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Abstract. Sprays are complex flows made of liquid droplets surrounded by a gas.19
They can be modeled by the introducing a system coupling a kinetic equation (for the
droplets) of Vlasov type and a (Euler-like) fluid equation for the gas. In this paper, we21
prove that, for the so-called thin sprays, this coupled model is well-posed, in the sense
that existence and uniqueness of classical solutions holds for small time, provided the23
initial data are sufficiently smooth and their support have suitable properties.

Keywords:25

1. Introduction

In the framework of sprays (that is, gases in which droplets form a dispersed phase),27

couplings between an equation of fluid mechanics and a kinetic equation were intro-
duced by Williams [18], cf. also [2].29

In this modeling, the gas is described by macroscopic quantities depending on
the time t and the position x: its density ρ(t, x) and its velocity u(t, x). The evolution31

of those quantities is ruled by a system of partial differential equations such as the
Navier–Stokes or Euler (compressible or incompressible). We shall investigate here33

the case of the compressible Euler equation.
In order to describe the dispersed phase (the droplets), we use their distribution35

function in the phase space (“pdf”): it is defined as f ≡ f(t, x, v) ≥ 0, density of
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droplets which at time t and point x have velocity v. This function is the solution1

of a kinetic equation.
We concentrate here on the so-called “thin sprays” [13], in which the coupling3

between the gas and the droplets is made only through a drag term (whereas in
so-called thick sprays, it is also made through the volume fraction).5

The system reads

∂tρ + ∇x · (ρu) = 0, (1.1)

∂t(ρu) + ∇x · (ρu ⊗ u + P (ρ)IdN ) = −
∫

mpFfdv, (1.2)

∂tf + ∇x · (vf) + ∇v · (Ff) = 0, (1.3)

where mp is the mass of one single droplet (supposed to be a constant), mpF is the
drag force, and P is the pressure. We consider here a gas which is isentropic, so that7

P depends on ρ only (and no equation of energy appears). We restrict ourselves to
the case of perfect gases, that is9

P (ρ) = Aργ , A > 0, and γ > 1. (1.4)

The drag force mpF is due to the resistance of the fluid to the motion of the11

droplets. It is possible to find in [13, 16] some analysis on the modeling of this term.
One of the most standard formula is the following:13

mpF =
1
2
πr2ρ(t, x)Cd|u(t, x) − v|(u(t, x) − v),

where r is the radius of the droplets (a constant in this work) and Cd is the drag15

coefficient. This coefficient is sometimes taken as

Cd =
24
Re

(
1 +

1
6
Re2/3

)
,

17

where Re = 2ρ|u−v|r
µ is the Reynolds number and µ the dynamic viscosity of the

fluid. This formula is used, for example, in [1]. We shall assume here (as in [3–6, 8])19

that Cd = 24
Re , so that

F =
Cµ

r2ρl
(u(t, x) − v),

21

where ρl is the (constant) density of the droplets (and where C is a generic constant).
This assumption is reasonable as long as the Reynolds number is not too large. In23

many works (cf. [3–6, 8]), the viscosity is supposed to be constant, and the drag
force becomes25

mpF = C(u(t, x) − v). (1.5)

It is, however, possible to consider also that the viscosity is proportional to the27

density of the fluid µ = ρν, with ν kinematic viscosity of the fluid (cf. [7]). This
leads to a drag force29

mpF = Cρ(t, x)(u(t, x) − v). (1.6)
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We shall make this assumption in this work. For the sake of simplicity, we shall also1

suppose that all the constants of the model are equal to 1 (taking other values does
not lead to any difficulty).3

Let us comment a little bit on the modeling: depending on the physical context,
the fluid equation can be the Euler or Navier–Stokes equation (with or without5

turbulent viscosity), compressible or incompressible. Note that though the drag
force is proportional to the viscosity of the gas, the Euler equation (and not Navier–7

Stokes equation) is used in some realistic simulations (cf. [11]).
Whenever the exchange of temperature is important in the study, one has to9

replace the isentropic Euler equation by the full Euler system (with 5 equations in
dimension 3) and to add one extra variable (of temperature or internal energy) in11

the “pdf” of the droplets.
When the volume occupied by the droplets is not neglegted in front of the volume13

occupied by the gas, one has to add a new unknown (α ≡ α(t, x)) representing the
volumic fraction of gas: this leads to the theory of thick sprays (cf. [13]). One15

takes then into account various complex phenomena for the droplets (collisions,
breakups, etc.).17

Here are the typical values of a computation on a thin-air mixture: the Reynolds
number relative to the gas is Regas = ρ

µ
L2

T ≈ 105 (L and T are the typical length and19

time scale). Therefore, no (molecular) diffusion is taken into account in the Euler
equation. The Reynolds number relative to the droplets is Re = 2rρl|u−v|

µ ≈ 1.21

The already existing mathematical studies on the fluid-kinetic coupling (in the
context of sprays) concern models in which the fluid is described by its velocity u23

(but not its density ρ), and in which some diffusion is present. In [5], Domelevo
and Roquejoffre show the existence and uniqueness of global smooth solutions of25

1D Burger’s viscous equation when it is coupled with a kinetic equation. For the
same system, but in the polydispersed case (that is, different radiuses of droplets are27

present), Domelevo proves the existence of solutions in [4]. Hamdache [8] shows the
global existence and the large time behavior of the solution of a coupled system of29

Vlasov and Stokes equations (in all dimensions). Finally, in [7], Goudon studies the
existence and uniqueness of smooth solutions to the coupling between the viscous31

Burger’s equation and a kinetic equation.
In this work, we combine two ingredients in order to obtain the existence (and33

uniqueness) of solutions (locally in time) to our system (that is, (1.1)–(1.4) and
(1.6)). On one hand, we use the classical theory of local (in time) solutions for35

symmetrisable hyperbolic systems of conservation laws (cf. [10, 17], for example),
and on the other hand, the theory of characteristics for the control of Hs norms of f37

and of its support (like in the works on the Vlasov–Poisson system, such as in [14]).
It is easy to verify that our theorem also holds when (1.6) is replaced by (1.5),39

or when P is not a power function of ρ (but some well-behaved function). We think
that the extension to systems in which an energy equation appears should also be41

not too difficult. Finally, polydispersion (when droplets have different radii) could
certainly be taken into account.43
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Note however that the well-posedness (even for small times) of systems for1

sprays (when no diffusion is present) is not obvious: (non diffusive) equations for
diphasic flows are known to be linearly ill-posed (non hyperbolic) in certain regimes3

(cf. [9, 12]), and they have some similarity with equations for sprays. This similarity
is most apparent for thick sprays: our method does not work in this case and the5

corresponding equations might be ill-posed.
When some diffusion is present at the level of the fluid equations (that is, Euler7

is replaced by Navier–Stokes), the conjecture is that the corresponding system for
thick sprays is well-posed (diphasic equations of Navier–Stokes type are known to9

be linearly well-posed (cf. [15])). It looks however quite difficult, even in this case,
to prove rigorously the existence of local smooth solutions.11

Finally, we think that there is no hope to obtain (for general initial data) global
smooth (Hs) solutions for the system we consider because the shocks created by13

the “Euler part” of the system have no reason to be smoothed by the “Vlasov
part”, the coupling being made through source terms only. For having an idea on15

how the smoothness disappears at the level of the Euler equations, we refer, for
example, to [10].17

In all the sequel, we shall use the following notations (when h ≡ h(t, x), s ∈ N,
T > 0, p ∈ [1, +∞] and α is a multi-index):

‖h‖s(t) =
∑
|α|≤s

√∫
RN

|Dα
x (h)|2(t, x)dx,

‖h‖s,T = max
0≤t≤T

‖h‖s(t),

‖h‖Lp,T = max
0≤t≤T

‖h(t, ·)‖Lp .

Sometimes, the same notations are used for f ≡ f(t, x, v) (with x replaced by (x, v)).
In Sec. 2, we present our main result. Then, Sec. 3 is devoted to some (classical)19

preliminary results for the Euler and Vlasov equations taken separately. The rest of
the paper presents the proof of our main theorem. In Sec. 4, we define an approx-21

imation scheme and show a priori estimates for its solution. The convergence of
this scheme towards our equation is proven in Sec. 5. Finally, a few complementary23

results are presented in Sec. 6.

2. Main Theorem of Existence and Uniqueness25

Once all the constants have been eliminated from the equations, we end up with
the following system (in dimension N ≥ 1):

∂tρ + ∇x · (ρu) = 0, (2.1)

∂t(ρu) + ∇x · (ρu ⊗ u + P (ρ)IdN ) =
∫

RN

f(ρv − ρu)dv, (2.2)

∂tf + ∇x · (vf) + ∇v · (f(ρu − ρv)) = 0, (2.3)

where P (ρ) = ργ , and γ > 1.
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We take as initial data:

∀x ∈ R
N , ρ(0, x) = ρ0(x), u(0, x) = u0(x), (2.4)

∀(x, v) ∈ R
N × R

N , f(0, x, v) = f0(x, v). (2.5)

Finally, we define G = ]0, +∞[ ×R
N as the space in which (ρ, ρu) will take its1

values. We prove the following theorem.

Theorem 2.1. We consider N ∈ N
∗, G = ]0, +∞[ × R

N , s ∈ N such that s >3

N/2 + 1 and s ≥ N, and G1, G2 open sets of G such that G1 ⊂ G2, and such
that G1, G2 are compact. Let (ρ0, ρ0 u0) : R

N → G1 be functions satisfying ρ̃0 =5

ρ0 − 1 ∈ Hs(RN ) and u0 ∈ Hs(RN ). Let also f0 : R
N × R

N → R+ be a function of
C1

c (RN × R
N ) ∩ Hs(RN × R

N ).7

Then, one can find T > 0 such that there exists a solution (ρ, ρu; f) to system
(2.1)–(2.5) belonging to C1([0, T ]×R

N , G2)×C1
c ([0, T ]×R

N ×R
N , R+). Moreover,9

ρ̃(= ρ − 1), u ∈ L∞([0, T ], Hs(RN )) and f ∈ L∞([0, T ], Hs(RN × R
N )).

Moreover, if (ρ1, ρ1u1; f1) and (ρ2, ρ2u2; f2) belong to C1([0, T ] × R
N , G2) ×11

C1
c ([0, T ] × R

N × R
N , R+), if they satisfy (2.1)–(2.5), and if they are such that ρ̃1,

ρ̃2, u1, u2 ∈ L∞([0, T ], Hs(RN )), f1, f2 ∈ L∞([0, T ], Hs(RN × R
N)), then ρ1 = ρ2,13

u1 = u2 and f1 = f2.

Remark 2.2. This theorem shows the existence (and uniqueness) of solutions cor-15

responding to a gas which is at rest at infinity (and of density 1), and which contains
particles which are localized in a certain bounded domain.17

Proof of Theorem 2.1. In a first step, we shall restrict ourselves to initial data
such that ρ̃0 and ρ0u0 lie in C∞

c (RN ), while f0 belongs to C∞
c (RN×R

N ). In Sec. 6.2,19

we shall explain how to regularize the initial data in order to obtain the result for
all initial data described in Theorem 2.1.21

Sections 3–6 are devoted to the sequel of the proof of Theorem 2.1.

3. Preliminary Results23

3.1. Symmetrisation

We prove in this section the following proposition, which enables to obtain a sym-25

metrized form for the Euler equation.

Proposition 3.1. The system (2.1)–(2.2) can be written under the symmetrized27

form

S(U)∂tU +
∑

i

(SAi)(U)∂xiU = S(U)b(U, f), (3.1)
29
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where U =
“ ρ

ρu

”
,1

S =




P ′(ρ) +
|ρu|2
ρ2

−
t(ρu)

ρ

−ρu

ρ
IdN


 ,

(for i = 1, . . . , N),3

Ai =




0 0 0 0 1 0 0

−ρu1ρui

ρ2

ρui

ρ
0 0

ρu1

ρ
0 0

−ρu2ρui

ρ2
0

ρui

ρ
0

ρu2

ρ
0 0

... 0 0
. . .

... 0
...

P ′(ρ) − (ρui)2

ρ2
0 0 0

2ρui

ρ
0 0

... 0 0 0
...

. . .
...

−ρuNρui

ρ2
0 0 0

ρuN

ρ
0

ρui

ρ




,

and5

b =




0∫
f(ρv1 − ρu1)dv

∫
f(ρv2 − ρu2)dv

...∫
f(ρvN − ρuN )dv




.

Moreover, the symmetric definite positive matrix S(U) is a smooth function of U7

satisfying

cIdN ≤ S(U) ≤ c−1IdN (3.2)9

when U ∈ G1 (or G2), for some constant c > 0 (depending on G1 (or G2)).
Finally, all the matrices SAi(U) are symmetric.11

Proof. The eigenvalues of S are

λ1 =
1
2

(
P ′(ρ) +

(ρu)2

ρ2
+ 1
)

+
1
2

√(
P ′(ρ) +

(ρu)2

ρ2
− 1
)2

+ 4
(ρu)2

ρ2
,

λ2 =
1
2

(
P ′(ρ) +

(ρu)2

ρ2
+ 1
)
− 1

2

√(
P ′(ρ) +

(ρu)2

ρ2
− 1
)2

+ 4
(ρu)2

ρ2
,

λi = 1 for 3 ≤ i ≤ N + 1.
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A simple computation shows that the matrices SAi are symmetric. It remains to1

prove that S satisfies (3.2). This is due to the fact that λ1 ≤ P ′(ρ)+ (ρu)2

ρ2 +1, so that

λ1 ≤ C. Moreover, λ1λ2 = P ′(ρ), so λ2 ≥ P ′(ρ)

P ′(ρ)+ (ρu)2

ρ2 +1
and therefore λ2 ≥ C > 0.

3

3.2. The transport equation5

Let ρ, u be any smooth functions. Then, the transport equations (2.3) and (2.5),
which can be rewritten as7

∂tf + v · ∇xf + (ρu − ρv) · ∇vf = Nρf, f(0, x, v) = f0(x, v),

has a unique solution9

f(t, x, v) = f0(X(0; x, v, t), V (0; x, v, t))e
R t
0 Nρ(X(τ ;x,v,t),τ)dτ , (3.3)

where the characteristic curves X(t; x, v, s), V (t; x, v, s) are defined by11

dX

dt
(t; x, v, s) = V (t; x, v, s),

X(s; x, v, s) = x,
(3.4)

dV

dt
(t; x, v, s) = (ρu)(t, X(t; x, v, s)) − ρ(t, X(t; x, v, s))V (t; x, v, s),

V (s; x, v, s) = v.
(3.5)

13

It is clear thanks to (3.3) that if f0 has a compact support, then f(t, ·, ·) will
also have a compact support for all t. We denote15

XM (t) = sup
(x,v)∈R

N×R
N

f(t,x,v)>0

|x|, (3.6)

and17

VM (t) = sup
(x,v)∈R

N×R
N

f(t,x,v)>0

|v|. (3.7)

In other words, Supp f(t, ·, ·) ⊂ B(0, XM (t)) × B(0, VM (t)).19

4. The Construction Scheme

We recall that we denote U = t(ρ, ρu). According to Sec. 3.1, the system (2.1)–(2.3)
can be written as

S(U)∂tU +
N∑

i=1

(SAi)(U)∂xiU = S(U)b(U, f), (4.1)

∂tf + ∇x · (vf ) + ∇v · (f(ρu − ρv)) = 0, (4.2)

where S satisfies (3.2).21
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We also recall that up to Sec. 6.2, we suppose that the initial data are such that1

U0 − U0 ∈ C∞
c (RN ), f0 ∈ C∞

c (RN × R
N ), (4.3)

where U0 =
(

1
0

)
.3

In this section, we write an inductive approximation of the system. Then, we
show a priori estimates on a time interval [0, T∗], where T∗ > 0 is the same for all5

the steps of the approximation.
We note that since s > N/2 + 1 > N/2, Hs(RN ) is embedded in L∞(RN ) (the7

inclusion being continuous). Using the fact that U0 takes its values in G1 (such that
G1 ⊂ G2), we can find R ≡ R(G1, G2, s, U0) > 0 (defined once and for all) such9

that for any function U , if ‖U − U0‖s ≤ R, then U takes its values in G2. Finally,
Supp f0 ⊂ B(0, XM (0)) × B(0, VM (0)), with the notations (3.6) and (3.7).11

We define by induction the quantities θk > 0 and (Uk, fk) in this way:

• θ0 = +∞, and for t ∈ [0, θ0[, (U0(t), f0(t)) = (U0, f0).13

• We now suppose that θk > 0 is defined, together with the smooth functions Uk,
fk on the time interval [0, θk[. We suppose moreover that ∀t ∈ [0, θk[, x ∈ R

N , one
has Uk(t, x) ∈ G2. Then, we define (Uk+1, fk+1) on [0, θk[ as the unique smooth
solution of the linear system

S(Uk)∂tU
k+1 +

N∑
i=1

(SAi)(Uk)∂xiU
k+1 = S(Uk)b(Uk, fk), (4.4)

Uk+1(x, 0) = U0(x), (4.5)

∂tf
k+1 + ∇x · (vfk+1) + ∇v · (fk+1(ρkuk − ρkv)) = 0, (4.6)

fk+1(0, x, v) = f0(x, v). (4.7)

Finally, we introduce θk+1 > 0 as the supremum of the times θ < θk satisfying
Uk+1(t, x) ∈ G2 for all t ∈ [0, θ[, x ∈ R

N .15

Note that since the system (4.4) is linear, symmetric and has smooth coefficients
(on [0, θk[), it admits a unique smooth solution Uk+1 (on [0, θk[). Moreover fk+1 is17

the unique smooth solution of a linear Vlasov equation with smooth coefficients (it
can be explicitly computed by the method of characteristics as in Sec. 3.2). Finally,19

θk+1 > 0 since Uk+1 is smooth and U0 ∈ G1. All of this ensures that the induction
is well-defined.21

Then, one can observe that the support (in the x and v variables) of Uk − U0

and fk are compact (and depend on k and t ∈ [0, θk[). This property is true for23

k = 0 (thanks to (4.3)) and it can then be proven by induction. We denote by Xk
M

and V k
M the quantities XM and VM related to fk (defined by (3.6) and (3.7)).25

We finally define Tk as the supremum of the times T ∈ [0, θk[ such that

‖Uk − U0‖s,T ≤ R, (4.8)

‖fk‖s,T ≤ 2‖f0‖s, (4.9)

‖fk‖L∞,T ≤ 2‖f0‖L∞ , (4.10)
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∀t ∈ [0, T ], Xk
M (t) ≤ 2XM (0), (4.11)

∀t ∈ [0, T ], V k
M (t) ≤ 2VM (0), (4.12)

and such that Tk+1 ≤ Tk.1

It is clear (by induction) that for all k ∈ N, Tk > 0. We now prove the decisive
a priori estimate, namely the existence of T∗ > 0 such that ∀k ∈ N, Tk ≥ T∗.3

Proposition 4.1. We consider initial data such that (4.3) holds and define the
sequences θk, Uk, fk by (4.4)–(4.7), and Tk by (4.8)–(4.12).5

Then one can find T∗ > 0 which depend only upon G1, G2, s, U0 and f0 such
that ∀k ∈ N, Tk ≥ T∗.7

Proof. We recall that (on the time interval [0, Tk[) fk and Uk − U0 are smooth
and have a compact support, so that we can manipulate them (and in particular9

perform integrations by parts) without taking care of their behaviour at infinity.
In the sequel, we use C for any constant (C(f0) for any constant depending only11

on f0, etc.). Though R depends only on G1, G2, s and U0, we keep its dependence
in the various constants, for the sake of readability of the proof.13

The proof of Proposition 4.1 is divided in three steps.

Step 1. For all k ≥ 0,15

‖∂tU
k+1‖s−1,Tk+1 ≤ C(s, G2, R, U0, f0). (4.13)

Proof of Step 1.1. Using Eq. (4.4), we get for t ∈ [0, Tk+1[,17

‖∂tU
k+1‖s−1(t) ≤

∑
i

‖Ai(Uk)∂xiU
k+1‖s−1,Tk+1 + ‖b(Uk, fk)‖s−1,Tk+1 , (4.14)

where19

‖b(Uk, fk)‖s−1,Tk+1 =
∑

|α|≤s−1

∥∥∥∥∥
(

0

Dα(ρk
∫

fkvdv) − Dα(ρkuk
∫

fdv)

)∥∥∥∥∥
0,Tk+1

.

We use the following (classical) result (cf. [10]): If h, g ∈ Hs(RN ) ∩ L∞(RN )21

and |α| ≤ s, then

‖Dα(hg)‖L2 ≤ C(s)(‖h‖L∞‖g‖s + ‖g‖L∞‖h‖s). (4.15)23

We get (for |α| ≤ s)

‖Dα(b(Uk, fk))‖0 ≤ C(s)

(
‖ρk‖L∞

∥∥∥∥
∫

fkvdv

∥∥∥∥
s

+
∥∥∥∥
∫

fkvdv

∥∥∥∥
L∞

‖ρk‖s

+ ‖ρkuk‖L∞

∥∥∥∥
∫

fkdv

∥∥∥∥
s

+
∥∥∥∥
∫

fkdv

∥∥∥∥
L∞

‖ρkuk‖s

)
.
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For t ∈ [0, Tk[, we can bound by R the Hs norm of Uk − U0, so

‖Dα(b(Uk, fk))‖0 ≤ C(s, R)
(∥∥∥∥
∫

fkvdv

∥∥∥∥
s

+
∥∥∥∥
∫

fkvdv

∥∥∥∥
L∞

+
∥∥∥∥
∫

fkdv

∥∥∥∥
s

+
∥∥∥∥
∫

fkdv

∥∥∥∥
L∞

)
.

For t ∈ [0, Tk[, we can also bound the support of fk, and its Hs and L∞ norms:∥∥∥∥
∫

fkdv

∥∥∥∥
L∞

≤ ‖fk‖L∞

∥∥∥∥
∫

1Supp fkdv

∥∥∥∥
L∞

≤ 2N‖fk‖L∞(V k
M )N ≤ C(f0), (4.16)∥∥∥∥

∫
fkvdv

∥∥∥∥
L∞

≤ 2N‖fk‖L∞(V k
M )N+1 ≤ C(f0), (4.17)

∥∥∥∥
∫

fkvdv

∥∥∥∥
s

=
∑
|α|≤s

√∫ (∫
vDα

x (fk)dv

)2

dx

≤ C(V k
M )N/2+1‖fk‖s ≤ C(f0),∥∥∥∥

∫
fkdv

∥∥∥∥
s

≤ (V k
M )N/2‖fk‖s ≤ C(f0).

Finally, we obtain1

‖b(Uk, fk)‖s,Tk
≤ C(s, R, f0), (4.18)

and (in particular)3

‖b(Uk, fk)‖s−1,Tk+1 ≤ C(s, R, f0). (4.19)

Then,5

‖Ai(Uk)∂xiU
k+1‖s−1,Tk+1 =

∑
|α|≤s−1

‖Dα(Ai(Uk)∂xiU
k+1)‖0,Tk+1

depends only on derivatives of Uk+1 of order ≤ s. We recall that ‖Uk+1 −7

U0‖s,Tk+1 ≤ R, and we use the following (classical) result (cf. [10]): if u �→ g(u)
is a smooth function on G2 and if x �→ u(x) is a continuous function with values in9

G2 such that u ∈ L∞(RN ) ∩ Hs(RN ), then for |α| ≤ s (and s ≥ 1),

‖Dαg(u)‖L2 ≤ C(s) sup
u∈G2

sup
|β|≤s−1

|Dβg(u)| ‖u‖s−1
L∞ ‖u‖s. (4.20)

11

We obtain (for |α| ≤ s−1) thanks to the Sobolev embedding Hs−1(RN ) ⊂ L∞(RN ),

‖Dα(Ai(Uk)∂xiU
k+1)‖0,Tk+1 ≤ ‖Dα((Ai(Uk) − Ai(U0))∂xiU

k+1)‖0,Tk+1

+ ‖Ai(U0)Dα(∂xiU
k+1)‖0,Tk+1

≤ C(s)(‖Ai(Uk) − Ai(U0)‖s−1,Tk+1‖∂xiU
k+1‖L∞,Tk+1

+ ‖Ai(U0)‖L∞,Tk+1‖∂xiU
k+1‖s−1,Tk+1)

≤ C(s, G2, R, U0). (4.21)

Putting together (4.14), (4.19) and (4.21), we get (4.13).
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Then, we turn to the1

Step 2. For all k ≥ 0, T ∈ [0, inf(1, Tk+1)[,

sup
t∈[0,T ]

‖Uk+1 − U0‖s(t) ≤ Tc(G2)−1C(s, R, G2, U0, f0). (4.22)
3

Proof of Step 2. We begin with an abstract (classical) lemma which enables to
obtain energy estimates for solutions of symmetrized hyperbolic systems.5

Lemma 4.2. Let S ≡ S(t, x), Ai ≡ Ai(t, x) be smooth matrices (on [0, T ]) such
that S and SAi are symmetric. We suppose moreover that c IdN ≤ S(t, x) ≤ c−1IdN

for some c > 0. Then all (smooth and compactly supported) vectors W ≡ W (t, x)
and F ≡ F (t, x) satisfying the system

S∂tW +
∑

i

SAi∂xiW = F, (4.23)

W (x, 0) = W0(x), (4.24)

can be estimated in the following way: for all t ∈ [0, T ],

‖W‖0(t) ≤ c−1

(
‖W0‖0 +

1
2

∥∥∥∥∥∂tS +
∑

i

∂xi(SAi)

∥∥∥∥∥
L∞,T

∫ t

0

‖W‖0(τ)dτ

+
∫ t

0

‖F‖0(τ)dτ

)
. (4.25)

Proof of Lemma 4.2. By multiplying (4.23) by tW and by integrating over
x ∈ R

N , we obtain7

1
2
∂t

∫
tWSWdx =

1
2

∫
tW

(
∂tS +

∑
i

∂xi(SAi)

)
Wdx +

∫
tWFdx. (4.26)

Then, (4.25) is obtained by differentiating
∫

tWSWdx and by using the estimate9
tWSW ≥ ctWW .

We now turn back to the proof of Step 2. We study W k+1 = Uk+1 − U0. Then,
W k+1 is solution of

S(Uk)∂tW
k+1 +

∑
i

(SAi)(Uk)∂xiW
k+1 = S(Uk)b(Uk, fk) + Hk,

W k+1(x, 0) = 0,

with Hk = −∑i(SAi)(Uk)∂xiU0. We recall that W k+1 is smooth (C∞) and has a11

compact support in [0, Tk+1] × R
N .

We look for an estimate on the norm Hs of W k+1. We denote Wα = DαW k+113

(for |α| ≤ s). The function Wα satisfies

S(Uk)∂tWα +
∑

i

(SAi)(Uk)∂xiWα = S(Uk)Dα(S−1(Uk)Hk + b(Uk, fk)) + Fα,
15

with Fα = S(Uk)
∑

i(Ai(Uk)∂xiWα − Dα(Ai(Uk)∂xiW
k+1)).
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We use formula (4.26) in order to obtain

1
2
∂t

∫
tWαS(Uk)Wαdx =

1
2

∫
tWα

(
∂tS(Uk) +

∑
i

∂xi(SAi)(Uk)

)
Wαdx

+
∫

tWαS(Uk)Dα(S−1(Uk)Hk + b(Uk, fk))dx

+
∫

tWαFαdx.

Up to time Tk, Uk takes its values in G2, on which S and SAi are smooth (more
precisely, one can bound the derivatives (of any order) of those matrices by a con-
stant depending on G2 only). We also recall that thanks to the Sobolev inequalities,
Hs−1(RN ) ⊂ L∞(RN ). We estimate

‖∂tU
k‖L∞,Tk

≤ C(s)‖∂tU
k‖s−1,Tk

≤ C(s, G2, R, U0, f0) from (4.13),

‖∂xiU
k‖L∞,Tk

≤ C(s)‖∂xiU
k‖s−1,Tk

≤ C(s)(‖Uk − U0‖s,Tk
+ ‖U0 − U0‖s,Tk

) ≤ C(s, R, U0),

so that (since Tk+1 ≤ Tk)1

‖∂tS(Uk) +
∑

i

∂xi(SAi)(Uk)‖L∞,Tk+1 ≤ C(s, G2, R, U0, f0). (4.27)

We now use the following (classical) inequality (cf. [10]): if h ∈ Hs(RN ), ∇h ∈3

L∞(RN ), g ∈ Hs−1(RN ) ∩ L∞(RN ) and |α| ≤ s,

‖Dα(hg) − hDα(g)‖0 ≤ C(s)(‖∇h‖L∞‖g‖s−1 + ‖g‖L∞‖h‖s). (4.28)5

Then, for |α| ≤ s,

Ai(Uk)∂xiWα − Dα(Ai(Uk)∂xiW
k+1) = (Ai(Uk) − Ai(U0))Dα(∂xiW

k+1)

−Dα((Ai(Uk) − Ai(U0))∂xiW
k+1),

and (according to (4.28))

‖Fα‖0,Tk+1 ≤ ‖S(Uk)‖L∞,Tk+1C(s)
∑

i

(‖D(Ai(Uk) − Ai(U0))‖L∞,Tk+1

×‖∂xiW
k+1‖s−1,Tk+1 + ‖∂xiW

k+1‖L∞,Tk+1‖Ai(Uk) − Ai(U0)‖s,Tk+1)

≤ C(s, G2, R, U0). (4.29)

According to (4.15), we get (for |α| ≤ s)

‖S(Uk)Dα(S−1(Uk)Hk)‖0,Tk+1 ≤ ‖S(Uk)‖L∞,Tk

∑
i

‖Dα(Ai(Uk)∂xiU0)‖0,Tk

≤ C(s, G2)
∑

i

(‖Ai(Uk) − Ai(U0)‖L∞,Tk
‖∂xiU0‖s,Tk

+ ‖∂xiU0‖L∞,Tk
‖Ai(Uk) − Ai(U0)‖s,Tk

+ C‖∂xiU0‖s,Tk
) ≤ C(s, G2, R, U0). (4.30)
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Finally, thanks to (4.18), (and for |α| ≤ s)1

‖S(Uk)Dα(b(Uk, fk))‖0,Tk+1 ≤ C(G2)C(s, R, f0). (4.31)

We now use estimate (4.21) for t ∈ [0, Tk+1[. We get

‖Wα‖0(t) ≤ c(G2)−1

[
‖Wα‖0(0) +

1
2

∥∥∥∥∥∂tS +
∑

i

∂xi(SAi)

∥∥∥∥∥
L∞,Tk+1

∫ t

0

‖Wα‖0(τ)dτ

+
∫ t

0

(‖Fα‖0 + ‖S(Uk)Dα(S−1(Uk)Hk)‖0

+ ‖S(Uk)Dα(b(Uk, fk))‖0)dτ

]
.

By using (4.27)–(4.31), we obtain

‖Wα‖0(t) ≤ c(G2)−1

[
‖Wα‖0(0) + C(s, G2, R, U0, f0)

∫ t

0

‖Wα‖0(τ)dτ

+
∫ t

0

(C(s, G2, R, U0) + C(s, G2, R, U0) + C(G2)C(s, R, f0))dτ

]
.

Summing for all |α| ≤ s these estimates, we end up (for t ∈ [0, Tk+1[) with

‖W k+1‖s(t) ≤ c(G2)−1

(
‖W k+1‖s(0) + C(s, G2, R, U0, f0)

×
∫ t

0

‖W k+1‖s(τ)dτ

)
+ c(G2)−1tC(s, R, G2, U0, f0).

Thanks to Gronwall’s lemma, for all t ∈ [0, T ] with T ≤ Tk+1,

‖W k+1‖s(t) ≤ c(G2)−1(‖W k+1‖s(0) + TC(s, R, G2, U0, f0))

× ec(G2)
−1C(s,R,f0,U0,G2)T .

When T ≤ 1 and since W k+1(0) = 0, we end up with (4.22).3

We now turn to the

Step 3. The following inequalities hold for all T ∈ [0, inf(1, Tk+1)[,

‖fk+1‖L∞,T ≤ ‖f0‖L∞eC(G2)T , (4.32)

‖fk+1‖s,T ≤
√

2eC(G2)T ‖f0‖s + TC(s, R, f0, G2, U0), (4.33)

sup
t∈[0,T ]

V k+1
M (t) ≤ VM (0)eC(G2)T + C(G2)T, (4.34)

sup
t∈[0,T ]

Xk+1
M (t) ≤ XM (0) + C(G2, f0)T. (4.35)
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Proof Step 3. Using notations similar to those of Sec. 3.2, we define the
characteristics

dXk+1

dt
(t; x, v, s) = V k+1(t; x, v, s),

Xk+1(s; x, v, s) = x, (4.36)
dV k+1

dt
(t; x, v, s) = (ρkuk)(Xk+1(t; x, v, s), t)

− ρk(Xk+1(t; x, v, s), t)V k+1(t; x, v, s),

V k+1(s; x, v, s) = v. (4.37)

Estimate (4.32) is a direct consequence of the formula:1

fk+1(t, x, v) = f0(Xk+1(0; x, v, t), V k+1(0; x, v, t))e
R t
0 Nρk(Xk+1(τ ;x,v,t),τ)dτ .

Then, writing in an implicit way (4.36)–(4.37), we obtain

Xk+1(t; x, v, s) = x +
∫ t

s

V k+1(τ ; x, v, s)dτ,

V k+1(t; x, v, s) = e−
R t

s
ρk(Xk+1(τ ;x,v,s),τ)dτv

+
∫ t

s

e−
R t

τ
ρ(Xk+1(τ̃ ;x,v,s),τ̃)dτ̃ (ρkuk)(Xk+1(τ ; x, v, s), τ)dτ

so that

V k+1(0; x, v, t) = ve−
R 0

t
ρk(Xk+1(τ ;x,v,t),τ)dτ

+
∫ 0

t

e−
R 0

τ
ρk(Xk+1(τ̃ ;x,v,t),τ̃)dτ̃ (ρkuk)(Xk+1(τ ; x, v, t), τ)dτ.

Then,3

|v| ≤ |V k+1(0; x, v, t)|e
R t
0 ‖ρk‖L∞ (τ)dτ +

∫ t

0

‖ρkuk‖L∞(τ)e
R t

τ
‖ρk‖L∞(τ̃)dτ̃dτ. (4.38)

Since

V k+1
M (t) = sup

fk+1(t,x,v)>0

|v|

= sup
fk+1
0 (Xk+1(0;x,v,t),V k(0;x,v,t))>0

|v|

≤ sup
|Xk+1(0;x,v,t)|≤XM (0)

|V k+1(0;x,v,t)|≤VM(0)

|v|,

we get (for t ∈ [0, T [, T ∈ [0, Tk+1[)5

V k+1
M (t) ≤ VM (0)e

R
t
0 ‖ρk‖L∞(τ)dτ +

∫ t

0

‖ρkuk‖L∞(τ)e
R

t
τ
‖ρk‖L∞(τ̃)dτ̃dτ. (4.39)

Then, we obtain (4.34) by noticing that T ≤ 1.7
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We proceed similarly for Xk
M . Using the formula for V k+1

M , we get

x = Xk+1(0; x, v, t) +
∫ t

0

ve−
R

τ
t

ρk(Xk+1(s;x,v,t),s)dsdτ

+
∫ t

0

∫ τ

t

e−
R

τ
τ̃

ρ(Xk+1(s;x,v,t),s)ds(ρkuk)(Xk+1(τ̃ ; x, v, t), τ̃ )dτ̃dτ,

so that

|x| ≤ |Xk+1(0; x, v, t)| + |V k+1(0; x, v, t)|
∫ t

0

e
R τ
0 ‖ρk‖L∞ (s)dsdτ

+
∫ t

0

‖ρkuk‖L∞(τ)e
R t

τ
‖ρk‖L∞ (s)dsdτ

∫ t

0

e
R t

τ
‖ρk‖L∞(s)dsdτ

+
∫ t

0

‖ρkuk‖L∞(τ)
∫ τ

0

e
R τ

τ̃
‖ρk‖L∞(s)dsdτ̃dτ,

and (for t ∈ [0, T [, T ∈ [0, Tk+1[)

Xk+1
M (t) ≤ XM (0) + VM (0)

∫ t

0

e
R τ
0 ‖ρk‖L∞ (s)dsdτ

+
∫ t

0

‖ρkuk‖L∞(τ)e
R t

τ
‖ρk‖L∞(s)dsdτ

∫ t

0

e
R t

τ
‖ρk‖L∞ (s)dsdτ

+
∫ t

0

‖ρkuk‖L∞(τ)
∫ τ

0

e
R τ

τ̃
‖ρk‖L∞(s)dsdτ̃dτ. (4.40)

Using the fact that T ≤ 1, we get (4.35).1

It remains to prove estimate (4.33) on the Hs norm of fk+1. For this, we take α

derivatives with respect to x and β derivatives with respect to v (with |α|+|β| ≤ s) of3

fk+1. As a result, we get a coupled system of Vlasov equations whose characteristic
fields are the same as those of the equation satisfied by fk+1, and whose right-5

hand side contains derivatives of order ≤ |α|+ |β| of fk+1, and derivatives of order
≤ |α| of Uk.7

The equation for a derivative of arbitrary order of fk+1 writes:

Dα
x Dβ

v fk+1(t, x, v) = Dα
xDβ

v f0(Xk(0; x, v, t), V k(0; x, v, t))

× e
R t
0 Cα,βρk(X(τ ;x,v,t),τ)dτ +

∫ t

0

e
R t

τ
Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃

×Bα,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dτ,

where Cα,β ∈ R (in fact it is always some positive multiple of N) and where Bα,β is a
linear combination of the Dα′

x Dβ′
v fk+1, with |α′|+ |β′| ≤ |α|+ |β|, whose coefficients9

are themselves linear combinations of v and Dγ
xUk, with |γ| ≤ |α|.
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We write down explicitly the term B3,0, which contains the terms of highest
order (of derivatives) of Uk (among those for which |α| + |β| ≤ 3):

B3,0 = 3∇xρk∇xxfk+1 − 3(∇x(ρkuk) − v∇xρk)∇xxvf
k+1

+ 3∇xxρk∇xfk+1 − 3(∇xx(ρkuk) − v∇xxρk)∇xvfk+1

+∇xxx(ρk)fk+1 − (∇xxx(ρkuk) − v∇xxxρk)∇vfk+1. (4.41)

We look for the L2 norm of Dα
xDβ

v fk+1. We have (for T ∈ ]0, Tk+1[ and t ∈ [0, T [)

∫∫
(Dα

x Dβ
v fk+1(t, x, v))2dxdv

≤ 2
∫∫

(Dα
x Dβ

v f0(Xk(0; x, v, t), V k(0; x, v, t)))2

× e2
R t
0 Cα,βρk(Xk(τ ;x,v,t),τ)dτdxdv

+ 2
∫∫ (∫ t

0

e
R

t
τ

Cα,βρk(Xk(τ̃ ;x,v,t),τ̃)dτ̃

×Bα,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dτ

)2

dxdv. (4.42)

In the first integral of (4.42), we use the change of variables (x, v) �→1

(Xk(0; x, v, t), V k(0; x, v, t)), whose Jacobian is e
R

t
0 Nρk(Xk(τ ;x,v,t),τ)dτ .

We obtain∫∫
2(Dα

xDβ
v f0(Xk(0; x, v, t), V k(0; x, v, t)))2e2

R
t
0 Cα,βρk(X(τ ;x,v,t),τ)dτdxdv

≤
∫∫

2(Dα
x Dβ

v f0(X, V ))2e
R

t
0 C′

α,βρk(X(τ ;x,v,t),τ)dτdXdV

≤ 2etC(G2)‖Dα
xDβ

v f0‖2
0. (4.43)

We now estimate the second integral. Using Cauchy–Schwarz’ inequality on the
square of the time integral:

2
∫∫ (∫ t

0

e
R t

τ
Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃Bα,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dτ

)2

dxdv

≤ 2
∫∫ (∫ t

0

e
R

t
τ

Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃dτ

)

×
(∫ t

0

e
R

t
τ

Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃B2
α,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dτ

)
dxdv

≤ 2tetC(G2)

∫ t

0

∫∫
e

R t
τ

Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃

×B2
α,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dxdvdτ.
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Then we use the change of variables (x, v) �→ (Xk(τ ; x, v, t), V k(τ ; x, v, t)), whose
Jacobian is e

R t
τ

Nρk(X(τ̃ ;x,v,t),τ̃)dτ . We obtain in this way

2
∫∫ (∫ t

0

e
R

t
τ

Cα,βρk(X(τ̃ ;x,v,t),τ̃)dτ̃Bα,β(Xk(τ ; x, v, t), V k(τ ; x, v, t))dτ

)2

dxdv

≤ 2tetC(G2)

∫ t

0

∫∫
B2

α,β(X, V )dXdV dτ. (4.44)

We now show that the L∞ norms of ∇xfk+1 and ∇vfk+1 are bounded. We
notice that

∂t(∇vfk+1) + v · ∇x(∇vf
k+1) + (ρkuk − ρkv) · ∇v(∇vfk+1)

= 2Nρk(∇vfk+1) −∇xfk+1,

so that

∇vf
k+1(t, x, v) = e

R
t
0 2Nρk(Xk(τ ;x,v,t),τ)dτ∇vf0(Xk(0; x, v, t), V k(0; x, v, t))

−
∫ t

0

e
R

t
τ

2Nρk(Xk(s;x,v,t),s)ds

×∇xfk+1(Xk(τ ; x, v, t), V k(τ ; x, v, t), τ)dτ

and therefore (for t ∈ [0, T [)1

‖∇vf
k+1‖L∞(t) ≤ ‖∇vf0‖L∞eC(G2)t + eC(G2)t

∫ t

0

‖∇xfk+1‖L∞(τ)dτ.

With the same kind of arguments (and noticing that Uk has its derivatives in x of
first order in L∞ since it is bounded in Hs), we get (for t ∈ [0, T [)

‖∇xfk+1‖∞(t) ≤ ‖∇xf0‖∞eC(G2)t + C(s, R)‖f0‖∞teC(G2)t

+ C(f0, s, R)eC(G2)t

∫ t

0

‖∇vfk+1‖∞(τ)dτ.

Thanks to Gronwall’s lemma, we obtain (for t ∈ [0, T [, T ≤ 1):3

‖∇xfk+1‖L∞(t) + ‖∇vf
k+1‖L∞(t) ≤ C(s, R, f0, G2). (4.45)

We now prove that for τ ∈ [0, T [:5 ∫∫
B2

α,β(X, V )dXdV ≤ C(s, R, f0, G2, U0). (4.46)

We write down in a detailed way the proof in the case N = 3, s = 3 (the most7

important for applications). A summary of the proof in the general case is presented
in Sec. 6.3.9

In this case (N = 3, s = 3), the most representative and complex term (for
|α| + |β| ≤ 3) is B3,0. The other terms Bα,β can be treated analogously. Since
3 > 3

2 + 1, H3(R3) and H2(R3) are embedded in L∞(R3). Moreover, H1(R3) is
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embedded in L6(R3) (the inclusions being continuous). We recall that on [0, Tk+1[,
‖Uk − U0‖3 ≤ R. Therefore,

‖Uk‖L∞,Tk+1 ≤ C(R, U0),

‖∇xUk‖L∞,Tk+1 ≤ C(R, U0),

‖∇xxUk‖L6,Tk+1 ≤ C(R, U0).

In the same way, since H1(R6) is embedded in L3(R6), and fk+1 satisfies (4.9)1

and (4.10), we have:

‖∇xvf
k+1‖L3,Tk+1 ≤ C(f0).3

Moreover, thanks to (4.12), fk+1 has a compact support in v, given by V k+1
M . We

now examine each term appearing in (4.41), for some t ∈ [0, T [ (t is not explicitly5

written down in the sequel).
The terms containing derivatives of first order of Uk are the simplest:

‖3∇xρk∇xxfk+1 − 3(∇x(ρkuk) − v∇xρk)∇xxvf
k+1‖0

≤ ‖∇xUk‖L∞(‖∇xxfk+1‖0 + (1 + V k+1
M )‖∇xxvf

k+1‖0)

≤ C(R, U0, f0).

Then, we treat the terms containing derivatives of second order of Uk:

‖∇xxUk∇xvfk+1‖0 =
{∫

(∇xxUk)2
(∫

(∇xvfk+1)2dv

)
dx

}1/2

≤
(∫

(∇xxUk)6dx

)1/6
{∫ (∫

(∇xvfk+1)2dv

)3/2

dx

}1/3

≤ ‖∇xxUk‖L6

{∫ (∫
(∇xvfk+1)3dv

)

×
(∫

1Suppvfk+1dv

)1/2

dx

}1/3

≤ C(R, U0)C(f0)(V k+1
M )1/6

≤ C(R, U0, f0), (4.47)

and similarly7

‖v∇xxUk∇xvf
k+1‖0, ‖∇xxUk∇xfk+1‖0 ≤ C(R, U0, f0). (4.48)

The last term contains derivatives of third order of Uk. We use here the L∞

norm of fk+1 or ∇vfk+1 as obtained in (4.45), for example:

‖∇xxxUk∇vf
k+1‖0 ≤ ‖∇vf

k+1‖L∞‖∇xxxUk‖0 (4.49)

≤ C(s, R, f0, G2)C(R, U0). (4.50)
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Finally, we use estimates (4.47)–(4.49) in order to obtain1

‖B3,0‖0,T ≤ C(s, R, f0, G2, U0). (4.51)

Using (4.42)–(4.44) and (4.51), we end up with the estimate (for t ∈ [0, T [):3

‖fk+1‖2
s,t ≤ 2eC(G2)t‖f0‖2

s + 2t2eC(G2)tC(s, R, f0, G2, U0). (4.52)

Remembering that T ≤ 1, we get (4.33).5

We now conclude the proof of Proposition 4.1. We see that if T∗ ∈ ]0, 1]
satisfies T∗c(G2)−1C(s, R, G2, U0, f0) ≤ R (in (4.22)), eC(G2)T∗ ≤ 2 (in (4.32)),7 √

2eC(G2)T∗ ≤ 3
2 (in (4.33)), T∗C(s, R, f0, G2, U0) ≤ 1

2‖f0‖s (in (4.33)), eC(G2)T∗ ≤ 3
2

(in (4.34)), C(G2)T∗ ≤ 1
2VM (0) (in (4.34)), C(G2, f0)T∗ ≤ XM (0) (in (4.35)), then9

Tk+1 ≥ T∗.

5. Passing to the Limit11

We now pass to the limit when k → ∞ in (4.4) and (4.6). As suggested in [10], we
study ‖Uk+1 − Uk‖0,T∗∗ for some T∗∗ ∈ ]0, T∗[. We show the13

Proposition 5.1. We consider initial data such that (4.3) holds and define the
sequence θk, Uk, fk by (4.4)–(4.7), and T∗ thanks to Proposition 4.1.15

Then one can find T∗∗ ∈ ]0, T∗[, such that (for k ≥ 2)

‖Uk+1 − Uk‖0,T∗∗ ≤ 1
4
‖Uk − Uk−1‖0,T∗∗ +

1
4
‖Uk−1 − Uk−2‖0,T∗∗ , (5.1)

‖fk − fk−1‖0,T∗∗ ≤ C(G2, s, R, f0)‖Uk−1 − Uk−2‖0,T∗∗. (5.2)

Proof. Note first that (for k ≥ 2), the function Uk+1−Uk is solution of the system:

S(Uk)∂t(Uk+1 − Uk) +
∑

i

(SAi)(Uk)∂xi(U
k+1 − Uk)

= b(Uk, fk) − b(Uk−1, fk−1) + Fk,

where

Fk = (S(Uk−1) − S(Uk))∂tU
k +

∑
i

((SAi)(Uk−1) − (SAi)(Uk))∂xiU
k.

17

Moreover, Uk+1(0, x) − Uk(0, x) = 0.
Thanks to Lemma 4.2 (formula (4.25)), we can write (when t ∈ [0, T∗[)

‖Uk+1 − Uk‖0(t)

≤ c(G2)−1

(
1
2
‖∂tS(Uk) +

∑
i

∂xi(SAi)(Uk)‖L∞,T∗

∫ t

0

‖Uk+1 − Uk‖0(τ)dτ

+
∫ t

0

(‖Fk‖0(τ) + ‖b(Uk, fk) − b(Uk−1, fk−1)‖0(τ))dτ

)
.
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We use then Gronwall’s lemma. For all t ∈ [0, T∗[, according to (4.17),

‖Uk+1 − Uk‖0(t) ≤ c(G2)−1e
c(G2)−1

2 ‖∂tS(Uk)+
P

i ∂xi
(SAi)(U

k)‖L∞,T∗T∗

×
∫ t

0

(‖Fk‖0(τ) + ‖b(Uk, fk) − b(Uk−1, fk−1)‖0(τ))dτ

≤ c(G2)−1ec(G2)
−1C(s,G2,R,U0,f0)T∗T∗

× (‖Fk‖0,T∗ + ‖b(Uk, fk) − b(Uk−1, fk−1)‖0,T∗). (5.3)

Using estimates (4.8), (4.13) and the fact that S and SAi are smooth on G2 (more1

precisely, their derivatives are bounded by a constant C(G2)), we get

‖Fk‖0,T∗ ≤ C(s, G2, R, U0)‖Uk − Uk−1‖0,T∗ . (5.4)3

Moreover, for t ∈ [0, T∗[ (and without writing t explicitly)

‖b(Uk, fk) − b(Uk−1, fk−1)‖0

≤
∥∥∥∥(ρkuk − ρk−1uk−1)

∫
fkdv − (ρk − ρk−1)

∫
fkvdv

∥∥∥∥
0

+
∥∥∥∥(ρk−1uk−1)

∫
(fk − fk−1)dv − ρk−1

∫
(fk − fk−1)vdv

∥∥∥∥
0

≤
∥∥∥∥
∫

fkdv

∥∥∥∥
L∞

‖ρkuk − ρk−1uk−1‖0 +
∥∥∥∥
∫

fkvdv

∥∥∥∥
L∞

‖ρk − ρk−1‖0

+ ‖ρk−1uk−1‖L∞

∥∥∥∥
∫

(fk − fk−1)dv

∥∥∥∥
0

+ ‖ρk−1‖L∞

∥∥∥∥
∫

(fk − fk−1)vdv

∥∥∥∥
0

.

Then, ∥∥∥∥
∫

(fk − fk−1)dv

∥∥∥∥
0

≤ (4VM (0))N/2‖fk − fk−1‖0

≤ C(f0)‖fk − fk−1‖0,∥∥∥∥
∫

(fk − fk−1)vdv

∥∥∥∥
0

≤ C(f0)‖fk − fk−1‖0.

Finally,

‖b(Uk, fk) − b(Uk−1, fk−1)‖0 ≤ C(f0)‖Uk − Uk−1‖0

+ C(G2, f0)‖fk − fk−1‖0. (5.5)

Then, we note that

∂t(fk − fk−1) + v · ∇x(fk − fk−1) + (ρk−1uk−1 − ρk−1v) · ∇v(fk − fk−1)

= Nρk−1(fk − fk−1) + ∇v · (fk−1((ρk−2uk−2 − ρk−2v) − (ρk−1uk−1 − ρk−1v))).

Moreover, at t = 0, fk(x, v, 0) = fk−1(x, v, 0) = f0(x, v). So

(fk − fk−1)(t, x, v) =
∫ t

0

e
R

t
τ

Nρk−1(Xk−1(s;x,v,t),s)ds

×B(Xk−1(τ ; x, v, t), V k−1(τ ; x, v, t), τ)dτ,
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with

B = ∇v · (fk−1((ρk−2uk−2 − ρk−2v) − (ρk−1uk−1 − ρk−1v)))

= (ρk−2uk−2 − ρk−1uk−1) · ∇vfk−1 − (ρk−2 − ρk−1)(Nfk−1 + v · ∇vfk−1).

Using Cauchy–Schwarz’ inequality and the change of variables (x, v) �→
(Xk−1, V k−1), we get for all t ∈ [0, T∗[,∫∫

((fk − fk−1)(t, x, v))2dxdv =
∫∫ (∫ t

0

e
R t

τ
Nρk−1(Xk−1(s;x,v,t),s)ds

×B(Xk−1(τ ; x, v, t), V k−1(τ ; x, v, t), τ)dτ

)2

dxdv

≤
∫∫ (∫ t

0

e
R

t
τ

Nρk−1(Xk−1(s;x,v,t),s)dsdτ

)

×
∫ t

0

e
R t

τ
Nρk−1(Xk−1(s;x,v,t),s)ds

×B2(Xk−1(τ ; x, v, t), V k−1(τ ; x, v, t), τ)dτdxdv

≤ teC(G2)t

∫ t

0

∫∫
B2(x, v, τ)dxdvdτ.

In order to bound B in L2, we use the L∞ bound on fk−1 and its derivative with1

respect to v obtained in (4.45).
Then,∫∫
B2(x, v, τ)dxdv ≤ (2V k−1

M (t))N (‖∇vf
k−1‖L∞

+ ‖fk−1‖L∞ + V k−1
M (τ)‖∇vfk−1‖L∞)2‖Uk−1 − Uk−2‖2

0(τ)

≤ C(s, R, f0, G2)‖Uk−1 − Uk−2‖2
0(τ).

Finally, for t ∈ [0, T∗[ (and remembering that T∗ ≤ 1),

‖fk − fk−1‖2
0(t) ≤ teC(G2)tC(s, R, f0, G2)

∫ t

0

‖Uk−1 − Uk−2‖2
0(τ)dτ

≤ t2C(s, R, f0, G2)‖Uk−1 − Uk−2‖2
0,t. (5.6)

Then, thanks to (5.5) and (5.6),

‖b(Uk, fk) − b(Uk−1, fk−1)‖0,T∗

≤ C(s, R, f0, G2)(‖Uk − Uk−1‖0,T∗ + ‖Uk−1 − Uk−2‖0,T∗). (5.7)

Using now (5.3), (5.4) and (5.7), we end up (for t ∈ [0, T∗], and T∗ ≤ 1) with

‖Uk+1 − Uk‖0(t) ≤ C(s, R, f0, U0, G2)T∗
× (‖Uk − Uk−1‖0,T∗ + ‖Uk−1 − Uk−2‖0,T∗).
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We choose T∗∗ ∈ ]0, T∗[ in such a way that1

C(s, R, f0, U0, G2)T∗∗ <
1
4
.

We get in this way the estimate (5.1). Then, estimate (5.2) is a simple consequence3

of (5.6).

We now conclude the proof of Theorem 2.1. Thanks to (5.1), we see that5 ∑
k

‖Uk+1 − Uk‖0,T∗∗ < +∞. (5.8)

Then, the sequence Uk is a Cauchy sequence and converges towards some limit U7

in L∞([0, T∗∗], L2(RN )). It is clear that U ∈ C([0, T∗∗[, L2(RN )) (remember that
for all k ≥ 0, Uk is smooth). Moreover, thanks to (5.2) and (5.8),9 ∑

k

‖fk+1 − fk‖0,T∗∗ < +∞. (5.9)

Then, the sequence fk is a Cauchy sequence and converges in the space11

L∞([0, T∗∗], L2(RN × R
N )) towards some function f ∈ C([0, T∗∗[, L2(RN × R

N )
(remember that for all k ≥ 0, fk is smooth).13

Since we know that ‖Uk − U0‖s,T∗∗ ≤ R, we also have that U lies in

L∞([0, T∗∗], Hs(RN )), and that ‖U − U0‖s,T∗∗ ≤ R. In particular, U =
(

ρ
ρu

)
lies15

in L∞([0, T∗∗], C1(RN )) and takes its values in G2. For the same reason, f lies in
L∞([0, T∗∗], Hs(RN × R

N)) and ‖f‖s,T∗∗ ≤ 2‖f0‖s. Since the support in v of fk is17

uniformly contained in a compact set, we see that the sequences
∫

fkdv and
∫

vfkdv

are bounded in L∞([0, T∗∗], Hs(RN )) and converge in L∞([0, T∗∗], L2(RN )) towards19 ∫
fdv and

∫
vfdv. Therefore,

∫
fdv and

∫
vfdv lie in L∞([0, T∗∗], C1(RN )). Then,

b(Uk, fk) =
(

0

ρkuk
R

fkdv − ρk
R

vfkdv

)
converges in L∞([0, T∗∗], L1(RN )) towards21

b(U, f).
By interpolation, for all s′ ∈ ]N

2 + 1, s[

‖Uk+1 − Uk‖s′,T∗∗ ≤ C(s)‖Uk+1 − Uk‖1− s′
s

0,T∗∗

×
(
‖Uk+1 − U0‖

s′
s

s,T∗∗ + ‖Uk − U0‖
s′
s

s,T∗∗

)
≤ C(s, s′, R)‖Uk+1 − Uk‖1− s′

s

0,T∗∗ .

So Uk converges to U in L∞([0, T∗∗], Hs′
(RN )) for s′ ∈ ]N

2 + 1, s[, and23

U ∈ C([0, T∗∗[, Hs′
(RN )) ⊂ C([0, T∗∗[, C1(RN )). Then, ∂xiU

k converges to
∂xiU in C([0, T∗∗[×R

N), and
∑

i Ai(Uk)∂xiU
k+1 converges to

∑
i Ai(U)∂xiU25

in C([0, T∗∗[×R
N). Still by interpolation,

∫
fkdv and

∫
vfkdv converge in

L∞([0, T∗∗], Hs′
(RN )) towards

∫
fdv and

∫
vfdv, and therefore they also converge27

in C([0, T∗∗[×R
N ). Finally, b(Uk, fk) converges towards b(U, f) in C([0, T∗∗[×R

N ).
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Passing to the limit in the sense of distributions in1

∂tU
k+1 = −

∑
i

Ai(Uk)∂xiU
k+1 + b(Uk, fk),

we get the equation3

∂tU = −
∑

i

Ai(U)∂xiU + b(U, f), (5.10)

and ∂tU ∈ C([0, T∗∗] × R
N ), so that (5.10) is satisfied in the classical sense.5

We now pass to the limit in (4.6) in the sense of distributions. We recall that
ρk and ρkuk converge in L∞([0, T∗∗[, L2(RN )) towards ρ and ρu, and that fk+17

converges in L∞([0, T∗∗[, L2(RN × R
N )) towards f . We get at the end Eq. (1.9).

Remembering now that the characteristics are C1 (because U ∈ C1) and using9

Eq. (3.3), we see that f ∈ C1
c ([0, T∗∗[ × R

N × R
N ), so that (4.6) is satisfied in the

classical sense. Passing then in the limit in (4.5), (4.7), we conclude the proof of11

existence of Theorem 2.1 in the case when the initial data are smooth.

6. Uniqueness, Initial Data and Higher Dimensions13

6.1. Uniqueness

We note that uniqueness in Theorem 2.1 is a consequence of the estimates proven
in Sec. 5 (more precisely, (5.1) and (5.2). Namely, if we consider two solutions
(ρ1, ρ1u1, f1) and (ρ2, ρ2u2, f2) which are smooth in [0, T ] (and such that U1, U2

take their values in some compact subset of G), then we can prove that for some
T∗∗ ∈ ]0, T [,

‖U1 − U2‖0,T∗∗ ≤ 1
4
‖U1 − U2‖0,T∗∗ +

1
4
‖U1 − U2‖0,T∗∗ ,

‖f1 − f2‖0,T∗∗ ≤ C(G2, s, R, f0)‖U1 − U2‖0,T∗∗ .

As a consequence U1 = U2 and f1 = f2 on this time interval, and (by considering15

the maximal interval where this identity holds) U1 = U2 and f1 = f2 on [0, T ].

6.2. General initial data17

We now prove Theorem 2.1 without assuming that the initial data are in C∞
c . We

recall that our assumption is instead:19

ρ̃0 ∈ Hs(RN ), u0 ∈ Hs(RN ) (i.e. U0 −U0 ∈ Hs(RN )) and f0 ∈ C1
c (RN ×R

N ) ∩
Hs(RN × R

N ). We still assume that U0 takes its values in a compact subset G1 of21

G.
We begin by introducing a smoothing sequence: we choose j ∈ C∞(RN ) a non-23

negative function with support in B(0, 1) such that
∫

j = 1. Then, we consider
jεk

(x) = (εk)N j( x
εk

), where εk = 2−kε0, and ε0 will be chosen later. Finally, we25
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define Uk
0 = jεk

∗ U0, and fk
0 = (jεk

⊗ jεk
) ∗ f0. With such a choice, one has the1

estimate: ∑
k

‖Uk+1
0 − Uk

0 ‖0 < +∞,
∑

k

‖fk+1
0 − fk

0 ‖0 < +∞. (6.1)
3

The solution is then obtained as the limit of the inductive sequence (4.4)–(4.6)
together with:5

Uk+1(x, 0) = Uk+1
0 (x), fk+1(0, x, v) = fk+1

0 (x, v).

The proof is then very close to the one presented in sections 4 and 5. We only
indicate the two main (small) modifications: first, one has to prove estimate on
Uk −U0

0 instead of Uk −U0: in order to be able to do so, one takes ε0 small enough.
Secondly, estimates (5.1) and (5.2) are replaced by

‖Uk+1 − Uk‖0,T∗∗ ≤ 1
4
‖Uk − Uk−1‖0,T∗∗

+
1
4
‖Uk−1 − Uk−2‖0,T∗∗ + C‖Uk+1

0 − Uk
0 ‖0,

‖fk − fk−1‖0,T∗∗ ≤ C(G2, s, R, f0)‖Uk−1 − Uk−2‖0,T∗∗ + ‖fk
0 − fk−1

0 ‖0.

6.3. Extension to dimension N > 37

We explain here briefly how to prove estimate (4.33) in the case when N �= 3 (or
s �= 3). The only estimate that we did not prove already in this general setting is9

(4.46) (with |α| + |β| ≤ s). In order to do so, we notice that all terms appearing
in Bα,β (still with |α| + |β| ≤ s) are of the form vpDmUkDlfk+1, with D denoting11

any derivative, p ∈ {0, 1}, and m, l ∈ N, m + l ≤ s + 1, m ≤ s.
First, we consider the case l ∈ {0, 1}. Then, using (4.10) and (4.45), we have13

‖Dlfk+1‖L∞,Tk+1 ≤ C(s, R, f0, G2).

So,

‖vpDmUkDlfk+1‖0 ≤ ‖Dlfk+1‖L∞,Tk+1

×
(∫

(DmUk)2
(∫

(vp)21Suppvfk+1dv

)
dx

)1/2

≤ C(s, R, f0, G2)C(f0)‖DmUk‖0,

and it is bounded since ‖Uk − U0‖s ≤ R (on [0, Tk+1]) and m ≤ s.15

Secondly, we consider the case l ≥ 2, so that m ≤ s − 1. But ‖Uk − U0‖s ≤ R,
so thanks to Sobolev inequalities,17

‖DmUk‖
L

2N
N−2(s−m) ,Tk+1

≤ C(R, U0).
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Then, using (4.9) and (4.10), and still thanks to Sobolev inequalities,1

‖Dlfk+1‖
L

2N
N−s+l ,Tk+1

≤ C(f0). (6.2)

In the previous equation, one has to replace the exponent of the Lebesgue space3

by ∞ if it is nonpositive.
Therefore, using the compact support (in v) of fk+1 given by (4.12),

‖vp DmUkDlfk+1‖0 =
{∫

(DmUk)2
(∫

(vpDlfk+1)2dv

)
dx

}1/2

≤
(∫

(DmUk)
2N

N−2(s−m) dx

)N−2(s−m)
2N

×
{∫ (∫

(vpDlfk+1)2dv

) N
2(s−m)

dx

} s−m
N

≤ ‖DmUk‖
L

2N
N−2(s−m)

{∫ (∫
(Dlfk+1)

N
s−m dv

)

×
(∫

(|vp|1Suppvfk+1)
2N

N−2(s−m) dv

) N
2(s−m)−1

dx

} s−m
N

≤ C(R, U0)C(f0)‖Dlfk+1‖
L

N
s−m

.

Then, according to estimate (6.2), the norm in this last equation is bounded as soon5

as N
s−m ≤ 2N

N−s+l , or, equivalently, N + l + 2m ≤ 3s. Remembering that this has to
hold for m, l ∈ N such that m + l ≤ s + 1, m ≤ s − 1, we see that this is true as7

soon as s ≥ N . In this way, we can prove that all the terms appearing in Bα,β are
bounded in L2, so that (4.46) holds.9
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