(9|){hs(t,x,Rg(v))—hs(t,x,v)}dﬁ

=—T

Nohe 7
—n 22 [ nlopan + o)
f=—m

which in the limit € — 0 is the right-hand side of ( 7).

This computation can be made rigorous without difficulty. It yields

the

Proposition 2. Suppose that f;, is a nonnegative initial datum lying
in L*(R?* x SY) and that for all ¢ > 0, the cross section I'. belongs
to L>=([0,7]). Then there exists a unique weak solution h. to (20)
in C([0,T]; LA(R?* x SY). If moreover the family T. satisfies (21),
(22), then the sequence h. converges when ¢ — 0 in (for example)
C([0,T); W 2 (R? x SY)) towards h weak solution of (7).

loc

Therefore, in order to prove our main theorem (theorem 1), it is
enough to show that h. and f. are close when ¢ — 0 (in a topology at
least as strong as that of W/l;fl) Accordingly, the remaining part of
this work is devoted to the proof of the following proposition:

Proposition 3. Assume that o €]0,1/8] and 6 = 2a + 1. Let the
initial datum f;, belong to L' N W1>(R? x R?) and V be a potential
satisfying 1., 2., 3. Then, the function f. defined in (6) and h. in (20)
are asymptotically close in L} . More precisely, for all R > 0,

11_1;% \[fe = hellzes (o131 (B0, Ry x 51)) = 0.
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Proof of proposition 3: We define
(23)  xi(en) = X({CN € B(x)N, Vi=1...N, |e—z|> 5}),

that is x; = 1 if the particle is outside the range of all scatterers at time
0. When y; = 1, the conservation of energy entails that the velocity
of the particle will always be less than 1, so that only the scatterers at
distance less than ¢ can influence the trajectory of the particle up to
time ¢.

Noticing that as soon as o < 1/2 (i.-e. ¢ < 2),

EE(XI) Z 1 — 99(5)7

(that is, we are in a situation in which, asymptotically, the particle is
initially almost surely outside of the range of all the scatterers) we see
that f. can be expanded as:

(24)
N
felt,a,v) = 7Py 7o / dexalen) finl T (2,v)) + o(e).
N’ B(l’)N N
N>0
We can distinguish between external obstacles, ¢ € ¢N B(x,1) such that

1 —c| >
(25) oinf lze(s) —cl 2 &,

and internal obstacles, ¢ € ¢ N B(x,1) such that
(26) 013225 |ze(s) —¢] < e.

A given configuration ¢y of B(z,t)" can be decomposed as:

CN:apUbQ7

where ap is the set of all external obstacles and bg is the set of all
internal ones.

After suitable manipulations, and recalling that the external scat-
terers do not influence the trajectory, we have in fact

Q
He — e
fs(t7;1;7v) = § 0l /B(x)Q dee p |T(bQ)|X1(bQ)

Q>0

xx({ the by are internal}) fm(Tb_é(x, v)) + (),

where T (bg) is the tube (at time ¢) defined by

(27)  T(bg) = {y € B(a,t), 3s€[0,4], |y—any(s) < 5}.
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Since the velocity of the particle is always less than 1, one has
(28) [T (bg)| < 2te.

We then introduce the characteristic function ys of distributions of
scatterers for which there is no overlapping of internal scatterers, that
is

(29)
wlbe) = x({ba € e Visi<jsQ Bi-bl=2ef)

It is then easy to prove (Cf. [De, Pu]) that if o < 1/4 (i-e. § < 3),
one has

(30)
Q
Z /225' /B( . e—ualT(bQﬂX({bQ C T(bQ)})XlXQ(bQ)de > 1 —p(e).
Q>0 ©7 VB

Note however that the probability of overlapping of a pair of not neces-
sarily internal obstacles is asymptotically 1 even for « = 0 (i.-e. § = 1).

Then,

Q
ILLE —He
Je(t0) = Q! /B(x)Q dbgeITP)ly (bg)x2(bg)

Q>0

xx({ the by are internal}) fi (Tb_é(x,v)) + ¢(e).

From now on, we shall replace for the sake of simplicity the flow Tb_é
by the flow T{;Q. The result will be the same thanks to the reversibility
of this Hamiltonian flow.

Remark Notice that the bound o < 1/4 doesn’t depend on the di-
mension. As we will see, this will fix the bound on « in dimension

higher than 2.

For a given configuration bg € B(z)? such that y;ya2(bg) = 1 and
such that the b;’s are internal forz = 1... (), we define the characteristic
function ys of the set of configurations for which there is no recollisions
(up to time t) of the light particle with a given obstacle:

(31)
xs(bg) = X({bQ, Vi=1...0, :ché(B(bi,e)) is connected in [0, 7] })
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Instead of f., we first analyse f., defined by

N Q
torw) = ety L x<{chT<bQ>}>

550 @ JBwe

(32) x1x2x3(bg) fo(TliQ(fl?aU))de-
Note that thanks to (28), we already know that

We now proceed as in [De, Pu].

We say that the light particle performs a collision with the scatterer b,
when it enters into its protection disk B(b;, ). For a configuration such
that yvix2xs = 1, the light particle has a straight trajectory between
two separated collisions with different scatterers. During the collision
with the obstacle b; (i.-e. for the times ¢ such that |vp, () — b;] < ¢),

the dynamics is that of a particle moving in the potential V.(- — b;).

X

For a trajectory corresponding to a configuration such that xiy2ys =
1, one can define, for each obstacle b; € by (1 =1...@Q), the time ¢; of
the first (and unique because 3 = 1) entrance in the protection disk
B(b;,¢), and the (unique) time t. > t; when the light particle gets out
of this protection disk. We also define the impact parameter p;, which
is the algebraic distance between b; and the straight line containing the
straight trajectory followed by the light particle immediately before ¢;.

Then we use the change of variables (which depends upon ¢, z,v,¢)
Z:bg = {pit:}Z,(be)

which is well-defined on the set I' C B(z)% of “well-ordered” config-
urations bg constituted of internal scatterers satisfying the property

x1xzxs(bg) = 1.

The variables {p;, ti}?zl satisfy then the constraints

(34) 0§t1<t2<“'<t@§t,
and
(35) Vi=1,..Q, ol <=

The inverse mapping Z~ ! is built as follows: Let a sequence {p;, ti}?zl
satisfying ( 34) and ( 35) be given. We build a corresponding sequence
of obstacles Jq = (1 .. Bg and a trajectory (£(s),v(s)) inductively. Sup-
pose that one has been able to define the obstacles (3, .. 3;,_; and a tra-
jectory (&(s),v(s)) up to the time ¢,_;. We then define the trajectory
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between times ¢;,_; and ¢; as that of the evolution of a particle moving
in the potential \75( — B;—1) with initial datum at time ¢,_; given by
(&(ti—1),v(ti—1)). Then, 7/_, > t;_1 is defined to be the first time of exit
of the trajectory from the protection disk of 3;_;. Finally (; is defined
to be the only point at distance ¢ of £(¢;) and algebraic distance p; from
the straight line which is tangent to the trajectory at the point £(¢;).

Then it is easy to describe the range of Z. The {p;, ti}?zl which do
not belong to this range correspond to at least one of those situations:

1. A bad beginning occurs:

Ji = L, "7@7 5(0) S B(ﬁ“{;‘)

(this corresponds to y; = 0),
2. two scatterers overlap:

EIi,jE[l,..,Q], |62_6]|§25

(this corresponds to y2 = 0),
3. a “recollision” happens somewhere:

Ji#jel, QB € Ui BE(s), 2€)

(this corresponds to ys = 0 and is in its turn splits into the cases
when 7 > j, proper recollisions, and when 7 < j, sometimes called
interferences).

Performing the described change of variable, we get

t t t £ £ £
fs(t7$7v) = 6—275#55 Z/’LEQ/ dtl/ dtQ/ dtQ/ dpl/ d,OQ/ dpQ
0 1 tg-1 - — —e

Q>0

(36) X({Pi,ti}?zl is in the range of Z) fol&(t),v(t)) + ¢(e).
We now introduce the

Lemma 1. As soon as o < 1/8 (i.-e. 6 < 5/4), one has

t t t £ £ £
[5 = 6_275“5 © Z /LEQ / dtl / dtz . / dtQ / dpl / dpz s / dpQ
0 t1 to—1 —e —e —e

Q>0

(37) X({Piati}?zl is not in the range of Z) < p(e).
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Proof of Lemma 1: We can write
L<I}+1?74 12,

where each term corresponds to the situations described earlier. Then,
as in [De, Pu], we notice that

D+ 2+ 2<Ji+ L,

where J! estimates the probability of overlapping of two successive
scatterers (3;, B;41 (including the beginning of the trajectory, with the
convention ty = 0, 0y = 0, * = 3), and JI' estimates the probability
of other possible overlappings and recollisions.

We begin with the estimate on J¢:

._6_2tua Zﬂs/dtl/ dty- - /

Q>1

/dm/ dpy- - /_EdPQZX {W ﬁz+1|<25})
8)

(38) < (Y,

Then, we turn to J::
T = Sy = e Yk fydty []dtye e [, dig

[ dpy [Z dps--- [7_ dpqg {E: D3 HQ/X({/%‘E Useﬁ“n+ﬂ13(§(5)725)}
3 +EL T € Vet BE).29) ).

We only estimate Jffs, the estimate of Jéfs being completely analo-
gous.

Note first that, denoting as usual by §; the scattering angle cor-
responding to the impact parameter p;, a recollision (or overlapping
of non consecutive scatterers) can occur only if the rotation angle
|Ek i41 Pkl is bigger than 7. Since we know moreover that for all
kE€li+1,5—1], |0k < Ce?, it means that we can find h €]i + 1,5 — 1]
such that

h—1
72— ) Ol < m/

k=i+1
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alowed change

= ptg

y alowed change incollision timet,,
in y direction
 h-1
i
8 0
i+1
FIGURE 1

Then, we can write

i et S0 @ fdiy [ dtye L dig [7 dpy [, dpy - |7, dpg

S SIS I X({|9z'+1 e O )2 < w/4}>

{5 € Vatuanibles) 200 ).

Fixing all times but ¢} in the sequence {4, ... ,1g, and noticing that

t), can assume values in a set of measure at most 4v/2 ¢ (see fig. 1), we
finally get:

i - E 2. )9 -
D D e

Q>1

(10) <CO(T)e™*,
so that Lemma 1 is proved.
[

Remark By applying the same technique in dimension d higher than
2, we would get from the estimate of the recollision probability o <
(d—1)/8.

The final bound for « is then given in this case by the requirement

to have a negligeable probability for overlappings of internal obstacles
in the limit.
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Thanks to lemma 1, we now can write

Filt,,0) = =200 Zue/dtl/dm / dtQ/ o [ o [ dg

Q>0

(41) X({Pi,ti}?zl is in the range of Z) Ffin(E(t),v(t)) + @(e).
We make then the change of variables

(42) {piti=1,...@ = {0i}i=1,..0

where 6, is the angle of the scattering produced by the i—th obsta-
cle. The Jacobian determinant of this change of variables is given by
HZ L 22’ H?:l V. (0,) = H?:l e 20T (0;). We now use the following

estimates:

Q
(43) () = (e + D Ry (0) (tin — )] < Qe
=0
(44) |t — 1] <3,
(45) |o(t7) = v(t:)] = O(e"),
(here ¢, is defined as ¢; = Ej 0;, with the convention ¥y = 0 and
to =0, tg41 = 1). Using also the fact that f;, lies in W, we get

Jeltm,v) = et IZ AT N0 /dtl/ diy- - / dtQ/ d@l/ dfy- - -

Q>0
Q

(46) H = (0:) fo(w + Z Ry (0) (Livr = 1), Byg (v)) + ¢(e)-

But the rlghtfhando side of ( 46) is nothing else than h. in the form of
the series solution to ( 20), so that f. = h. + ¢(e).
Using now (33) and the conservation of mass:

/hs drdv = /fo dxdv,

fe—h.—0

we also see that

ln LOO(LllOCl”U) D
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