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Abstract This paper concerns reaction–diffusion systems consisting of three
or four equations, which come out of reversible chemistry. We introduce differ-
ent scalings for those systems, which make sense in various situations (species
with very different concentrations or very different diffusion rates, chemical
reactions with very different rates, etc.). We show how recently introduced
mathematical tools allow to prove that the formal asymptotics associated to
those scalings indeed hold at the rigorous level.
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1 Introduction

A generic reversible reaction like

µ1A1 + . . .+ µpAp ⇋ ν1A1 + . . .+ νpAp (1)

This work has been supported by the French “ANR blanche” project Kibord: ANR-13-
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between chemical species A1, . . . ,Ap diffusing in a non–reactive background
can be modeled by the reaction–diffusion system

∂tãi − d̃i∆xãi = ℓ̃(µi − νi)ã
ν1
1 · · · ãνpp − k̃(µi − νi)ã

µ1

1 · · · ãµp

p , (2)

where the r.h.s. of the system expresses the mass action law (cf. for example

[10] for a complete presentation of the mass action law). Here d̃i is the diffusion
rate of the speciesAi, µi, and νi are the stoichiometric coefficients associated to
the chemical reaction (1) and ℓ̃, k̃ are the reaction rates. Finally, the unknowns
ãi := ãi(t, x) are the concentrations of the chemical species Ai at time t ∈ R+

and point x.
When the species are confined in a chemical reactor modeled by a domain

Ω ⊂ R
N , we add to (2) the homogeneous Neumann boundary conditions

∇xãi(t, x) · n(x) = 0, ∀x ∈ ∂Ω, t ∈ R+, (3)

where n := n(x) is the outward normal vector at point x on the boundary ∂Ω
of the domain Ω.

Finally, we introduce nonnegative initial data

ãi(0, x) = ãi0(x) ≥ 0 (4)

for the concentrations (note that eq.(2) preserves nonnegativeness of each con-
centration in the time evolution).

Recently, reaction–diffusion equations like (2) have attracted a lot of atten-
tion from the mathematical community. The difficulties in the mathematical
treatment increase according to increment of number of involved species, of
dimension N , and of exponents µi, νi.

Among recent results, let us quote the existence of renormalized solutions
for general equations of the form (2) (cf. [9]), and the existence of regular
solutions for p = 4, µ1 = µ3 = 1, ν2 = ν4 = 1, ν1 = ν3 = 0, µ2 = µ4 = 0,
N = 2 (cf. [11] and [4]). Among the tools available to treat systems like (2)
we shall use in this work the entropy structure related to the reversibility of
eq.(2), the duality lemmas introduced in [13], and their refinement described
in [4].

This paper is devoted to the study of some singular limits of simple rescaled
systems of the form (2) appearing in the study of chemical reactions. Note
that this subject has already been investigated, especially in the special case
of the so-called QSSA (cf. [1], [3]) in the context of reversible chemistry. Note
also that other papers are devoted to the study of such limits in the case of
irreversible chemistry ([5], [12]).

In order to explain how the considered singular limits naturally appear, let
us introduce new variables and parameters in the following way:

ãi(t, x) = Aiai(t, x), ãi0(x) = Aiai0(x), d̃i = Didi, ℓ̃ = Lℓ, k̃ = Kk, (5)

where Ai, Di, L, K > 0, and ai, di, ℓ, k are of order 1. Then eq.(2) writes

Ai∂tai −DidiAi∆xai = Lℓ (µi − νi)A
ν1
1 aν11 · · ·Aνp

p aνpp

− Kk (µi − νi)A
µ1

1 aµ1

1 · · ·Aµp

p aµp

p , (6)



Asymptotic limits in reversible chemistry 3

whereas (3), (4) become

∀x ∈ ∂Ω, t ∈ R+, ∇xai(t, x) · n(x) = 0, ai(0, x) = ai0(x) ≥ 0. (7)

Note then that various singular limits can appear depending whether the
coefficients Ai,Di, L,K have the same order of magnitude or not. For example,
if one species, say Ai, corresponds to very small–mass molecules with respect
to another species, say Aj , we expect that Di >> Dj . If some species, say Ai,
is very unstable (radical, excited state of a given molecule, etc.) and some other
Aj is stable, we expect that Ai << Aj . Finally (and this sometimes depends
on the temperature), we can have reaction rates which are of the same order
of magnitude, i.e. K ≈ L, or of different order of magnitude, K << L.

In this work, we wish to focus on specific examples which illustrate the
mathematical difficulties related to typical choices of the parameters Ai, Di,
L, K.

First we consider the case of equation (2) when p = 3 (three species), and
µ1 = 1, µ2 = µ3 = 0; ν1 = 0, ν2 = ν3 = 1, that is

A1 ⇋ A2 +A3, (8)

or
A1 + B ⇋ A2 +A3, (9)

where B is a species “in excess”, that is having a concentration so large that
it can be assumed as constant in the evolution (and thus not appearing in the
equations).

Then eq.(2) writes




∂t ã1 − d̃1 ∆xã1 = ℓ̃ ã2ã3 − k̃ ã1,

∂t ã2 − d̃2 ∆xã2 = k̃ ã1 − ℓ̃ã2 ã3,

∂t ã3 − d̃3 ∆xã3 = k̃ ã1 − ℓ̃ ã2ã3,

(10)

and the choice A1 = ε, A2 = A3 = 1, D1 = D2 = D3 = 1, L = 1, K = 1/ε
leads to 




ε (∂t a1 − d1 ∆xa1) = ℓ a2a3 − k a1,
∂t a2 − d2 ∆xa2 = ka1 − ℓ a2a3,
∂t a3 − d3 ∆xa3 = k a1 − ℓ a2a3,

(11)

whereas the choice A1 = ε, A2 = A3 = 1, D1 = 1/ε, D2 = D3 = 1, L = 1,
K = 1/ε leads to





ε ∂t a1 − d1 ∆xa1 = ℓ a2a3 − k a1,
∂t a2 − d2 ∆xa2 = k a1 − ℓ a2a3,
∂t a3 − d3 ∆xa3 = k a1 − ℓ a2a3.

(12)

Examples of dissociation/recombination reactions of type (8), leading to
the scaled forms (11) are provided, in sufficiently high temperature regime, by
the following one

H2O ⇋ H2 +O.
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In this reaction, the water, H2O has a concentration that can be supposed
much smaller than those of the other two species since, due to high tempera-
ture, the dissociation process is dominant. At the same time and for the same
reason the reaction rate Kk can be assumed much larger than the other, Lℓ,
relative to the recombination process. Moreover, since the masses of the in-
volved species are of the same order, it is natural to expect their diffusion
rates to be of the same order too, and this corresponds to the scaling leading
to system (11).

It is not frequent to find chemical reactions leading to equations of the type
of system (12). Nevertheless, it can occur for example when one considers a
chemical reaction like (9), when A2 and A3 have a much bigger mass than A1

(a configuration which cannot happen for the chemical reaction (8) because of
the conservation of mass).

As a second case, we consider a reversible bimolecular reaction correspond-
ing to p = 4 (four species) in equation (2), and µ1 = µ3 = 1, µ2 = µ4 = 0;
ν1 = ν3 = 0, ν2 = ν4 = 1, that is

A1 +A3 ⇋ A2 +A4. (13)

Then eq.(2) re–writes (for i = 1, . . . , 4)

∂t ãi − d̃i ∆xãi = (−1)i+1
(
ℓ̃ ã2ã4 − k̃ ã1ã3

)
, (14)

and the choice A1 = ε, A2 = A3 = A4 = 1, D1 = D2 = D3 = D4 = 1, L = 1,
K = 1/ε leads to





ε (∂t a1 − d1 ∆xa1) = ℓ a2a4 − k a1a3,

∂t aj − dj ∆xaj = (−1)j+1 (ℓ a2a4 − k a1a3) , j = 2, 3, 4.
(15)

Another scaled equation can be obtained in the case of a reaction with
two unstable species, say A1, A2. The choice A1 = A2 = ε, A3 = A4 = 1,
D1 = D2 = D3 = D4 = 1, L = K = 1/ε then leads to






ε (∂t ai − di∆xai) = (−1)i+1 (ℓ a2 a4 − k a1 a3) , i = 1, 2,

∂t ai − di ∆xai = (−1)i+1 (ℓ a2 a4 − k a1 a3) , i = 3, 4.
(16)

The reaction
O + CO2 ⇋ CO +O2,

appearing in the reactive oxygen–carbon chain, can be cited as example for
the scaled form (15). Here, in fact, the atom of oxygen is strongly unstable,
which justifies the assumptions that its concentration is much smaller than
the others, and that the reaction rate Kk, relative to the encounters O and
CO2, is much higher than the other rate Lℓ.

The scaled form (16) can describe, for example, two typical reactions of
the oxygen–nitrogen chain, i.e.

N +O2 ⇋ O +NO, N +NO ⇋ O +N2,
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in which both atoms N and O are unstable. In both these scalings the diffusion
rates are expected to be of the same order since the masses are of the same
order.

Note that the asymptotics appearing in (12) leads formally at the limit to
a nontrivial system of coupled elliptic and parabolic equations, that is

{
−d1 ∆xa1 = ℓ a2a3 − k a1
∂t aj − dj ∆xaj = k a1 − ℓ a2a3, j = 2, 3,

(17)

whereas the asymptotics appearing in (11), (15) and (16) lead at the limit to
an uncoupled system of standard heat equations, that is, for (11):

∂taj − dj∆xaj = 0, j = 2, 3, (18)

for (15):

∂taj − dj∆xaj = 0, j = 2, 3, 4. (19)

and for (16):

∂taj − dj∆xaj = 0, j = 3, 4. (20)

Our main results show that those formal asymptotics indeed rigorously
hold, (with some restriction in the case of (19)) (and sometimes only in di-
mension N = 1 or N = 2). More precisely, we obtain the

Proposition 1 Let d1, d2, d3 > 0 be the diffusion rates and k, ℓ > 0 be the
reaction rates. We consider a bounded smooth domain Ω ⊂ R

N , together with
initial data ε a10, a20, a30 ∈ L2(Ω).

Then for each ε > 0, there exists a unique smooth (for t > 0) solution
aε1, a

ε
2, a

ε
3 of (11) with homogeneous Neumann boundary condition and such

that aε1(0, x) = ε a10(x), a
ε
j(0, x) = aj0(x), j = 2, 3.

Moreover, for all T > 0, aε1 ⇀ a1 in L1([0, T ]× Ω) weak, aεj ⇀ aj a.e. on
[0, T ]×Ω for j = 2, 3 where k a1 = ℓ a2a3, and a2, a3 is the unique (smooth for
t > 0) solution of the heat equation (18) with homogeneous Neumann boundary
conditions and initial data aj(0, x) = aj0(x), j = 2, 3. �

Proposition 2 Let d1, d2, d3 > 0 be the diffusion rates and k, ℓ > 0 be the
reaction rates. We consider a bounded smooth domain Ω ⊂ R

N with N = 1,
together with initial data ε a10, a20, a30 ∈ L2(Ω).

Then for each ε > 0, there exists a unique smooth (for t > 0) solution
aε1, a

ε
2, a

ε
3 of (12) with homogeneous Neumann boundary condition and such

that aε1(0, x) = ε a10(x), a
ε
j(0, x) = aj0(x), j = 2, 3.

Moreover, for all T > 0, up to extraction of subsequences, aε1 ⇀ a1 in
L1([0, T ] × Ω) in the sense of weak measures, aεj ⇀ aj for j = 2, 3 and in
Lp[0, T ]×Ω) (strong) for some p > 2. Finally, for a.e. t ∈ [0, T ],

∫

Ω

ℓ a2a3 dx =

∫

Ω

k a1 dx, (21)
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and equations (17) (together with the homogeneous Neumann boundary con-
ditions and initial data aj(0, x) = aj0(x), j = 2, 3) hold in the following weak
sense:
for all test functions ϕ1, ϕ2, ϕ3 ∈ C1

c ([0, T [×Ω̄)

−d1

∫ T

0

∫

Ω

a1∆xϕ1 dxdt =

∫ T

0

∫

Ω

(ℓ a2a3 − k a1)ϕ1 dxdt, (22)

j = 2, 3 : −
∫

Ω

aj0(x)ϕj(0, x) dx−
∫ T

0

∫

Ω

aj ∂tϕj dxdt

−dj

∫ T

0

∫

Ω

aj∆xϕj dxdt =

∫ T

0

∫

Ω

(k a1 − ℓ a2a3)ϕj dxdt. �

(23)

Proposition 3 Let di > 0 (i = 1, . . . , 4) be the diffusion rates and k, ℓ > 0
be the reaction rates. We consider a bounded smooth domain Ω ⊂ R

N , with
N = 1 or N = 2, together with initial data ε a10, a20, a30, a40 ∈ L2(Ω).

Then for each ε > 0, there exists a unique smooth (for t > 0) solution
aε1, . . . , a

ε
4 of (15) with homogeneous Neumann boundary condition and such

that aε1(0, x) = ε a10(x), a
ε
j(0, x) = aj0(x), j = 2, 3, 4.

Moreover, for all T > 0, there exists g ∈ L1([0, T ]×Ω) such that aε1a
ε
3 ⇀ g

in L1([0, T ]×Ω) weak, aεj → aj for j = 2, 3, 4, and in Lp([0, T ]×Ω) (strong)
for some p > 2. Then, for j = 2, 3, 4,

∂taj − dj ∆xaj = (−1)j+1 (ℓ a2a4 − k g) (24)

in the sense of distributions, or more precisely in the following weak sense:
for all test functions ϕ2, ϕ3, ϕ4 ∈ C1

c ([0, T [×Ω̄), and j = 2, 3, 4,

−
∫

Ω

aj0(x)ϕj(0, x) dx −
∫ T

0

∫

Ω

aj ∂tϕj dxdt

−dj

∫ T

0

∫

Ω

aj∆xϕj dxdt =

∫ T

0

∫

Ω

(−1)j+1 (ℓ a2a4 − k g) dxdt. (25)

Finally,

a3 (∂t − d1 ∆x)
−1

(ℓ a2a4 − k g) = 0, (26)

where (∂t − d1 ∆x)
−1

is the reciprocal of the heat operator on [0, T ]× Ω with
homogeneous Neumann boundary conditions and zero initial datum. �

Proposition 4 Let di > 0 (i = 1, . . . , 4) be diffusion rates and k, ℓ > 0 be
reaction rates. We consider a bounded smooth domain Ω, and initial data
ε a10, ε a20, a30, a40 in L2(Ω).

Then for each ε > 0, there exists a weak (for t > 0) solution aε1, . . . , a
ε
4 of

(16) with homogeneous Neumann boundary conditions and such that aεi (0, x) =
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ai0(x) when i = 3, 4, and aεi (0, x) = ε ai0(x) when i = 1, 2. This solution is
smooth when N = 1 or N = 2.

Moreover, for some p > 2, aεi → ai in Lp([0, T ]×Ω) (strong) when i = 3, 4,
and aεi ⇀ ai in Lp([0, T ]×Ω) weak when i = 1, 2, where ai ∈ Lp([0, T ]×Ω).

Finally,

ℓ a2a4 = k a1a3, ∂t (a1 + a2)−∆x (d1 a1 + d2 a2) = 0, (27)

∂ta3 − d3 ∆xa3 = 0, ∂ta4 − d4 ∆xa4 = 0. � (28)

As explained in the beginning of the introduction, these four propositions
are consequences of the entropy structure of the equations, and of (revised
versions of) duality lemmas. There are therefore some common points in the
proof with previous works on connected subjects like [1], [3], [5]. One of the
novelties is the use of the most recent refinements in the duality lemmas,
enabling to obtain Lp estimates with p > 2 rather than L2 estimates (cf. [4]).
Proposition 1 and Proposition 2 are straightforward results stating that the
formal asymptotics indeed rigorously holds. On the other hand, Proposition 3
is much more involved: according to (26), on all open sets where a3 6= 0, one
has ℓ a2a4 = k g and one recovers the formal asymptotics. It does not seem
however easy to show that a3 6= 0 on [0, T ]×Ω. Note that a similar difficulty
appeared also in [5].

Note that in all asymptotics, we selected initial data in such a way that
no initial layer are produced for a2, a3, a4, whereas an initial layer will be
produced for a1 (the initial datum for a1 is lost in the limiting equations). In
the case in which ε appears in front of the diffusion of a1 ((11) and (16)), a
boundary layer also appears for this concentration.

This paper is structured as follows: in Section 2 we prove Proposition 1
and Proposition 2 (that is the case in which three species are involved in
the chemical reaction). Then, we study the case of four species in Section 3.
Finally, Section 4 is devoted to the discussion of possible extensions of these
results.

2 Proofs of the propositions related to the three–species case

We begin with the

Proof of Proposition 1: We first write the equation for the evolution of
the (local) entropy

H (aε1, a
ε
2, a

ε
3) := ε aε1 ln (ε a

ε
1)− ε aε1 ln

(
ε e

ℓ

k

)
+ ε

ℓ

k

+
3∑

i=2

(aεi ln a
ε
i − aεi + 1) ≥ 0. (29)
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A simple computation shows that

∂tH (aε1, a
ε
2, a

ε
3) − ∆x

{
d1

[
ε aε1 ln (ε a

ε
1)− ε aε1 ln

(
ε e

ℓ

k

)
+ ε

ℓ

k

]

+

3∑

i=2

di (a
ε
i ln a

ε
i − aεi + 1)

}

+ ε d1
|∇xa

ε
1|2

aε1
+

3∑

i=2

di
|∇xa

ε
i |
2

aεi

+ (k aε1 − ℓ aε2a
ε
3) [ln (k a

ε
1)− ln (ℓ aε2a

ε
3)] = 0. (30)

As a first consequence, integrating this identity on Ω, we see that the
following a priori bound holds:

∫ T

0

∫

Ω

(k aε1 − ℓ aε2a
ε
3) [ln (k a

ε
1)− ln (ℓ aε2a

ε
3)] dxdt ≤ CT . (31)

Then, rewriting identity (30) as

∂tH (aε1, a
ε
2, a

ε
3)−∆x [M

εH (aε1, a
ε
2, a

ε
3)] ≤ 0, (32)

with

M ε :=

d1
[
ε aε1 ln (ε a

ε
1)− ε aε1 ln

(
ε e ℓ

k

)
+ ε ℓ

k

]
+

3∑

i=2

di (a
ε
i ln a

ε
i − aεi + 1)

ε aε1 ln (ε a
ε
1)− ε aε1 ln

(
ε e ℓ

k

)
+ ε ℓ

k +

3∑

i=2

(aεi ln a
ε
i − aεi + 1)

,

(33)
we can use the duality lemma of [13] and get that

∫ T

0

∫

Ω

M ε |H (aε1, a
ε
2, a

ε
3)|

2
dxdt ≤ CT , (34)

so that aε2, a
ε
3 are bounded in L2 (lnL)2 ([0, T ]×Ω). Note that this argument

is also quite close to the computations of [6].
Then, aε2a

ε
3 is bounded in L lnL([0, T ] × Ω) and, thanks to a classical

argument developed for example in [8], estimate (31) implies that aε1 is weakly
compact in L1([0, T ]×Ω).

We can therefore extract subsequences (still denoted by ε) such that

aε1 ⇀ a1, aε2 ⇀ a2, aε3 ⇀ a3,

where a1 lies in L1([0, T ]×Ω), a2, a3 lie in L2([0, T ]×Ω), and the convergences
hold respectively in L1([0, T ]×Ω) weak for the first one, and in L2([0, T ]×Ω)
weak for the second and third one.

Since ∂ta
ε
2−d2 ∆xa

ε
2 and ∂ta

ε
3−d3 ∆xa

ε
3 are bounded in L1([0, T ]×Ω), the

sequences aε2 and aε3 are in fact converging respectively to a2 and a3 a.e., so
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that (since aε2, and aε3 are bounded in L2 (lnL)2([0, T ]×Ω)), aε2a
ε
3 converges in

L1([0, T ]×Ω) strong to a2a3. We now can pass to the limit in system (11), and
end up with (18) together with the chemical equilibrium identity ℓ a2a3 = k a1.
This concludes the proof of Proposition 1. �

Proof of Proposition 2: The entropy computation gives in this case
(with H defined by (29)),

∂tH (aε1, a
ε
2, a

ε
3) − ∆x

{
d1

[
aε1 ln (ε a

ε
1)− aε1 ln

(
ε e

ℓ

k

)
+

ℓ

k

]

+

3∑

i=2

di (a
ε
i ln a

ε
i − aεi + 1)

}
+

3∑

i=1

di
|∇xa

ε
i |

2

aεi

+ (k aε1 − ℓ aε2a
ε
3) [ln (k a

ε
1)− ln (ℓ aε2a

ε
3)] = 0. (35)

Then, estimate (31) still holds, and moreover

sup
t∈[0,T ]

∫

Ω

3∑

i=2

(aεi ln a
ε
i − aεi + 1) dx ≤ CT , (36)

∫ T

0

∫

Ω

3∑

i=1

|∇xa
ε
i |

2

aεi
dxdt ≤ CT . (37)

Since the dimension of space is 1, estimates (36) and (37) are sufficient to show,
thanks to a standard Sobolev embedding and an easy interpolation, that aεi is
a bounded sequence in L2([0, T ]×Ω) for i = 2, 3. Using estimate (31) and the
standard inequality

(x− y) (lnx− ln y) ≥ C
∣∣√x−√

y
∣∣2 ,

we see that
∫ T

0

∫

Ω

k aε1 dxdt ≤ 2

∫ T

0

∫

Ω

∣∣∣
√
k aε1 −

√
ℓ aε2a

ε
3

∣∣∣
2

dxdt+ 2

∫ T

0

∫

Ω

ℓ aε2a
ε
3 dxdt

≤ CT ,

so that aε1 is a bounded sequence in L1([0, T ]×Ω).
Then we can extract subsequences (still denoted by ε) such that

aε1 ⇀ a1, aε2 ⇀ a2, aε3 ⇀ a3,

where a1 lies in M1([0, T ] × Ω) (set of bounded measures), a2, a3 lie in
L2([0, T ] × Ω), and the convergences hold respectively in the sense of weak
measures for the first one, and in L2([0, T ] × Ω) strong for the second and
third ones.

Since ∂ta
ε
2 − d2 ∆xa

ε
2 and ∂ta

ε
3 − d3 ∆xa

ε
3 are bounded in L1([0, T ] × Ω),

the sequences aε2 and aε3 are in fact converging respectively to a2 and a3 a.e.
Thanks to the assumption on the dimension, we also know that the properties
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of the heat kernel ensure that aεi is a bounded sequence in L3−δ([0, T ] × Ω)
for i = 2, 3, and δ ∈]0, 1]. As a consequence, aε2a

ε
3 converges in L1([0, T ]× Ω)

strong to a2a3.
The passage to the limit is then slightly different from the one of Proposi-

tion 1. We start by integrating the first equation of (12) on Ω and get that

ε ∂t

∫

Ω

aε1 dx =

∫

Ω

(ℓ aε2a
ε
3 − k aε1) dx.

Passing to the limit in this equation, we end up with (21). Finally, (17) can
be recovered by a direct passage to the limit in the weak form of (12). This
concludes the proof of Proposition 2. �

3 Proofs of the propositions related to the four–species case

Proof of Proposition 3: We first write the evolution of the (local) entropy

H (aε1, a
ε
2, a

ε
3, a

ε
4) := ε aε1 ln (ε a

ε
1)− ε aε1 ln

(
ε
ℓ

k

)
+

ε

e

ℓ

k

+
4∑

i=2

(
aεi ln a

ε
i + e−1

)
≥ 0. (38)

The computation leads to

∂tH (aε1, a
ε
2, a

ε
3, a

ε
4) − ∆x

{
d1

[
ε aε1 ln (ε a

ε
1)− ε aε1 ln

(
ε
ℓ

k

)
+

ε

e

ℓ

k

]

+

4∑

i=2

di
(
aεi ln a

ε
i + e−1

]
}

+ ε d1
|∇xa

ε
1|

2

aε1
+

4∑

i=2

di
|∇xa

ε
i |
2

aεi

+ (k aε1a
ε
3 − ℓ aε2a

ε
4) [ln (k a

ε
1a

ε
3)− ln (ℓ aε2a

ε
4)] = 0. (39)

Integrating this identity on Ω, we see that the following a priori bound holds

∫ T

0

∫

Ω

(k aε1a
ε
3 − ℓ aε2a

ε
4) [ln (k a

ε
1a

ε
3)− ln (ℓ aε2a

ε
4)] dxdt ≤ CT . (40)

We now add the second and third equations of (15) on one hand, and the third
and fourth equations of (15) on the other hand. We see that

∂t (a
ε
2 + aε3)−∆x (d2 a

ε
2 + d3 a

ε
3) = 0, (41)

∂t (a
ε
4 + aε3)−∆x (d4 a

ε
4 + d3 a

ε
3) = 0. (42)

Using the improved duality lemma of [4], we get, for some δ > 0, the infor-
mation that the sequences aεi , for i = 2, 3, 4, are bounded in L2+δ([0, T ]×Ω).
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Then, aε2 a
ε
4 is bounded in L1+δ/2([0, T ]× Ω), and (thanks to estimate (40)),

aε1 a
ε
3 is weakly compact in L1([0, T ]×Ω).
We can therefore extract subsequences (still denoted by ε) such that

aε1a
ε
3 ⇀ g, aε2 ⇀ a2, aε3 ⇀ a3, aε4 ⇀ a4,

where g lies in L1([0, T ] × Ω), a2, a3, a4 lie in L2+δ([0, T ] × Ω), and the
convergences hold respectively in L1([0, T ]×Ω) weak for the first one, and in
L2+δ([0, T ]×Ω) weak for the second, third and fourth one.

Since ∂ta
ε
i − di∆xa

ε
i are bounded in L1([0, T ] × Ω) for i = 2, 3, 4, the

sequences aεi are in fact converging to ai a.e. for i = 2, 3, 4, and then also in
L2+δ−ζ([0, T ]× Ω) strong for all ζ ∈]0, δ]. Then (since aε2, a

ε
4 are bounded in

L2+δ([0, T ]×Ω)), aε2 a
ε
4 converges in L1+δ/2−ζ/2([0, T ]×Ω) strong to a2 a4 for

all ζ ∈ ]0, δ].
We now can pass to the limit in the three last equations of system (15),

and end up with (16) (or, more precisely, (25)).
We then introduce the semigroup of the heat equation ed1 t∆x on Ω with

homogeneous Neumann boundary condition (and diffusion rate d1). Rewriting
the first equation of system (15) as

ε aε1(t, x) = ε ed1 t∆xaε1(0, x) +

∫ t

0

ed1(t−s)∆x (aε2a
ε
4 − aε1a

ε
3) (s, x) ds,

and multiplying by aε3(t, x), we see that

ε aε1(t, x) a
ε
3(t, x) = ε aε3(t, x) e

d1 t∆xaε1(0, x)

+ aε3(t, x)

∫ t

0

ed1(t−s)∆x (aε2a
ε
4 − aε1a

ε
3) (s, x) ds. (43)

Remembering that aε1 a
ε
3 is weakly compact in L1([0, T ]×Ω), we see that the

l.h.s. of (43) tends to 0. Then, we recall that (∂t − d1 ∆x)
−1

(the operator con-
sisting in solving the heat equation with homogeneous Neumann condition and
initial datum 0) transforms continuously L1([0, T ]×Ω) in L1+2/N−ζ([0, T ]×Ω)
when Ω is a smooth subset of RN and ζ ∈]0, 2/N ] (cf. [4] for example) As

a consequence, we see that
∫ t

0 e
d1(t−s)∆x (aε2a

ε
4 − aε1a

ε
3) ds converges towards∫ t

0 e
d1(t−s)∆x (a2a4 − a1a3) ds in L1+2/N−ζ([0, T ]×Ω). Finally, since aε3 is con-

verging to a3 in L2+δ−ζ([0, T ]×Ω) strong for all ζ ∈]0, δ], we see that we can
pass to the limit in the r.h.s. of (43) when N ≤ 2 and end up with (26). This
ends the proof of Proposition 3. �

Proof of Proposition 4: We first write the evolution of the (local) entropy

H (aε1, a
ε
2, a

ε
3, a

ε
4) :=

2∑

i=1

[ε aεi ln (ε a
ε
i )− ε aεi ln (ε ai) + 1]

+ aε3 ln a
ε
3 − aε3 + 1

+ aε4 ln a
ε
4 −

[
1 + ln

(
k

ℓ

)]
aε4 +

k

ℓ
≥ 0. (44)
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The computation of its time derivative leads to

∂tH (aε1, a
ε
2, a

ε
3, a

ε
4) − ∆x

{
2∑

i=1

di [ε a
ε
i ln (ε a

ε
i )− ε aεi + 1]

+ d3 (a
ε
3 ln a

ε
3 − aε3 + 1)

+ d4

[
aε4 ln a

ε
4 −

[
1 + ln

(
k

ℓ

)]
aε4 +

k

ℓ

]}

+ ε

2∑

i=1

di
|∇xa

ε
i |
2

aεi
+

4∑

i=3

di
|∇xa

ε
i |

2

aεi

+ ε (kaε1a
ε
3 − ℓaε2a

ε
4) [ln (ka

ε
1a

ε
3)− ln (ℓaε2a

ε
4)] = 0. (45)

We now add the first and second equations of (16) on one hand, and the third
and fourth equations of (16) on the other hand. We see that

∂t (a
ε
1 + aε2)−∆x (d1a

ε
1 + d2a

ε
2) = 0, (46)

∂t (a
ε
3 + aε4)−∆x (d3a

ε
3 + d4a

ε
4) = 0. (47)

Using the improved duality lemma of [4], we get, for some δ > 0, the informa-
tion that the sequences aεi , for i = 1, . . . , 4, are bounded in L2+δ([0, T ]×Ω).

We can therefore extract subsequences (still denoted by ε) such that

aεi ⇀ ai, i = 1, . . . , 4,

where ai lie in L2+δ([0, T ]×Ω), and the convergences hold in L2+δ([0, T ]×Ω)
weak.

Since ∂ta
ε
i − di∆xa

ε
i is bounded in L1+δ/2([0, T ]× Ω) for i = 3, 4, the se-

quences aεi are in fact converging to ai a.e. (for i = 3, 4), and so in L2([0, T ]×Ω)
strong. As a consequence, aε1 a

ε
3 (respectively aε2a

ε
4) converges weakly towards

a1 a3 (respectively a2a4) in L1([0, T ]×Ω).
Passing to the limit (in the sense of distributions) in the first equation of

(16), we see that ℓ a2 a4 = k a1 a3. Adding the two first equations of (16) and
passing to the limit, we also see that the second part of (27) holds. Finally,
passing to the limit in the third and fourth equation of (16), we get (28). This
ends the proof of Proposition 4. �

4 Concluding remarks

This work faces some typical asymptotic problems appearing in PDEs describ-
ing diffusion and reversible reactions.

The main aim of this paper is to highlight the strength of the methods for
parabolic equations, based on the entropy structure, and on duality lemmas,
which yield rigorous proofs of convergence in the asymptotics.

We restricted ourselves here to cases which are sufficiently simple to be
treated by already established methods.
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Future developments will concern more complex chemical processes natu-
rally appearing in the applications in the context of networks of reactions, in
which also non reversible chemical processes may arise. In fact, although for
networks of reactions, many works exist in the context of ODEs, still not so
many are available when reaction-diffusion systems are concerned. We refer to
[7] and the references therein for a precise description of the existing theory.
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