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Onsager, Kolmogorov and Kato
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Introduction

Several of my recent contributions , with Edriss Titi, Emile Wiedemann
and others were motivated by the following issues:

The role of boundary effect in mathematical theory of fluids mechanic and
the similarity , in presence of these effects, of the weak convergence in the
zero viscosity limit and the statistical theory of turbulence.

As a consequence.

@ | will recall the Onsager conjecture and compare it to the issue of
anomalous energy dissipation.

@ Give a proof of the local conservation of energy under convenient
hypothesis in a domain with boundary.

@ Give sufficient condition for the global conservation of energy in a
domain with boundary and show how this imply the absence of
anomalous energy dissipation.

@ Give several forms of a basic theorem of Kato in the presence of a
Lipschitz solution of the Euler equations. Insisting that in such case
the absence of anomalous energy dissipation is equivalent to the
persistence of regularity in the zero viscosity limit.
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The magic number %

u(x, t) € Cueak([0, T]; L2(2)) weak solution of the incompressible Euler
equations Q € R? with C? boundary 9Q and exterior normal i

InD'((0,T)x Q) du+Vy - (u@u+pl)=0 and V- u=0,

1
OnoQx[0,T] u-A=0. (1)

If uis a smooth solution say Lipschitz one has:

/Vp-udxz—/pV-udsz,

Jul? Ulz
V(u®u ) udx = Z 8XJ 5 dx = V ——)dx =0

And this implies the conservation of energy

d 2
JEC
dt Jo 2
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The magic number %

Onsager gave a semi formal proof of the conjecture that by now carries its
name:

Any weak solution which belongs to the space C%% with o > % conserves
the energy.

The “formal " proof goes as follow: The term to control is

(V(v® u)u) ~ ((V%u ® V%u) : V%u)

hence appears the quantity HV%uHLs(QX[oﬂ). This observation is the
origin of serious proofs: Eyink , Constantin , E, Titi. in 1994.

Recent papers Buckmaster and als.. have shown, for a < %, the existence
of wild solutions in C%%((0, T) x T3).
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The magic number %

Under weak convergence or in statistical theory, with Navier-Stokes
equation loss of regularity anomalous energy dissipation are related:

t
o (@l +20 [ [ V(e o)Pds = 0Olbg @

If u, converge weakly to a solution of the Euler equation which conserves
the energy there is no anomalous energy dissipation. In statistical theory
one has the Kolmogorov law:

u (- +1,t) —u(.,t)
3

M

{ ) = ((UIVu(, 1))
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Local Energy equation

Theorem |

Let (u, p) € L°(0, T; L%(Q)) x D'((0, T) x Q) a weak solution:
Ou+V:(u®u)+Vp=0,V-u=0 (3)

which in a subopen set U = (t1, t2) X Q satisfies:N
For any small enough v > 0 and V., = {x, d(x,0Q) < «} there exists a
B(V) > 0 such that :

1 pe C((t, t); HPVI(V,) < Mp(V) < 0 (4a)
(%]
2 / e )l[20.mgqy < M(U) < o0 (4b)

(5

Then (u, p) satisfies in (1, t2) x € the local energy conservation:

AL < <‘”‘2+p>> =0 in D/((t, o) x Q)

2 2
d P 0P )
<=>V(Z)€D(Q)E<¢,7> = < xb, U < +p>> :0inD'(t1,t2).
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Proof of Theorem | : Localisation and Elliptic Estimates

(5) is proven with any given ¢ € D(£2) hence with a support in an open
set Sy such that Sy CC Q. Introduce 7 > 0 small enough, 3,, >, , €2,
such that

Sy CC Q3 CC Qyy CCQ, ccQccQ
d(Q,, 00) = d(Qy, 09,) = d(Q,,0Q) =1

and 0 € D(Q) equal to 1 in Q,

— Ap = —0(> _ 9O uiu)) — (Vp - VO + pAd) (6)
iJj

Then with elliptic theory and

Y Oudguiu; € L3((1, 12); CO(ED))

ioj
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Proof of Theorem | : Localisation and Elliptic Estimates

one has:

to 2
/ 1Pl o0, (- D)t < C(U)
t1

3 _
= atu‘%n =-V. (U|Q3n ® u|93n) - Vpk2317 € L2((t1, t2); H1(Q3y)) -

(7)
8t|u2|2+VX- (u<|u2|2+p>> =0

is well defined on (t1, t2) x Q3,, Moreover:

The formula

3 —
atu‘ﬂ_’,n — (u‘ﬂ?m ® u|Q3n) N vp|93n € L2((t1, t2): H 1(9377))
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Proof of Theorem: Regularization

Vv € L1(Q),V denotes its extension by 0 outside .

x = p(x) € C°(R") a mollifier, p(x) > 0, with support in |x| <1,

/p(x)dx:l with
. 1 x /(Ton €
For e<n fixed pe=—¢(=) VveD(R") v'=vxoe
e e

With the properties of support of distributions under convolution one has
the following:

Lemma

For any 1 € D(Q3,)) and any € < 1 one has:

(Oru+V-(u@u)=Vp,¥) = ((9:(v) + V- ((u ® u))*+V(p))-¥) =0 (8)

(Ol W = F: T4 SR (VT TR D TS o1 T10 19 Il O nsager Conjecture, and the Kolmogorov 1, 10 / 38



Two easy terms

Insert in (8) v = ¢(a)° € e L2((0, T); HY(€)) while
0(0)° € L2((O T) ~1(Q)), Therefore:

0 = (9:(a)(@)0) + (((u® v))* : V(@)°¢) +((B)V - (@)°¢) =0 (9)

Obviously with the local regularity on (t1, t2) x Q3,, for € — 0 one has:

lim 9¢((7)*()“¢) = lim (O |(u)e‘2 ¢) = 3t<7|u|2¢>
e—0 e—0 2 2
: (10)

On Q3 V- (@) =(V-u))=0
= {(P)V - (@) = {(P)(U)V - ¢) = (pu-V¢).
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The Rayleigh-Tensor type term

Now the result follows from the limit of :

(@@ D), Val(3)°0)) = )
(@@ D) — (@) ® (@), V(@) + (@) ® (@), Vul(3)6)

On the support of ¢ , V - (7)€ = 0, therefore, with the Lebesque theorem
one has:

(@) ® (@), Vo((@)0)) / I@F @y . vodx — / LI

Then the only thing to show is that, in D'((t1, t2)), V¢ € D(Q) :

lim (((u® u) — (@) @ (@)°), Vx((@)¢)) =

e—0
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Final step in the proof

First observe that:

V- (000(@)) = V(| plx = 1)) (y)u()ey)

X

=Vl [ (plx =)0 = pDOU DR Iudy) 1D

IV - (6()(@))] < C(@)e D ul| coreqsy:
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Final step in the proof

Regularization versus Weak Convergence.

Second For weak convergence or for statistical average one has:

(ue®ue)_ﬂe X U = (Fe_ue)®(ﬁe_ue))

which comes from the identity in double averaging or weak limit:

Ue @ Ue = Ue @ Ue

However here it is not an average but a regularization (as in it classical in
some models of turbulence) and (cf Constantin, E and Titi) ) on the
support of ¢ one has:

(v@u) = ((o) @ @) =(@-(@))@-(0))+ /(5yu © 0y u)pe(y)dy
0yt =1u(x —y)—u(x).
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Final step in the proof

Keeping in mind that € < 7 one has for x € 23,

3= @l = | [ (@) = 8= ) 0)ey] < €l cnngey
V@) 1e() < Ce* Ml oy
I [Gae8,@n)dy] < [ (Jutx =) = (oY) < ullag
which gives:
€ 3a—1 ® E
(@ T) ~ (@) ® (3)), Vx((@)'6)) < €. 0) (lull conay
And this concludes the proof.

Here no use of the impermeability condition. Only the estimate on the
pressure around €
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From local to Global energy conservation

Consider the Euler equation in (0, T) x Q with 9Q € C! , 7 denoting the
outward normal the and impermeability boundary condition:

x€0Q= u(x,t) -n(x)=0 (13)

The incompressibility V - u = 0 implies that u(x, t) - A(x) is well defined in
L2((0, T); Hf%(é)ﬂ) therefore (13) is well defined.
Introduce the function and the set

d(x) = d(x,090) = inafQ x—y|>0,Up, ={xeQ,dx) <n} (14)
ye
which have the following properties. For 0 < 79 small enough

d(x)ju,, € C(Uy,) , for any x € Uy, there exists a unique o(x) € 0%
such that d(x)) = |x — o(x)| and moreover one has:

Vx € Uy Vid(x) = —n(o(x)). (15)
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Theorem |l ; Global and Local hypothesis

Let (u, p) bein (0, T) x Q C R; x R? a weak solution of the Euler
equation in (t1,t2) x Q CC (0, T) x Q. with the hypothesis:
1 For some 19
peL®((0,T): HP(Uy)): with < oo, (16a)
2

im s (4 pute ) (o)) =0, (16b)

=0 te(0,T) d(x)<n<mo) 2
2 For any open set V' = (t1,t2) x Q CC (0, T) x Q the function u satisfies
the hypothesis (4b) of the theorem |

I
with o > 3 / llu(., t)\|3co,a(v)dt <M(V) < .
t1

Then, (u, p) globally conserves the energy, i.e. it satisfies for any
0<ty <tp <T the relation:

lu(t2)ll2) = lu(t)lli2(0)- (17)
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Proof of Theorem Il 1

Start with any open subset  cc Q and no small enough, in particular
such that

& cc Uy (18)
then introduce a smooth function x — 6(x) € D(Q) equal to 1 for
d(x) > & and from the formula
2

D 00 uiuj € L3((t1, 12); C¥*(Q))

i
with (16b) and as in the proof of the theorem | deduce that

p € L3((0, T): (@)

Then with the hypothesis (17) one concludes that the relation

Jul?

|
&+ v (A

u|2

+p)u),y) =0 (19)

holds for any ¢ € D(£2) in the sense of D'(0, T).
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Proof of Theorem Il 2

Eventually introduce a function s — ¢(s) equal to 1 for s > % and equal
toOfors<%.With0<77<170 one has:

w0 = o(*) e Die)
10
=29

~—
\_/

: otherwise = 0.

NS

2 )o(x) forg <d(x) <

19 / 38
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Proof of Theorem Il 2

With the theorem | and ¢ = 1, in (19) one has

/I u(tz, x)|°  d(x) /I t, X (n))

//u®u)+p ). 2) o (<)) ("( )t

(20)

and with hypothesis (16b ):

2
lim sup ]((’2’+P) (x,t)) - n(o(x))| =0
10 t€(0,T) d(x)<n<mo)

the results follows from the Lebesgue Theorem by letting n — 0.
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1. The hypothesis (4a) in the theorem | or (16b) in the theorem Il is used
to control the effect of what comes from the boundary to the open set
(0, T) x Q through the action of the pressure. They are not needed in
domains without boundary.

2. Since on 09 one has u(x) - n(c(x)) = 0 the hypothesis (16b) are
satisfied if for some 7 < 79 one has

(u,p) € L°((0, T) x Uy)) and

21
u(x, t) - a(a(x)) € C°((0, T) x Uy). (21)

3. Examples of “wild” admissible solutions which which do not conserve
the energy as constructed in B., Szekelyhidi and Weidemann, seem to
indicate that the hypothesis (16b) may be compulsory to always enforce
the conservation of energy.
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Absence of anomalous energy dissipation

The above improvement is of interest as it gives a sufficient condition for
non-anomalous energy dissipation in the zero viscosity limit which is not in
contradiction with the presence of a Prandtl type boundary layer. This is
the object of the very easy but essential theorem below:
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Absence of anomalous energy dissipation

Theorem il

u,(x, t) a family of Leray solutions of Navier-Stokes in R} x Q:

Oruy + (uy - Vy)u, —vAu, +Vp, =0, V-u, =0,

N ) (22)
uy(t,x) =0o0on Ry x9Q and uy(,x)=ug € L(Q).
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Absence of anomalous energy dissipation

Assume that on (0, T) x Q the family u, satisfies the hypotheses of the
Theorems | and 0l unlformly in v; more preC|ser
e With a > 1 and Q cC Q one has: fo l|u(t, )”Co& Q)ds < M();

o(t,x) € (0, T) x x{x/d(x,009) <mo} = |uy(t,x)[ +|p,(t,x)| < Mp;
e There exists a v-independent modulus of continuity s — w(s) with
lims—ow(s) = 0 such that for d(x, 9Q) < no one has:

|ty (2, x) - (o (x))] < w(d(x))- (23)
Then (if necessary extracting subsequences ) T, converges in
L>((0, T); L*(2)) weak

to a function @, which is a weak solution of the Euler equation, and which
satisfies the hypothesis of the Theorems | and Il , so that there is no
anomalous energy dissipation in the zero viscosity limit:

-
lim 1// / |V, (t, x)|?dxdt = 0. (24)
v—0 0 Q
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Absence of anomalous energy dissipation

Proof.

Introduces m = sup,, VfOT Jo |Vxuy(t,x)|?dxdt and a sequence v; such
that m = lim;_,o v fOT Jo IVxuy,(t, x)[?dxdt. Extract yet another one, v;,
such that uj = u,, converges to a limit T; in weak star L*°(0, T); L2(Q)).
From the Leray energy inequality:

;

lui(T) 12 — luollzqy + 2’/1/0 /Q |Vauy(t, x)|?dxdt <0 (25)
weak convergence and energy conservation gives

15 (T)ll2@) — llwoll 2@y + 2m < 0,and|[T5(T) 1720 = llwollfzq  (26)

Hence m=0.
]

v
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Remarks and Kato Theorem

@ As observed above some C%% with a > 1/3 regularity implies the
energy conservation and the absence of anomalous energy dissipation.
However simple examples like the shear flow in a canal show that such
regularity may not be necessary for the absence of anomalous energy
dissipation.

@ It is only in the presence of a smooth (Lispchitz) solution of the Euler
equation that weak convergence to such solution turns out to be
equivalent to the absence of anomalous energy dissipation. This is an
avatar (in the sense of weak convergence) of the Kolmogorov 1/3 law
and the object of the Kato theorem.
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Relative estimate with Vu € L*((0, T) x Q)

Ot(uy —u)+uy,-Vu, —u-Vu—vAu,+Vp, —Vp=0
(uy - Vu, —u-Vu,u, —u) = (uy, — u, S(u)(uy, — v));

S(u) = YD ¢ (0, 1) x );

dl1

—Zuy, — uf? +1// Vuy|?dx < |(uy — u, S(u)(uy, — u
Sl = ulbay +v | (V0P < (= . S(e)(w — )

-+ V/(Vuy . Vu)dx—y/ (Ozuy)rudo . The bad term!.
Q JO0Q
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Relative estimate with Vu € L*((0, T) x Q)

Ot(uy —u)+uy,-Vu, —u-Vu—vAu,+Vp, —Vp=0
(uy - Vu, —u-Vu,u, —u) = (uy, — u, S(u)(uy, — v));

t

s(u):m

2
dl 5 d/ 5
——|u, —u + v Vu,|“dx < |(uy, — u, S(u)(uy — u
Sl = ulbay +v | (V0P < (= . S(e)(w — )

V/(Vuy : Vu)dx—y/ (Ozuy)rudo . The bad term!.
Q JO0Q

€ L*((0,T) x Q);

Without physical boundary u, converges to u in C((0, T); L?(2)) and

lim,_0 fo HVUUH qdt=0. Otherwise the situation is much more
subtle!!!
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The Kato Theorem

Recirculation and Vorticity Control

It is enough to have a moderate recirculation:

. T duy _
J@OV/O /m ((aﬁ,(a, )10, t))_dodt —0

or a moderate backward vorticity using:

(u, =0,u-7=0)= V(%(a, )ty = v((V A ) AR) - u

Laminar regime

n an ipleDeck ansatz.

S
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The Kato Theorem

The Bardos-Titi version of the Kato theorem

In 1984. T.Kato gave, in an internal Berkley proceeding Math. Sci. Res.
Inst. Publ. a criteria for the convergence to the smooth solution. Now
what happens is that this criteria can be generalized to include the above
considerations and much more about the energy:
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The Kato Theorem

Theorem
Are equivalent:

Vw(x,t) € L*((0, T) x 0Q,w-n=0,

8ul,
JTOV/ /BQ vr (o,t))rw(o, t)dodt =0

. i ou,
lim V/o /a (50 )0, 1)) dlordt = 0

v—0

u,(t) — w(t) in L2(Q) uniformly int € [0, T],

u,(t) — u(t) weakly in L?(Q) for each t € [0, T],
T

lim u/ / IVu,(x,t)|?dxdt =0,
v—0 0 Q

.
||m1// / |Vu,(x,t)|?dxdt = 0.
v=0 " Jo Jan{d(x,09)<v}

T
lim / / lu,(x, t)|dxdt = 0.
v=0V Jo Jon{d(x,09)<v}
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The proof: An updated version of the basic result of Kato

The fact (27) implies (28) is trivial then that it implies (29) has already
been observed. It implies (30) which gives (31) with the energy inequality

t
luw ()72 +2V/0 /QIVUV(S)FdS < [luollfz(q) (34)

and of course (32).
With Poincaré inequality (32) implies (33).
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With “dual” Kato corrector (33) implies (27)

Construct a family of divergence free vector fields w, € C>®(Q x (0, T))
with support in {(x, t) € (d(x,092) < v x (0, T))} which coincides with w
on the boundary and with gradient bounded in L> by Cv~—!

we L'P(0Q x (0,T)); w-ia=0;
© e D(0,1), ©(0)=0, ©'(0)=1;

i (x. 1) = VA (o)) A wlo(), e 20
=on 002 w(x,t)=w(x,t)
=In Q, V-w, =0, and support w, C {d(x, Q) < v};

= [V [loo < Cr7t supuv Wy (x, 8) |l 120) < Cv™ 2,
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The Kato Theorem

With multiplication of the Navier-Stokes equation by w,
and integration (33) = (27)

ou, B
V/m( L (,6) (0, ) =

Z/(VUV, VM?I/)LZ(Q) = (Ul, & Uy, VM?IJ)L2(Q) + (8tu,,, WZ/)L2(Q) .
Then

§
Sup |Vt (x, £) | 2@y < v~} :,/ (Tt V8, x|t — O
t

Vi |oo < Cv~ ! and lim / / |, (x, t)[2dxdt = 0
v=0 v Qn{d(x,0Q)<v}

T
= / (UV®UV,VWV)L2(Q)dt:0.
0
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The Kato Theorem

The D'Alembert Paradox and the Kato Theorem

Even in the absence of a theorem the general feeling is that the case where
the Kato criteria does not apply is not the exception but the general
situation. This can be confirmed by comparison with the d'Alembert

Paradox.
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Potential flows and D'Alembert paradox 1

Q CcR3,R3\Q compact.
In Q V-u=0 and VAu=0. On 0Q wu-A=0,

lim u(x) = Ux = (Ux,0,0)
|x|—=00

then u = V¢ is a potential flow and a stationary solution:

1
u-Vu= Z uiOxu;p = u-Vu = Z Uj@Xjszivx|u|2

1<j<d 1<j<d

2
u-Vu—V(‘uz‘):O.

V.u=Ap=0 on 02 u-m=070p=0
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D’'Alembert Paradox 2

With Green formula :

F- / il = / (o + (7~ u)u)do
oQ oQ
:/ (Vp+u~Vu)dx/ (ip+(i-u)u)da
Qn{|x|<R} x=R IX] |x|
X X
= — |lim / (—p+(— - u)u)do =0
R—00 J|x|=R [P YK
If stationary fluids are described by the Euler equations birds and plane

cannot glide!
Then to make the plane fly some energy has to be used-dissipated and this

is related to last form of the Kato criteria

lim / / |lu, (x, t)[2dxdt = 0
v=0 v QN{d(x,0Q)<v}
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The Kato Theorem

Conjecture The catch : The Kato Criteria The viscosity
and the no slip boundary condition remain in the solution
of the Navier-Stokes equation (even for v — 0) and in the
behavior of the fluid. Even for initial data stationary or
close to the stationary solution the viscosity limit is not the
potential flow. And the anomalous dissipation of energy
contributes to the motion.

‘ -~
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MANY THANKS FOR THE ATTENTION.
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