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Abstract

The mechanism leading to gas damping in Micro-Electro-Mechanical Systems (MEMS) devices

vibrating at high frequencies is investigated by using the linearized Boltzmann equation based on

simplified kinetic models and diffuse reflection boundary conditions. Above a certain frequency

of oscillation, the sound waves propagating through the gas are trapped in the gaps between the

moving elements and the fixed boundaries of the microdevice. In particular, we found a scaling

law, valid for all Knudsen numbers Kn (defined as the ratio between the gas mean free path and

a characteristic length of the gas flow), that predicts a resonant response of the system. This

response enables a minimization of the damping force exerted by the gas on the oscillating wall

of the microdevice.
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I. INTRODUCTION

In the last few years, Micro-Electro-Mechanical Systems (MEMS) devices vibrating at

high frequencies (ranging from 1 MHz to 60 GHz) have increasingly been used in various

industrial fields. In fact, such high frequency devices find applications in inertial sensing,

acoustic transduction, optical signal manipulation and RF (radio frequency) components

[1], [2], [3], [4], [5]. In particular, radio frequency microelectromechanical systems (RF

MEMS) have become a major research area because they should enable a miniaturization

and an integration of RF components, with applications to ultra low-power wireless and

adaptive/secure telecommunications. In MEMS devices, the fluid is usually trapped under

or around the vibrating micromechanical structure in extremely narrow gaps. As the

structure vibrates, it pushes and pulls the fluid film creating complex pressure patterns

that depend on the geometry of the structure, the boundary conditions, frequency of

oscillations and thickness of the fluid film. In particular, when a planar microstructure

oscillates in the direction perpendicular to its surface, the forces exerted by the fluid

due to the built-up pressure are always against the movement of the structure. Thus,

the fluid-film (typically air-film) acts as a damper and the phenomenon is called squeeze

film damping. Low frequency MEMS devices are normally operated at very low pressure

in order to minimize the damping due to the internal friction of the gas flowing in the

small gaps between the moving parts of these microstructures [6], [7], [8], [9], [10]. This

need can be overcome when MEMS devices vibrate at relatively high frequencies, since

gas compressibility and inertial forces lead then to another damping mechanism which is

related to the propagation of sound waves generated by high-frequency oscillating micro-

structures. Very recently, the mechanism leading to gas damping in RF MEMS devices

has been studied by using the linearized Navier-Stokes equations with slip boundary

conditions for temperature in [11], [12]. Since the analysis presented in [11], [12] failed to

predict the correct value of the damping force due to air in a RF MEMS disk resonator

[1], [2], we report in the current paper a thorough study of time-periodic oscillatory flows

encountered in MEMS devices vibrating at high frequency within the framework of kinetic

theory of rarefied gas. In particular, we have found out a scaling law which predicts

a resonant response of the system when the ratio between the rarefaction parameter
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δ (inverse Knudsen number) and the dimensionless period of oscillation of the moving

wall of the device takes a well-defined fixed value. The occurrence of an antiresonance is

particularly important since if the device is operated close to the corresponding frequency,

the damping due to the gas is considerably reduced. Since gas resonances take place for

each value of δ, the RF MEMS devices can perform well also at atmospheric pressure

greatly reducing the need for (and cost associated with) vacuum packaging.

II. MATHEMATICAL FORMULATION

Let us consider a monatomic gas confined in a three-dimensional rectangular section

channel of dimensions Λ′ in the x′-direction, W ′ in the y′-direction and d in the z′-direction.

All the walls of the channel are held at the same constant temperature T0. Assuming that

the channel width W ′ is much larger than the other dimensions, the problem can be

reduced to a two-dimensional one, as outlined in Fig. 1. The upper wall of the channel

(located at z′ = d/2) is fixed while the lower one (located at z′ = −d/2) harmonically

oscillates in the z′-direction (normal to the wall itself) with angular frequency ω′ (the

corresponding period being T ′ = 2π/ω′). The velocity U ′
w of the oscillating plate depends

on time t′ through the formula

U ′
w(t′) = U ′

0 sin(ω′t′) (1)

where it is assumed that the amplitude U ′
0 is very small compared to the thermal velocity

v0, i.e.

U ′
0 << v0, v0 =

√

2RT0 (2)

with R being the gas constant and T0 being the equilibrium temperature of the gas. Under

these conditions, the Boltzmann equation modeling the gas motion inside the channel can

be linearized about a Maxwellian f0 by putting [13], [14]

f = f0(1 + h) (3)
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where f(x′, z′, c, t′) is the distribution function for the molecular velocity c expressed in

units of v0 and h(x′, z′, c, t′) is the small perturbation on the basic equilibrium state. The

above mentioned Maxwellian function is given by

f0 = ρ0π
− 3

2 exp(−c2) (4)

where ρ0 is the equilibrium density of the gas. Using Eq. (3), the nonstationary linearized

Boltzmann equation reads as

∂h

∂t′
+ cx

∂h

∂x′
+ cz

∂h

∂z′
= Lh (5)

where Lh is the linearized collision operator. Since it is difficult to manage the Boltzmann

operator L as such, for both analytical computations and numerical simulations, simplified

kinetic models of the exact collision integral are widely used in practice. Because of its

simplicity, the Bhatnagar, Gross and Krook (BGK) model is one of the most popular of

these kinetic models [15], although it is known to have a serious flaw: it leads to a wrong

Prandtl number (i.e. the dimensionless ratio of viscosity and thermal conductivity). This

difficulty can be dealt with when one works in the linearized framework since viscosity

and temperature effects are then decoupled [16], [17]. However, for the specific problem

with which we are dealing here, where the sound waves generated by the oscillating plate

propagate through the gas across the gap of the channel, both temperature variations

and thermal conductivity must be accounted for due to compressibility effects. Thus,

in order to correctly describe both mass and heat transfer, it is worth investigating the

problem with a more refined model than the BGK. We shall therefore use the ellipsoidal

statistical (ES) model, which allows to recover the right Prandtl number [18], [19], [20].

The linearized ES model gives rise to the following collision operator

Lh = θ̃−1

[

ρ+ 2c · v + τ (c2 − 3/2) − λ ci cj Pij + λ (ρ+ τ) c2/2 − h

]

(6)

where θ̃ is a suitable mean free time, while the dimensionless macroscopic perturbed

density ρ, velocity v, temperature τ and stress tensor Pij are obtained by taking the

moments of h
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ρ = π−3/2

∫ +∞

−∞
h e−c

2

dc, (7)

v = π−3/2

∫ +∞

−∞
c h e−c2

dc, (8)

τ = π−3/2

∫ +∞

−∞
(
2

3
c2 − 1) h e−c

2

dc, (9)

Pij = π−3/2

∫ +∞

−∞
ci cj h e

−c2

dc. (10)

In Eq. (6), λ is a constant to be chosen in such a way that the correct Prandtl number is

obtained, that is

Pr = cp
µ

k
(11)

where cp is the specific heat at constant pressure, µ the viscosity and k the thermal

conductivity. λ is equal to 0 for the BGK model (Pr = 1) and 1 for a Maxwell gas

(Pr = 2/3). For a general monoatomic gas the relation between λ and Pr is given by

Pr =
2

2 + λ
(12)

i.e.,

λ =
2

Pr
− 2 (13)

In order to get the same viscosity coefficient from the BGK model and the present one,

we must put

θ̃ =
(λ+ 2)

2
θ (14)

where θ = µ/P0 is the collision time defined in the BGK model (with P0 being the

equilibrium pressure). It is convenient now to rescale all variables appearing in Eqs. (5)

and (6) as follows

t =
t′

θ
, x =

x′

v0θ
, z =

z′

v0θ
(15)

so that the dimensionless ES linearized equation reads
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∂h
∂t

+ cx
∂h
∂x

+ cz
∂h
∂z

= 2
(2 + λ)

[

ρ+ 2c · v + (c2 − 3/2) τ

− λ ci cj Pij + λ c2(ρ+ τ)/2 − h

]

(16)

Appropriate boundary conditions must be supplied for the Boltzmann equation (16) to

be solved. Assuming the diffuse scattering of gaseous particles on both walls (i.e., the

reemitted molecules are diffused with a Maxwellian distribution described by the wall

properties), the linearized boundary conditions, when z = ±δ/2, to be added to Eq. (16)

have the following general expression [21], [22], [23]:

h(x, z = −δ/2, c, t) = (
√
π + 2 cz)Uw

− 2
π

∫ ∞

−∞

∫ ∞

−∞
dc̃xdc̃y

∫

c̃z<0

dc̃zc̃z e
−c̃2

h(x, z = −δ/2, c̃, t) cz > 0 (17)

h(x, z = δ/2, c, t) =
2

π

∫ ∞

−∞

∫ ∞

−∞
dc̃xdc̃y

∫

c̃z>0

dc̃zc̃z e
−c̃

2

h(x, z = δ/2, c̃, t) cz < 0 (18)

where δ = d/(v0θ) is the rarefaction parameter (inverse Knudsen number), while at the

channel entrance (x = −Λ/2) and exit (x = Λ/2) the ingoing part of the perturbed

distribution function h vanishes. In Eq. (17), Uw is the dimensionless wall velocity given

by

Uw(t) = U0 sin(ω t) (19)

with Uw = U ′
w/v0, U0 = U ′

0/v0, ω = θ ω′, T = 2π/ω = T ′/θ. Since the problem under

consideration is two-dimensional, the unknown perturbed distribution function h, as well

as the overall quantities, do not depend on the y coordinate. Moreover, we can also

eliminate the cy variable by introducing the following projection procedure [24], [25], [26].

First, we multiply Eq. (16) by 1√
π
e−cy

2

and we integrate over all cy. Then, we multiply

Eq. (16) for a second time by 1√
π

(cy
2 − 1/2) e−cy

2

and we integrate again over all cy. The

resulting equations after the projection are
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∂H
∂t

+ cx
∂H
∂x

+ cz
∂H
∂z

+ 2
(2 + λ)

H = 2
(2 + λ)

[

ρ+ 2 cx vx + 2 cz vz + (c2x + c2z − 1) τ

− λ (c2x − 1/2)Pxx − λ (c2z − 1/2)Pzz − 2 λ cx cz Pxz + λ
2 (c2x + c2z − 1)(ρ+ τ)

]

(20)

and

∂Ψ

∂t
+ cx

∂Ψ

∂x
+ cz

∂Ψ

∂z
+

2

(2 + λ)
Ψ =

2

(2 + λ)

[

τ

2
− λ

2
(ρ+ τ) +

λ

2
(Pxx + Pzz)

]

(21)

where the reduced unknown distribution functions H and Ψ are defined as

H(x, z, cx, cz, t) =
1√
π

∫ +∞

−∞
h(x, z, c, t) e−c2y dcy (22)

and

Ψ(x, z, cx, cz, t) =
1√
π

∫ +∞

−∞
(c2y − 1/2) h(x, z, c, t) e−c2y dcy (23)

respectively. In order to derive Eqs. (20) and (21) in their final form, we have considered

the linearized equation of state

P =
1

3

[

Pxx + Pyy + Pzz

]

=
1

2
(ρ+ τ) (24)

with P being the dimensionless perturbed pressure of the gas. The macroscopic quantities

appearing in the right-hand side of Eqs. (20) and (21) are defined by

ρ(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
H e−(c2

x
+c2

z
) dcxdcz (25)

vx(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
cxH e−(c2

x
+c2

z
) dcxdcz (26)

vz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
cz H e−(c2

x
+c2

z
) dcxdcz (27)

τ(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

2

3

[

(c2x + c2z − 1)H + Ψ

]

e−(c2
x
+c2

z
) dcxdcz (28)
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Pxx(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
c2xH e−(c2x+c2z) dcxdcz (29)

Pzz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
c2z H e−(c2x+c2z) dcxdcz (30)

Pxz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
cx cz H e−(c2

x
+c2

z
) dcxdcz (31)

The elimination of one (or more) component of the molecular velocity by a projection pro-

cedure is quite important for the computational efficiency of the numerical scheme. The

reduced distribution functions H and Ψ must satisfy the following boundary conditions

coming from Eqs. (17) and (18):

H(x, z = −δ/2, cx, cz, t) = (
√
π + 2 cz)Uw

− 2√
π

∫ ∞

−∞
dc̃x

∫

c̃z<0

dc̃z c̃z e
−(c̃2

x
+c̃2

z
)H(x, z = −δ/2, c̃x, c̃z, t) cz > 0 (32)

Ψ(x, z = −δ/2, cx, cz, t) = 0 cz > 0 (33)

H(x, z = δ/2, cx, cz, t) = 2√
π

∫ ∞

−∞
dc̃x ·

∫

c̃z>0

dc̃z c̃z e
−(c̃2x+c̃2z)H(x, z = δ/2, c̃x, c̃z, t) cz < 0 (34)

Ψ(x, z = δ/2, cx, cz, t) = 0 cz < 0 (35)

To take into account also the transient behaviour of the sound waves excited by the forced

oscillations of the channel wall, the time-dependent problem described by Eqs. (20) and

(21), with boundary conditions given by Eqs. (32)-(35), has been numerically solved

by a deterministic finite-difference method presented in detail in [27]. The numerical

results show that above a certain frequency of oscillation, the sound wave propagation
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takes place only in the z-direction across the gap, which indicates a fully trapped gas

situation [11], [12]. This assumption greatly simplifies the analysis since the topology of

the damper becomes insignificant and the problem can be reduced to a 1-dimensional one.

To demonstrate the gas trapping in the channel gap at high frequencies, Figures 2-4 show

the variations of the macroscopic fields of interest (obtained using the ES model) along

the channel for different periods of oscillation. These frequencies represent different flow

regimes that will be studied more closely in the next sections. The profiles reported in

Figures 2-4 (at different stages during a period of oscillation after the transient behavior

has ended) show clearly that, at high frequencies, the bulk flow velocity in the x-direction,

vx, and the xz-component of the stress tensor, Pxz, are zero (except very close to the

borders, due to channel end effects) and the other macroscopic quantities (vz and Pzz) do

not depend on x. As frequencies decrease, the two-dimensional character of the flow field

cannot be neglected and a full 2D description becomes mandatory in order to capture the

correct magnitude of the macroscopic fields: This can be seen quite clearly in Figure 4,

where the frequency is much lower than that in the other Figures. On physical grounds,

one can observe that, since the velocity amplitude U0 is fixed, the displacement amplitude

of the plate (U0/ω) decreases as the frequency ω increases. This means that, at very

high frequencies, the gas is not squeezed between the two walls and a flow parallel to the

bounding plates of the channel cannot arise. Figures 2-4 have been obtained by considering

a specific value of the rarefaction parameter (δ = 0.1) but the shape of the macroscopic-

fields profiles remains qualitatively and quantitatively the same if one changes δ and T

in such a way that the ratio δ/T is kept constant. This means that, if for δ = 0.1 the

transition to a two-dimensional flow field requires T > 0.5, for δ = 1 one should have

T > 5, and for δ = 10 T > 50. This aspect will be fully clarified in the next section.

III. ONE-DIMENSIONAL SOUND WAVE PROPAGATION MODEL

When the frequency of oscillation in a squeezed-film damper is sufficiently high for the

gas to be trapped in the channel gap, the basic kinetic equations (20) and (21) degenerate

to the following set
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∂H
∂t

+ cz
∂H
∂z

+ 2
(2 + λ)

H = 2
(2 + λ)

[

ρ+ 2 cz vz + (c2z − 1/2) τ

− λ (c2z − 1/2)Pzz + λ
2 (c2z − 1/2)(ρ+ τ)

]

(36)

and

∂Ψ

∂t
+ cz

∂Ψ

∂z
+

2

(2 + λ)
Ψ =

2

(2 + λ)

[

τ − λ

4
(ρ+ τ) +

λ

2
Pzz

]

(37)

where now the reduced unknown distribution functions H and Ψ are expressed as

H(z, cz, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
h(z, c, t) e−(c2x+c2y) dcx dcy (38)

and

Ψ(z, cz, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞
(c2x + c2y − 1) h(z, c, t) e−(c2

x
+c2

y
) dcx dcy (39)

respectively. The macroscopic fields appearing on the right-hand side of Eqs. (36) and

(37) are defined by

ρ(z, t) =
1√
π

∫ +∞

−∞
H e−c2

z dcz (40)

vz(z, t) =
1√
π

∫ +∞

−∞
cz H e−c2

z dcz (41)

τ(z, t) =
1√
π

∫ +∞

−∞

2

3

[

(c2z − 1/2)H + Ψ

]

e−c2
z dcz (42)

Pzz(z, t) =
1√
π

∫ +∞

−∞
c2z H e−c2

z dcz (43)

while the linearized boundary conditions (32)-(35) become

H(z = −δ/2, cz, t) = (
√
π + 2 cz)Uw

− 2

∫

c̃z<0

dc̃z c̃z e
−c̃2z H(z = −δ/2, c̃z, t) cz > 0 (44)
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Ψ(z = −δ/2, cz, t) = 0 cz > 0 (45)

H(z = δ/2, cz, t) = 2

∫

c̃z>0

dc̃z c̃z e
−c̃2

z H(z = δ/2, c̃z, t) cz < 0 (46)

Ψ(z = δ/2, cz, t) = 0 cz < 0 (47)

In order to compute the force exerted by the gas on the moving wall of the channel,

the perturbation of the normal stress Pzz (defined by Eq. (43)) has to be evaluated at

z = −δ/2. Therefore, to validate our numerical code, we list in Tables I and II the

values of the amplitude and of the phase of Pzz at the oscillating wall, obtained through

a numerical integration of Eqs. (36) and (37), along with the highly accurate results

obtained in [26] from a numerical solution of the linearized Shakhov kinetic equation.

The normal stress time-dependence is of the following known form:

|Pzz| sin(ω t+ φ) (48)

where |Pzz| is the amplitude and φ the phase. In general, the amplitude of the time-

dependent macroscopic fields is extracted from our numerical results as half the vertical

distance between a maximum and the nearest minimum appearing in the temporal evo-

lution of the macroscopic quantity. This corresponds to the definition

|A(z, t)| = [Re(A)2 + Im(A)2]1/2 (49)

where Re and Im denote the real and imaginary part, respectively, of the field A(z, t).

Instead, the phase can be recovered from our simulations through the application of a

chi-square fit to the functional form of the expression (48) [28], [29].

Even if, in the context of our work, the interest is focused on micro-devices vibrating

at high frequencies (where the problem is reduced to a 1-dimensional one due to the gas

trapping in the channel gap), we have listed in Tables I and II three different values of the
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period T , which cover all oscillation regimes only for the sake of comparison with the out-

puts reported in [26] (where the one-dimensional description arises, on the contrary, from

the double degenerate geometry considered, that is, infinitely long and wide channels).

Then, for each T , several values of the rarefaction parameter δ, lying in the transitional

region, have been taken into account. As shown in the tables, the agreement between

the numerical results obtained in [26] by using the Shakhov model and our outputs based

on both BGK and ES kinetic models is fairly good. This comparison reveals not only

the reliability of our numerical method of solution, but also the weak dependence of the

normal stress field evaluated at the moving channel wall on the collisional model used.

This last point will be discussed more deeply in Section IV.

Low frequency MEMS devices are normally operated at very low pressure in order to

minimize the damping due to gas flow in the small gaps between the moving parts of these

microstructures. This need can be overcome when MEMS devices vibrate at relatively

high frequencies, since gas compressibility and inertial forces lead then to another damp-

ing mechanism (in addition to the viscous damping that dominates at low frequencies).

In particular, inertial forces will cause a gas resonance in the z-direction when the dimen-

sionless distance between the channel walls (measured in units of the oscillation period of

the moving plate)

L =
δ

T
=

d ω′

2 π v0

(50)

takes a well-defined fixed value. Note that the quantity (2 π v0/ω
′) is the distance traveled

by gaseous molecules during one cycle of oscillation of the moving boundary. Correspond-

ing to a resonant response of the system, the amplitude of Pzz at z = −δ/2 reaches its

maximum value (resonance) or its minimum value (antiresonance). This is illustrated

in Fig. 5, which shows the temporal evolution of Pzz(z = −δ/2, t) (obtained using the

ES model), after the transient behavior has ended, for different periods of oscillation of

the moving wall. This picture has been obtained by considering a specific value of the

rarefaction parameter (δ = 0.1) but the profiles of Pzz(z = −δ/2, t) show an analogous

trend for each value of δ. The occurrence of an antiresonance is particularly important

since if the device is operated close to the corresponding frequency, the damping due to
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the gas (measured by the amplitude of Pzz(z = −δ/2, t)) is considerably reduced. As a

consequence, an analytical expression for Pzz is highly desirable if one wants to be able to

predict the occurrence of the gas resonances. In order to simplify the analytical treatment,

one can take advantage of a result discussed in Section IV, that is, the thermal effects

on the flow field can be neglected for periods, T , of oscillations of the channel wall such

that T . 1. When this condition is fulfilled, it can be shown, furthermore, (cf. Section

IV) that there is only a weak dependence of the problem on the chosen intermolecular

collision model and the analytical treatment of the problem can be performed with the

following simplified BGK equation

∂H

∂t
+ cz

∂H

∂z
+H = ρ+ 2 cz vz (51)

obtained from Eqs. (36) and (37) by choosing λ = 0 and by dropping out the term

related to thermal perturbations. In Eq. (51), ρ and vz are still given by Eqs. (40) and

(41), respectively, and the boundary conditions (44) and (46) are imposed. Since the

vibrations of the system are generated by a time-harmonic forcing (of frequency ω) of the

form sin(ω t) (see Eq. (19)), we introduce the following expression Uw = U0 e
i ωt in Eq.

(44) and then we look for solutions of Eq. (51) under the form

H(z, cz, t) = H(z, cz) e
i ω t. (52)

The solutions of the original problem (where Uw = U0 sin(ω t)) are then recovered by

taking the imaginary part of H . Inserting Eq. (52) in (51), the BGK model equation

reads

cz
∂H
∂z

(z, cz) + (1 + i ω)H(z, cz) = ̺(z) + 2 cz vz(z) (53)

where

̺(z) = ρ(z, t)e−i ω t =
1√
π

∫ ∞

−∞
H(z, cz) e

−c2z dcz (54)

vz(z) = vz(z, t)e
−i ω t =

1√
π

∫ ∞

−∞
cz H(z, cz) e

−c2z dcz (55)
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The boundary conditions to be added to Eq. (53) are derived from Eqs. (44) and (46)

under the assumption (52) and the choice of the forcing term: Uw = ei ω t (where we have

fixed U0 = 1, which is not restrictive within the framework of a linearized analysis). It is

somewhat more convenient to rewrite the boundary conditions in the form [21]

H(z = −δ/2, cz > 0) = B1 + 2 cz (56)

H(z = δ/2, cz < 0) = B2 (57)

where

B1 =
√
π − 2

∫

c̃z<0

H(z = −δ/2, c̃z) c̃z e−c̃z
2

dc̃z (58)

B2 = 2

∫

c̃z>0

H(z = δ/2, c̃z) c̃z e
−c̃z

2

dc̃z (59)

Integrating now Eq. (53) along the trajectories of the molecules, we get

H(z, cz) = e
− zcz γ

e
−
δ sgncz

2 cz
γ
H(−δ/2 sgncz, cz)

+

∫ z

−δ/2sgncz
ds [̺(s) + 2 cz vz(s)]/cz e

−|z − s| γ

|cz| (60)

with γ = (1 + i ω). Enforcing Eq. (60) at the boundaries, one obtains two equations:

H−(z = −δ/2, cz) = e
δ
cz γ

B2 +

∫ δ/2

−δ/2
ds [̺(s) − 2 |cz| vz(s)]/|cz| e

−(δ/2 + s)
γ

|cz| (61)

H−(z = δ/2, cz) = e
− δcz γ

(B1 + 2 cz)

+

∫ δ/2

−δ/2
ds [̺(s) + 2 cz vz(s)]/cz e

−(δ/2 − s)
γ

cz (62)

where H−(z = −δ/2, cz), H−(z = δ/2, cz) are the distribution functions of the molecules

impinging upon the walls. By using Eqs. (61) and (62), after standard manipulations,

the expression of B1 and B2 can be explicitly written as
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B1 = [1 − 4 T 2
1 (δ γ)]−1

{√
π + 8T1(δ γ)T2(δ γ)

+

∫ δ/2

−δ/2
ds ̺(s) [4 T1(δ γ)T0((δ/2 − s) γ) + 2T0((δ/2 + s) γ)]

+

∫ δ/2

−δ/2
ds vz(s) [8 T1(δ γ)T1((δ/2 − s) γ) − 4 T1((δ/2 + s) γ)]

}

(63)

and

B2 = [1 − 4 T 2
1 (δ γ)]−1

{

2
√
π T1(δ γ) + 4T2(δ γ)

+

∫ δ/2

−δ/2
ds ̺(s) [4 T1(δ γ)T0((δ/2 + s) γ) + 2T0((δ/2 − s) γ)]

+

∫ δ/2

−δ/2
ds vz(s) [4 T1((δ/2 − s) γ) − 8 T1(δ γ)T1((δ/2 + s) γ)]

}

(64)

where Tn denotes the Abramowitz functions defined by

Tn(x) :=

∫ +∞

0

sn e−s2−x/s ds. (65)

Inserting in the definitions (54) and (55) the distribution function (60), together with the

boundary conditions (56) and (57), the density ̺ and the bulk velocity vz of the gas are

seen to satisfy the following equations:
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̺(z) = 2√
π
T1((δ/2 + z) γ) + 1√

π
[1 − 4 T 2

1 (δ γ)]−1 T0((δ/2 − z) γ) [2
√
π T1(δ γ) + 4T2(δ γ)]

+ 1√
π

[1 − 4 T 2
1 (δ γ)]−1 T0((δ/2 + z) γ) [

√
π + 8T1(δ γ)T2(δ γ)]

+ 1√
π

∫ δ/2

−δ/2

ds ̺(s)T−1(|z − s| γ) +
1√
π

[1 − 4 T 2
1 (δ γ)]−1

∫ δ/2

−δ/2

ds ̺(s) ·
[

4 T1(δ γ)T0((δ/2 − z) γ)T0((δ/2 + s) γ) + 2T0((δ/2 − z) γ)T0((δ/2 − s) γ)

+ 4T1(δ γ)T0((δ/2 + z) γ)T0((δ/2 − s) γ) + 2T0((δ/2 + z) γ)T0((δ/2 + s) γ)

]

+ 2√
π

∫ δ/2

−δ/2

ds vz(s) sgn(z − s)T0(|z − s| γ) +
1√
π

[1 − 4 T 2
1 (δ γ)]−1

∫ δ/2

−δ/2

ds vz(s) ·
[

4 T0((δ/2 − z) γ)T1((δ/2 − s) γ) − 8 T1(δ γ)T0((δ/2 − z) γ)T1((δ/2 + s) γ)

+ 8T1(δ γ)T0((δ/2 + z) γ)T1((δ/2 − s) γ) − 4 T0((δ/2 + z) γ)T1((δ/2 + s) γ)

]

(66)

and

vz(z) = 2√
π
T2((δ/2 + z) γ) − 1√

π
[1 − 4 T 2

1 (δ γ)]−1 T1((δ/2 − z) γ) [2
√
π T1(δ γ) + 4T2(δ γ)]

+ 1√
π

[1 − 4 T 2
1 (δ γ)]−1 T1((δ/2 + z) γ) [

√
π + 8T1(δ γ)T2(δ γ)]

+ 1√
π

∫ δ/2

−δ/2

ds ̺(s) sgn(z − s)T0(|z − s| γ) − 1√
π

[1 − 4 T 2
1 (δ γ)]−1

∫ δ/2

−δ/2

ds ̺(s) ·
[

4 T1(δ γ)T1((δ/2 − z) γ)T0((δ/2 + s) γ) + 2T1((δ/2 − z) γ)T0((δ/2 − s) γ)

− 4 T1(δ γ)T1((δ/2 + z) γ)T0((δ/2 − s) γ) − 2 T1((δ/2 + z) γ)T0((δ/2 + s) γ)

]

+ 2√
π

∫ δ/2

−δ/2

ds vz(s)T1(|z − s| γ) − 1√
π

[1 − 4 T 2
1 (δ γ)]−1

∫ δ/2

−δ/2

ds vz(s) ·
[

4 T1((δ/2 − z) γ)T1((δ/2 − s) γ) − 8 T1(δ γ)T1((δ/2 − z) γ)T1((δ/2 + s) γ)

− 8 T1(δ γ)T1((δ/2 + z) γ)T1((δ/2 − s) γ) + 4T1((δ/2 + z) γ)T1((δ/2 + s) γ)

]

(67)

Eqs. (66) and (67) form a system of two coupled integral equations for ̺(z) and vz(z).

The perturbation of the normal stress Pzz (evaluated at z = −δ/2), which has a direct

connection with the damping force exerted by the gas on the moving wall of the channel,

can be expressed in terms of the density and the bulk velocity of the gas as follows:
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Pzz(z = −δ/2) = Pzz(z = −δ/2, t) e−i ω t = 1√
π

+ [1 − 4 T 2
1 (δ γ)]−1 ·

[√
π

4 + 4√
π
T 2

2 (δ γ) + 4T1(δ γ)T2(δ γ)

]

+ 1√
π

∫ δ/2

−δ/2

ds ̺(s)T1(| − δ/2 − s| γ)

+ 1√
π

[1 − 4 T 2
1 (δ γ)]−1

[√
π

2 + 4T2(δ γ)T1(δ γ)

]
∫ δ/2

−δ/2

ds ̺(s)T0((δ/2 + s) γ)

+ 1√
π

[1 − 4 T 2
1 (δ γ)]−1[2 T2(δ γ) +

√
π T1(δ γ)]

∫ δ/2

−δ/2

ds ̺(s)T0((δ/2 − s) γ)

+ 2√
π

∫ δ/2

−δ/2

ds vz(s) sgn(−δ/2 − s)T2(| − δ/2 − s| γ) +
2√
π

[1 − 4 T 2
1 (δ γ)]−1 ·

[2 T2(δ γ) +
√
π T1(δ γ)]

∫ δ/2

−δ/2

ds vz(s)T1((δ/2 − s) γ) − 2√
π

[1 − 4 T 2
1 (δ γ)]−1 ·

[4 T2(δ γ)T1(δ γ) +
√
π/2]

∫ δ/2

−δ/2

ds vz(s)T1((δ/2 + s) γ) (68)

As previously mentioned, in order to get a solution to the original problem with a forcing of

the form sin(ωt), one needs to take the imaginary part of the time-dependent macroscopic

fields: ρ(z, t), vz(z, t), Pzz(z, t). Furthermore, it is worth noting that any absolute constant

can be added to the solution obtained here, and this still gives a solution to the problem.

Thus, the evaluation of the damping exerted by the gas on the moving wall of the channel

has been reduced to the task of solving the integral equations (66) and (67). To this

end, we extend a finite difference technique first introduced in a paper by Cercignani and

Daneri [30]. The one-dimensional computational domain is divided into n mesh points

(for simplicity, only constant mesh steps are considered) and the macroscopic fields (̺(z)

and vz(z)) are approximated by a stepwise function. The general form of the numerical

scheme is given by [31]

2 n−1
∑

k=0

αhkψk = βh (h = 0, . . . , 2n− 1) (69)

where

ψi = ̺(zi) (i = 0, . . . , n− 1) (70)

ψi+n = vz(zi) (i = 0, . . . , n− 1) (71)
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Following the idea reported in [30], the constant value assigned to the functions ̺(z) and

vz(z) on every interval can be interpreted as either (a) the value in the midpoint or (b) the

mean value on the whole interval, so that two methods of differencing can be defined with

two possible choices for the coefficients αhk and βh. In the APPENDIX, we report only

the coefficients related to the method of differencing (a) (which can be computed more

easily), since with a resolution of n = 200 mesh points (used in the present computations

to reach very high accuracy), the two schemes approach so closely each other that they

can be considered equivalent.

It has been verified that the agreement between the profiles of the macroscopic fields

given by Eqs. (66)-(68) and the results based on the kinetic equations (36) and (37) by

choosing λ = 0 is very good (the relative error is less than 0.5%) in the entire range of

validity of the formulas (66)-(68), that is T . 1 and arbitrary Knudsen numbers.

IV. RESONANT FREQUENCIES

Since the resonances take place when the ratio between the gap dimensions and the

distance traveled by the molecules during one cycle of the oscillations of the moving

boundary assumes a fixed value (see Eq. (50)), we restrict ourselves to gas flow conditions

which allow to compute such a value by a simple procedure. In the limit δ << 1, the

integrals appearing in Eq. (68) vanish and the only term for which we have to find the

maxima and minima is

f(ω) = [1 − 4 T 2
1 (δ (1 + iω))]−1

[√
π

4 + 4√
π
T 2

2 (δ (1 + iω))

+ 4T1(δ (1 + iω))T2(δ (1 + iω))

]

(72)

Still writing γ = 1+ iω, it amounts to finding the zeros of the derivative of f with respect

to ω, that is, the zeros of the following function
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F (γ) = 8 δ√
π
T1(δ γ)T2(δ γ) + 4 δ T0(δ γ)T2(δ γ) + 4 δ T 2

1 (δ γ)

− 32 δ√
π
T 3

1 (δ γ)T2(δ γ) + 16 δ T0(δ γ)T
2
1 (δ γ)T2(δ γ) − 16 δ T 4

1 (δ γ)

+ 2
√
πδ T0(δ γ)T1(δ γ) + 32 δ√

π
T0(δ γ)T1(δ γ)T

2
2 (δ γ) (73)

Indeed, due to the choice of the forcing term in the analytical treatment (as underlined in

the previous section), we will consider only the zeros of the imaginary part of F . Then,

once the stationary points of f(ω) have been found, the sign of the second derivative of f

with respect to ω allows to distinguish if the stationary point is a maximum (resonance)

or a minimum (antiresonance). Figure 6 shows the variation of the imaginary part of F

as a function of the period T for a fixed value of the rarefaction parameter δ = 0.01,

satisfying the condition δ << 1 under which Eq. (73) has been derived. The picture

reveals that there are many zeros of the imaginary part of the function F , two of them

corresponding to the main resonances located at:

Ta ≃ 4.7 10−2 (antiresonance) (74)

Tr ≃ 2.1 10−2 (resonance) (75)

and leading to the values La ≃ 0.21 and Lr ≃ 0.48, respectively, for the dimensionless

distance between the channel walls (see Eq. (50)). The zeros corresponding to smaller

values of T are related to higher-order resonances. Indeed, the values given by the formulas

(74) and (75) are not the exact zeros of the function plotted in Fig. 6 but a sort of weighted

average between the analytical results and the numerical outcomes, presented in Figs. 7-

9, which show slight deviations from the findings obtained by using Eq. (73). Once the

approximated fixed values, La and Lr, have been determined by using Eq. (73), which

holds under the condition δ << 1 and T . 1 (that is, negligible thermal effects), Eq. (50)

allows to compute the values of T for the occurrence of resonances and antiresonances for

different values of the rarefaction parameter δ progressing from free molecular, through

transitional, to continuum regions (since the ratio δ/T must assume always the same

constant value, each time the system undergoes a resonant response, if one believes that

Eq. (50) should express a scaling law).
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In order to test the reliability of the analytical formula (73) to predict the occurrence of

resonances, Figures 7-9 show the profiles of the normal stress amplitude at the oscillating

wall, obtained by numerical integration of Eqs. (36) and (37), as a function of the period T ,

for three different values of the rarefaction parameter δ. We have included in these pictures

results based on the BGK model and the ES model along with the outputs obtained by

numerical integration of the BGK equation (51), where the thermal perturbations have

been dropped out. This is done to assess the influence of the collision model as well as

the thermal effects on the damping force exerted by the gas on the moving channel wall.

From Figures 7-9, one can conclude the following.

(i) The location of the main resonance (resp. antiresonance) which corresponds to the

highest maximum (resp. lowest minimum) is well predicted by the analytical formula

(73) for each value of the rarefaction parameter. In fact, Eq. (50), applied by

considering the values of L analytically derived through Eq. (73) (that is, La ≃ 0.21

and Lr ≃ 0.48), predicts the following values of T corresponding to the occurrence

of resonances (Tr) and antiresonances (Ta), for the three different values of the

rarefaction parameter δ used in Figs. 7-9:

δ = 0.1 =⇒ Tr =
δ

Lr
=

0.1

0.48
≃ 0.21

Ta =
δ

La
=

0.1

0.21
≃ 0.47

δ = 1 =⇒ Tr =
δ

Lr

=
1

0.48
≃ 2.1

Ta =
δ

La

=
1

0.21
≃ 4.7

δ = 10 =⇒ Tr =
δ

Lr
=

10

0.48
≃ 21

Ta =
δ

La
=

10

0.21
≃ 47

These values are in good agreement with the numerical results presented in Figs.

7-9.
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All the other local maxima (resp. minima) appearing in the pictures are related to

higher-order resonances (which are also well predicted by the formula (73)) since the

values taken by |Pzz(z = −δ/2)| at each maximum (minimum) decrease (increase)

as the period T goes to zero.

(ii) The influence of the collisional model on the normal stress amplitude evaluated at

the moving wall is negligible for each rarefaction parameter δ in the free-molecular

limit and in the transitional region, while a slight deviation between the BGK and ES

models is evident in a neighbourhood of the main resonance in the near-continuum

regime. While it is expected that the influence of a collisional model should in-

crease in the continuum limit, nevertheless the appearance of this discrepancy only

near the highest maximum of the normal stress amplitude profile leads to infer that

this deviation between the two kinetic models could be related to the start-up of

nonlinear effects. In fact, it is worth noting that, the value of |Pzz(z = −δ/2)| corre-

sponding to the main resonant frequency increases with increasing δ. However, both

kinetic models (BGK and ES) leave the location of the resonances (antiresonances)

practically unchanged. In the problem at hand here, the occurrence of the main

antiresonance is of particular interest since if the device is operated close to this fre-

quency, a very small damping due to the gas can be achieved. In particular, Figures

7-9 show that the value of |Pzz(z = −δ/2)| corresponding to the main antiresonant

frequency decreases by increasing δ. Therefore, squeezed-film dampers vibrating at

high frequencies, unlike the low frequency MEMS devices, do not need to operate

at very low pressure in order to minimize the damping due to gas flow.

(iii) The thermal effects do not play any role in determining the amplitude of the normal

stress at the moving wall, |Pzz(z = −δ/2)|, when the plate oscillates with high

frequency (i.e. T . 1), while they dominate at lower frequencies. This means that

for a rarefaction parameter δ > 1 (which requires a period of oscillation T > 1 in

order to detect the occurrence of the main resonances), it is important to include

the full temperature dependence in the model in order to predict the exact location

of the resonances as well as the correct amplitude of the normal stress.

On experimental grounds, it is unfeasible to detect a resonant response of the system
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by putting a microphone on a plate vibrating at high frequencies in order to measure the

acoustic pressure directly on the sound waves source. The numerical simulations suggest

an alternative approach that relies on showing a peculiar feature characterizing the flow

field when resonances/antiresonances occur in the system. To this end, the structure of

the gas flow is summarized in Figures 10-13 where the velocity field vz is plotted against

the distance across the gap of the channel for different periods of oscillation. For a better

visualization, the profiles of the stress tensor Pzz, the density ρ and the temperature τ are

also presented in the same Figures. All the macroscopic fields considered are solutions

of the ES kinetic equations. Indeed, when a resonant response of the system occurs, the

velocity field of the gas (vz) takes the form of a standing wave and concomitantly also

the Pzz-field assumes a characteristic shape, while, for higher values of T , the vz profile

loses its wavy feature and Pzz can be considered almost independent of z in each stage

during a period of oscillation of the moving wall. Figures 10-13 have been obtained by

considering a specific value of the rarefaction parameter (δ = 0.1) but the shape of the

macroscopic fields (depicted at different stages during a period of oscillation after the

transient behavior has ended) remains qualitatively and quantitatively the same if one

changes δ and T in such a way that the ratio δ/T is kept constant.

V. CONCLUDING REMARKS

In the present paper, we have investigated the mechanism responsible for gas damping

in Micro-Electro-Mechanical Systems devices vibrating at high frequencies through the

kinetic theory of rarefied gases. In particular, a scaling law has been found out, that pre-

dicts a resonant response of the system when the ratio between the rarefaction parameter

δ and the dimensionless period T of oscillation of the moving wall of the device takes a

well-defined fixed value. The theoretical analysis presented in the previous sections can

be used for optimizing the working conditions of MEMS devices vibrating at high frequen-

cies. Once the maximum frequency of oscillation of the moving parts of the microdevice

has been fixed according to the current capabilities of the RF systems designer, Eq. (50)

allows to compute the corresponding δ (that is, the working pressure of the gas) in order

to match the antiresonant response of the system and reduce consequently the damping
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due to the gas. The feasibility of this approach is pointed out in Fig. 14 which shows

the profiles of the normal stress amplitude at the oscillating wall as a function of the

rarefaction parameter δ for a given period T (all profiles have been obtained using the

ES model). Corresponding to the three values of the period of oscillation T considered,

that is Ta = 31, Ta = 62.8, Ta = 95, Eq. (50) predicts an antiresonant response of the

system when the rarefaction parameter assumes the following values: δ = Ta · La ≃ 6.5,

δ = Ta · La ≃ 13.2, δ = Ta · La ≃ 20, respectively, (where La ≃ 0.21). On the one hand,

Fig. 14 demonstrates once more that the predictions of the scaling law expressed by Eq.

(50) agree very well with the numerical results. On the other hand, this picture shows that

the gas conditions corresponding to a value of the rarefaction parameter which matches

the antiresonant response of the system, at a fixed period T , are the most favourable ones

over a wide δ range, since they allow to obtain the lowest value of the damping force

exerted by the gas.

Very recently, inertial effects in high-frequency squeezed-film dampers have been mod-

elled by using the linearized Navier-Stokes equations with slip boundary conditions for

temperature [11], [12]. The approximate Nth resonant frequency given by T. Veijola and

A. Lehtovuori in [11], [12] reads

ν ′ =
1

T ′
=
N

4

c

d
N = 1, 2, 3, . . . (76)

where c =
√
γ RT0 is the adiabatic sound speed with γ being the specific heat ratio, R

being the gas constant and T0 being the equilibrium temperature of the gas. In Eq. (76),

odd values of N give antiresonances, while even values of N give resonances. By rewriting

Eq. (76) as follows

N

4
=

d

c T ′
(77)

and by comparing it with Eq. (50), which in dimensional form reads

L =
d

v0 T ′
(78)

one can conclude that the two formulas (Eqs. (77) and (78)) are closely related since the

sound velocity c has the same order as the most probable velocity v0. Indeed, the values
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of the resonant frequencies predicted by the two formulas are not in close quantitative

agreement, since the constant fixed values appearing on the left-hand side of Eqs. (77)

and (78) are different. This is more clearly seen in the prediction of resonances rather than

antiresonances. In fact, for a channel gap d of size equals to 1µm in air at atmospheric

pressure (Pa ≃ 101 103 N/m2) and ambient temperature (T0 ≃ 25oC), with a rarefaction

parameter δ lying in the near-continuum region (δ ≃ 13), the value predicted by Eq. (77)

for the first antiresonance frequency (N = 1)

νa ≃ 87.47 Mhz

shows a good agreement with the value obtained through Eq. (78)

νa ≃ 88 MHz.

Instead, under the same rarefaction conditions (δ ≃ 13) the values given by Eqs. (77) and

(78) for the first resonance frequency are not so closely related: By using Eq. (77) with

N = 2 one obtains

νr ≃ 175 MHz

while Eq. (78) predicts

νr ≃ 185 MHz.

However, in spite of the good prediction for the exact location of the first antiresonant

frequency, the analysis presented by T. Veijola and A. Lehtovuori in [11], [12] fails to

give the correct value for the amplitude of the stress tensor at the moving wall (that is

the damping force exerted by the gas) even in the near-continuum regime. In fact, it

is pointed out in [11] that the damping coefficient estimated by using the Navier-Stokes

equations with slip boundary conditions can explain only about a fourth part of the total

damping due to air in a RF MEMS disk resonator operating at atmospheric pressure

described in [1], [2]. This is likely related to the fact that in [11] the authors do not

use the temperature slip coefficient recommended in [26] in order to obtain close results

between the kinetic equations and the Navier-Stokes equations in the slip region. But, as
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underlined in the previous section, for a rarefaction parameter δ > 1 the thermal effects

play an important role in determining the exact location of the resonances as well as the

correct amplitude of the normal stress. Of course, to assess more closely the reliability

of our theoretical analysis a systematic comparison with experimental results would be

highly desirable, but, unfortunately, at the present, a complete experimental data set is

still lacking due to technical difficulties in manufacturing microdevices vibrating at high

frequencies.
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APPENDIX: DETAILED FORM OF THE COEFFICIENTS APPEARING IN

THE NUMERICAL SCHEME (69)

h, k = 0, . . . , n− 1

αhk =
1

γ
√
π

[

T0

((

|k − h| δ
n

+
δ

2n

)

γ

)

− T0

((

|k − h| δ
n
− δ

2n

)

γ

)]

+ Γhk (h 6= k)

αkk = 1 − 1

γ
+

2

γ
√
π
T0

(

δ γ

2n

)

+ Γkk

with
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Γhk = − 2
γ
√
π

[1 − 4 T 2
1 (δ γ)]−1

{[

T1

(

k δ γ
n

)

− T1

(

(k + 1) δn γ

)]

×
[

2 T1(δ γ)T0

((

δ − (2h+ 1) δ2n

)

γ

)

+ T0

(

(2h+ 1) δ2nγ

)]

+

[

T1

((

δ − (k + 1) δn

)

γ

)

− T1

((

δ − k δ
n

)

γ

)]

×
[

T0

((

δ − (2h+ 1) δ2n

)

γ

)

+ 2T1(δ γ)T0

(

(2h+ 1) δ2nγ

)]}

αh,k+n = − 2
γ
√
π

sgn(k − h)

[

T1

((

|k − h| δn + δ
2n

)

γ

)

− T1

((

|k − h| δn − δ
2n

)

γ

)]

+ ∆hk (h 6= k)

αk,k+n = ∆kk

with

∆hk = − 4
γ
√
π

[1 − 4 T 2
1 (δ γ)]−1

{[

T2

((

δ − (k + 1) δn

)

γ

)

− T2

((

δ − k δ
n

)

γ

)]

×
[

T0

((

δ − (2h+ 1) δ2n

)

γ

)

+ 2T1(δ γ)T0

(

(2h+ 1) δ2n γ

)]

−
[

T2

(

k δ
n γ

)

− T2

(

(k + 1) δn γ

)]

×
[

2 T1(δ γ)T0

((

δ − (2h+ 1) δ2n

)

γ

)

+ T0

(

(2h+ 1) δ2n γ

)]}

αh+n,k = − 1
γ
√
π

sgn(k − h)

[

T1

((

|k − h| δn + δ
2n

)

γ

)

− T1

((

|k − h| δn − δ
2n

)

γ

)]

+ Λhk (h 6= k)

αk+n,k = Λkk

with
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Λhk = 2
γ
√
π

[1 − 4 T 2
1 (δ γ)]−1

{[

T1

(

k δ
n γ

)

− T1

(

(k + 1) δn γ

)]

×
[

2 T1(δ γ)T1

((

δ − (2h+ 1) δ2n

)

γ

)

− T1

(

(2h+ 1) δ2n γ

)]

+

[

T1

((

δ − (k + 1) δn

)

γ

)

− T1

((

δ − k δ
n

)

γ

)]

×
[

T1

((

δ − (2h+ 1) δ2n

)

γ

)

− 2 T1(δ γ)T1
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√
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δ γ
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k δ
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×
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π
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π
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1 (δ γ)]−1 ×
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)
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)

×
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2
√
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]
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(
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)

×
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)
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)

×
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2
√
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TABLE I. Amplitude of Pzz at z = −δ/2. Comparison between our results, obtained through a

numerical integration of the BGK and ES model equations, and those presented in [26].

T = 0.6283 T = 6.283 T = 62.83

δ ([26]) BGK ES ([26]) BGK ES ([26]) BGK ES

0.1 0.6255 0.6226 0.6206 5.234 4.909 4.957 47.59 46.93 47.09

0.5 0.9709 0.9682 0.9703 1.176 1.158 1.168 10.04 9.83 9.87

1.0 1.008 1.007 1.007 0.5337 0.5303 0.5267 5.039 4.966 4.990

2.0 1.006 1.007 1.007 0.7686 0.7773 0.7830 2.456 2.528 2.534

4.0 1.007 1.007 1.007 0.9645 0.9513 0.9498 1.313 1.333 1.313

6.0 1.007 1.007 1.007 0.9695 0.9869 0.9808 0.8822 0.9070 0.8812

8.0 1.007 1.007 1.007 0.9553 0.9507 0.9546 0.6156 0.6275 0.6117

10.0 1.007 1.007 1.007 0.9617 0.9668 0.9646 0.4045 0.4034 0.3990
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TABLE II. Absolute value of the phase of Pzz at z = −δ/2. Comparison between our results, ob-

tained through a numerical integration of the BGK and ES model equations, and those presented

in [26].

T = 0.6283 T = 6.283 T = 62.83

δ ([26]) BGK ES ([26]) BGK ES ([26]) BGK ES

0.1 0.8106 0.8091 0.8108 1.402 1.404 1.404 1.548 1.552 1.551

0.5 0.07301 0.07694 0.07466 1.092 1.090 1.102 1.505 1.504 1.501

1.0 0.005634 0.004545 0.005102 0.7191 0.7135 0.7240 1.460 1.457 1.455

2.0 0.01087 0.00950 0.00959 0.6391 0.6370 0.6372 1.383 1.375 1.377

4.0 0.01085 0.00950 0.00959 0.07664 0.10217 0.08229 1.259 1.250 1.255

6.0 0.01085 0.00950 0.00959 0.1187 0.1178 0.1089 1.183 1.194 1.183

8.0 0.01085 0.00950 0.00959 0.06595 0.06962 0.06754 1.126 1.159 1.126

10.0 0.01085 0.00950 0.00959 0.07916 0.08155 0.08255 1.020 1.069 1.018
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FIG. 2. Variation of the perturbed velocity (vx, vz) and stress tensor (Pxz , Pzz) fields (obtained

using the ES model) along the channel for δ = 0.1 and T = 0.2. In each panel, the profiles of the

macroscopic quantities are shown at different stages during a period of oscillation of the moving

wall.
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using the ES model) along the channel for δ = 0.1 and T = 0.5. In each panel, the profiles of the

macroscopic quantities are shown at different stages during a period of oscillation of the moving
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Comparison between the results obtained through the ES model (triangles), the BGK model

(circles) and the numerical solution of Eq. (51) (squares).
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Comparison between the results obtained through the ES model (triangles), the BGK model

(circles) and the numerical solution of Eq. (51) (squares).
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FIG. 10. Variation of the macroscopic perturbed velocity vz, stress tensor Pzz, density ρ, tem-

perature τ (obtained using the ES model) in the z-direction across the gap of the channel for

δ = 0.1 and T = 0.1. In each panel, the profiles of the macroscopic quantities are shown at

different stages during a period of oscillation of the moving wall.
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FIG. 11. Variation of the macroscopic perturbed velocity vz, stress tensor Pzz, density ρ, tem-

perature τ (obtained using the ES model) in the z-direction across the gap of the channel for

δ = 0.1 and T = 0.2. In each panel, the profiles of the macroscopic quantities are shown at

different stages during a period of oscillation of the moving wall.
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FIG. 12. Variation of the macroscopic perturbed velocity vz, stress tensor Pzz, density ρ, tem-

perature τ (obtained using the ES model) in the z-direction across the gap of the channel for

δ = 0.1 and T = 0.43. In each panel, the profiles of the macroscopic quantities are shown at

different stages during a period of oscillation of the moving wall.
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FIG. 13. Variation of the macroscopic perturbed velocity vz, stress tensor Pzz, density ρ, tem-

perature τ (obtained using the ES model) in the z-direction across the gap of the channel for

δ = 0.1 and T = 1. In each panel, the profiles of the macroscopic quantities are shown at

different stages during a period of oscillation of the moving wall.

45



4 6 8 10 12 14 16 18 20

δ

0

0.4

0.8

1.2

1.6

2

|P
zz

(z
=

-δ
/2

)|
T=31

4 6 8 10 12 14 16 18 20

δ

0

0.4

0.8

1.2

1.6

2

|P
zz

(z
=

-δ
/2

)|

T=62.8

4 6 8 10 12 14 16 18 20

δ

0

0.4

0.8

1.2

1.6

2

|P
zz

(z
=

-δ
/2

)|

T=95

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 14. Amplitude of the normal stress tensor Pzz at the oscillating wall versus δ for three

different values of T . All profiles have been obtained using the ES model.
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