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ON THE SPATIALLY HOMOGENEOUS LANDAU
EQUATION FOR HARD POTENTIALS
PART 1I : H-THEOREM AND APPLICATIONS

L. DESVILLETTES AND C. VILLANI

ABsTRACT. We find a lower bound for the entropy dissipation of
the spatially homogeneous Landau equation with hard potentials in
terms of the entropy itself. We deduce from this explicit estimates
on the speed of convergence towards equilibrium for the solution of
this equation. In the case of so-called overmaxwellian potentials,
the convergence is exponential. We also compute a lower bound for
the spectral gap of the associated linear operator in this setting.
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We recall the spatially homogeneous Landau equation (Cf. [8, 18]),

(1)

af

L= QUML) veRY, t>0,

1
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where f is a nonnegative function and () is a nonlinear quadratic op-
erator acting on the variable v only,

2
QN0 = o [ aasto = (1 5000 5 5he) |

where f. = f(v.), and the convention of Einstein for repeated indices
is (and will systematically be) used.

Here, (a;;(2)):; (¢ € RY) is a nonnegative symmetric matrix function
with only one degenerate direction, namely that of z. More precisely,

(3) aij(z) = Tij(2) (] 2)),
where U is a nonnegative cross section and

Zi %
() 1) = b, =

is the orthogonal projection onto z+ = {y/y -2z =0}.

We address the reader to Part I of this work [13] for references on
the subject.

The Landau equation is obtained as a limit of the Boltzmann equa-
tion when grazing collisions prevail. The terminology concerning the
cross section is therefore closely related to that of the Boltzmann equa-
tion.

In this paper, we shall deal with different types of cross sections
W. We recall the important particular case of Maxwellian molecules
(coming out of an inverse power force in TL(ZN“)),

(5) U(lz]) =[]
Any cross section W, such that W is locally integrable and satisfying
(6) U(lz]) = |2

will be called overmaxwellian (of course Maxwellian molecules are over-
maxwellian).

The “true” hard potentials cross section (coming out of an inverse
power force in rt® for s > 2N — 1) is

(7) W(]2]) = |2

for some v € (0,1). Such a cross section is not overmaxwellian be-
cause of its behavior near z = 0. We therefore define “modified” hard
potentials by the requirements that W is of class C'?, overmaxwellian,
and

(8) U(la]) ~ 22 as [2] = +oo.
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Note that multiplication of ¥ by a given strictly positive constant
amounts to a simple rescaling of time.

For a given nonnegative initial datum f;,, we shall use the notations

M) = [ faloyo, B =5 [ fatoloPdo

H(fin) = " fin(v)log fin(v) dv,

for the initial mass, energy and entropy. It is classical that if f;,, > 0
and M(fin), E(fin), H(fin) are finite, then f;,, belongs to

viogt={7e @ [ |l o))l < +oc}

The solutions of the Landau equation satisfy (at least formally, thanks
to the change of variables (v, v.) <> (v.,v)) the conservation of mass,
momentum and energy, that is

O MU= [ feoyd= [ Fa)do= ()

vivdy = m(v)vdo,
(10) [ reoed= [ g

o)

e = [ oo [ e e - e,

They also satisfy (at the formal level) the entropy dissipation identity

d

(12 SH(S(1,)) = = DU/ (1),

where H is the entropy

(13) H(P) = [ r)los f)dv,

and D is the entropy dissipation functional

(14) D(f) =~ [ QU-S)(w)log f(w) o
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- % //RNXRN aij(v —v.) f . (a}f(v) — a}f(v*)>

(2= %) 2o

Due to the singularities at points where f vanishes, this formula is

not very convenient for a mathematical study. Therefore, as in [26], we
shall rewrite the entropy dissipation for the Landau equation in a form
which makes sense under very little assumptions on f. Since, formally,

77 (S-S = 2 (VEV Vi) - VT Vi)

ZQ(V’U_V’U*)\/ff*7

the entropy dissipation is

2//dvdv*a(v—v*)(V—V*)\/R(V—V*)\/R.

In other words,

L.
(15) D(f) = §||A||i2(RN><RN)7

where
K(0,0.) = 2110 = 0.) 82(0 = 0.]) (T = Vo )y ) F(00),

We show in Appendix A that K is well-defined as a distribution on
RY x RY as soon as W is locally integrable and f € LYRM). In
particular, as noted in [26], this allows to cover the physical cases where
U has a singularity at the origin. Hence, formula (15) enables us to
define D(f) as an element of [0, +0oc] in the most general case, and we
shall always consider it as the definition of the entropy dissipation. Of
course, with this convention, formula (14) holds only under suitable
regularity assumptions on f (and its logarithm).

The equality D(f) = 0 holds (at the formal level, and when f, ¥ >0
a.e.) only if for all v,v, € RY,

V(log f)(v) = V(log f)(vs) = Avp. (v — vs)

for some A,,, € R. It is easy to check that this implies that for all
v € RY, Vf(v) = M+ V for some fixed A € R and V € RY. This

ensures in turn that f is a Maxwellian function of v,

(16) S0 = Grpr T = Mpurlo),
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for some u € RY, p, T > 0. A rigorous proof (under suitable assump-
tions on f) can be found for instance in [23]. Other proofs shall be
given in the present paper.

This theorem is the Landau version of Boltzmann’s H-theorem, in
view of which it is expected that a solution f(¢,-) of the Landau
equation converges when ¢ — 400 towards the Maxwellian function

M = M,s s 11 defined by

o = [ oy, pul = [ f)eds,
RN RN
and
[T o = o TP 4 N T
RN

The purpose of this paper is to study the speed of convergence of f(¢,-)
towards M7. Let us summarize briefly the state of the art concern-
ing the asymptotic behavior of the solutions to the spatially homoge-
neous Boltzmann and Landau equations. The reader will find many
references (but unfortunately not the most recent ones) in [12] on the
general problem of the behavior when t — 400 of the solutions of the
Boltzmann equation in various settings, including the full 2—dependent
equation.

In the homogeneous setting, we are aware of essentially two types of
theorems :

e The results by Arkeryd [2] and Wennberg [27] give exponential
convergence towards equilibrium for the spatially homogeneous
Boltzmann equation with hard (or Maxwellian) potentials in weigh—
ted LP norms, namely

If = M| < Cet™,

but with a rate 6 > 0 (depending on the initial datum), which is
obtained by a compactness argument and is therefore not explicit.
These results are based on the study of the spectral properties of
the linearized Boltzmann operator.

e On the other hand, Carlen and Carvalho obtain in [4, 5] an esti-
mate which gives only at most algebraic decay for the Boltzmann
equation (with Maxwellian molecules or hard-spheres), but which
is completely explicit (though rather complicated). These results
rely on a precise study of the entropy dissipation Dg of the Boltz-
mann equation. A function ® (with ®(0) = 0) is computed in
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such a way that
Dy(f) = o(H()) — H(M)).

This function @ is strictly increasing from 0 (but very slowly). As
a consequence, it is shown in [5] how, for a given initial datum f;,
and ¢ > 0, one can compute T.(f;,) > 0 such that

02 T i) = (1) = M < e

The results by Carlen and Carvalho have been applied successfully to
several situations, for example in the context of an hydrodynamical-
type limit, or in order to study the trend to equilibrium when initial
data have infinite entropy.

We also note that the optimal rate of convergence for the Boltz-
mann equation with Maxwellian molecules was recently obtained by
Carlen, Gabetta and Toscani in [6], using a completely different ap-
proach, which does not seem easily adaptable to other potentials.

We finally mention that a general but somewhat weaker entropy
dissipation inequality was established by the first author of this work
n [11] (Cf. also [28]) for various collision operators including Landau
(under suitable assumptions on ¥). This estimate would imply a local
(in velocity variable) convergence towards equilibrium, in some sense,
which is essentially in O(t“/z), if the solutions were known to satisfy
certain additional technical assumptions. The results of this paper are
not used here. Some of its ideas are however retained (Cf. section 3).

We shall not try here to use the spectral gap of the linearized operator
(Cf. [10]), but we shall focus as in [4] and [5] on the entropy dissipation
D(f). In fact, as we shall show in section 7, from our work one can
recover an explicit estimate of the spectral gap of the linearized Landau
operator in the case of overmaxwellian molecules. Such an estimate
seems difficult to obtain by classical methods using Weyl’s theorem
(i.e. the property that the essential spectrum is unchanged by compact
perturbations).

Our study relies on the use of the Fisher information,

VfI?
(17 1= B = [ivvie
which has already been successfully used in related problems by Carlen
and Carvalho [4] and Toscani [22] (respectively for the Boltzmann and
the linear Fokker—Planck equations). In particular, our use of the log-
arithmic Sobolev inequality was inspired by this last work.
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We now state our main result. For s > 0, we use the notation
LR = {1 & P®Y%: [ 10l + o) do < oo}

Theorem 1. Let f be in LY(RY), and Q a be Landau operator with
overmazwellian cross section (i.e. W(|z|) > |z|?). Then there exists
A > 0 explicitly computable and depending only on pf,u’, and the N?
scalars

PZ»J; = fv)vv; do,
RN

such that
(13) D(f) = A (1) = 1)),

Theorem 1 will be proven in section 2 by a simple computation, which
relies on explicit calculations done in [24] for Maxwellian molecules
(that is, ¥(|z]) = |z]*). The reader may find this proof somewhat un-
satisfactory, in that it seems to be heavily dependent on the particular
structure of the Landau equation with Maxwellian molecules. This is
why we present in section 3 another proof, which has interest in itself,
and gives the same result (though with a smaller X).

Section 4 is devoted to the applications of theorem 1 to the Landau
equation with overmaxwellian cross sections. Exponential decay (in L'
norm) is proven with an explicit rate. An interesting feedback property
due to the nonlinearity of the equation is detailed. It allows one to get
better constants in the rate of decay than one could expect at first
sight.

However, the relaxation times obtained in section 4 are still very
large if the initial datum is only assumed to have finite mass, energy
and entropy. In section 5, we show how to remove this drawback,
and get realistic relaxation times, with a rate which differs from the
(optimal) relaxation rate for the linear Fokker-Planck equation only by
a factor 1/6 (in dimension 3). At this point, the entropy dissipation
is used as a control of the concentration, or equivalently the weak L1
compactness.

Then, in section 6, we deal with “true” hard potentials. Algebraic
decay with explicit constants is proven for the solution of the Landau
equation in this case. Thanks to the result in [13], we also prove that
the convergence holds in fact in H*(RY), and that the solution is
globally (in time) stable with respect to its initial datum. As in [13],
this global stability also holds with respect to small perturbations of
the cross section V.
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In section 7, we show how our work can be used to get estimates for
the linearized Landau kernel. Namely, inequalities such as (18) enable
us to find simple refinements of results of Degond and Lemou (Cf. [10]).

Finally, in section 8, we give a last application of inequality (18).
Namely, under rather weak conditions, the weak cluster points f of
asymptotically grazing solutions of the Boltzmann equation (Cf. [13])
have automatically a square root belonging to L? (R}; H'(RY)).

Useful results concerning the definition and approximations of D(f)
are given in Appendix A and B.

To conclude this introduction, we mention that among the numer-
ous remaining open problems in this subject, the possibility of finding
estimates in the case of soft potentials (i.e. v < 0) seems to be a
particularly interesting and difficult question.

2. ENTROPY DISSIPATION : FIRST METHOD

First proof of theorem 1. In sections 2 and 3, we shall assume that

) [ =1 [ seedo=o. [ j@)Pdo=
RN RN RN

which amounts to a simple change of coordinates of the form

(20) (t,v) — (at,bv + ¢), a,b e R,ce RV,

Then, M will denote the centered Maxwellian with normalized mass
and temperature,

J_l'”l
S VR
(21) M(v)= M’ (v) = (27T)N/2 )
We recall that
I(M)=N.

Next, it is clear that the entropy dissipation depends linearly on W. In
particular, if Dy, is the entropy dissipation corresponding to the Landau
operator with cross section Wy,

Uy, > Uy = Dy(f) > Di(f).

Therefore, we only need to prove Theorem 1 for ¥(|z|) = |z|*. More-
over, thanks to the lemma of Appendix B, it is enough to prove the-
orem 1 when f € S and |log f| is bounded by C (1 + |v|?) for some
C' > 0. Note that as far as the evolution problem for the Landau equa-
tion with reasonable potentials is concerned, we need theorem 1 only
for such smooth functions f, thanks to our study in [13]. We shall
however need theorem 1 in its full generality when giving applications
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to the regularity of the weak cluster points to Boltzmann equation (Cf.
section 8).

It is shown in [24] that for a Maxwellian cross section and a normal-
ized initial datum,

(22)  Q(f.f)=NV-(Vf+ fv)— (Pijaijf 4V (fv)> + Agof,

where Agy denotes the Laplace-Beltrami operator of spherical diffu-
sion. We recall that in the physically realistic case N = 3, using
the usual spherical coordinates (r,,¢) defined by vy = rsinf cos ¢,
vy = rsinfsin ¢, vs = r cos f, the action of the Laplace-Beltrami oper-
ator is defined by

1 : 1
Agof = mag(SIHG O f) + ma@bf-

We first note that the contribution of Agy to the entropy dissipation
is nonnegative. Indeed (supposing that N = 3 for simplicity),

/Ag¢f log f r*sin @ dr df d¢

:/89(sin089f)logfr2 drd0d¢+/a¢¢flogf _120
sin

2 2

1

:_/m@f' r? sin@drd0d¢—/|a¢;ff| : 20# sin Odr df do
S111

(23) -/ %

where (in polar coordinates)

r? sin Odr df do

0
vé’(bf = 1a€f
Do f

A direct proof without spherical coordinates is also obtained very easily.
The quantity (23) vanishes only for radially symmetric functions,

and we note that it is very large when r — +00 compared with the

entropy dissipation induced by a usual Laplace operator. This suggests

that solutions to the Landau equation have a tendency to become radial

rather fast. However, we shall not use this information in the sequel.
Noting that

[roevtoen) = [o-9r=-x [1=-x.

sin 0
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we easily see that the entropy dissipation induced by the terms in (22)
other than Ay, is

V2 0;f0;
(24) N/| ]{| —PZ']‘/ ff f—N(N—l).

As in [24], we can always assume that (P,;) is diagonal. Indeed,

qg:€¢€ RN|—>/f(v)(v,é')(v,éjdv

defines a (nonnegative) quadratic form, so that there exists an or-
thonormal basis (é1,...,ex) which is also orthogonal for ¢. Let us
define the ”directional temperatures”

Ti = /fUZ2
With these notations,

(25) D(f) > Z(N - Ti)/ (a;{)? — N(N —1).

We recall the following elementary lemma (Cf. also [25]).

Lemma 1. Consider ay,..,any > 0. Under the constraints

fzov /f:17 /fUZ':O, /fv?:T“
one has

Proof. First note that, by density, it is sufficient to treat the case when
f 1s smooth and nonvanishing. Then

of g\’
(27) ogai/<ff— gg> £,

where

7o

J_ v
e 2%
g(U) - U 27TTZ'7
and 0,9 = —(v;/T;) g. Expanding (27), we obtain

(&f)Q / U; UZZ
0< oy / 7 + 20y &fTi + o; Tff

_ [ G) jaio
_az/ ! QTZ'—I_TZ"

=
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which proves the lemma. O
We now come back to the proof of theorem 1. Let us set
(28) A =min(N —T;),

and write

ps) = A1) - 100n))

Z(N_TZ»—A)Z/(&'J{C)Q—N(N—1—A).

Applying lemma 1, we get

ot =10 - 100) = S A= v -1

= (N - ) (Z%—N)

This last quantity is nonnegative. Indeed, since Y. T; = N, one has

Y -x-yn (1)
1 - : T '
Finally, noting that
A > minT;,

we see that A > 0 (since f cannot be concentrated on a single axis),
and theorem 1 is proven (note that A is explicit and depends only on
T; under assumption (19), on pys, uy and the N? scalars [ fovw; in
general).

We conclude this section by showing how A can be explicitly esti-

mated (from below) by a function of M(f), F(f) and

i) = [ fllog o
BN
(note that these quantities are controlled by M ( fi,.), E(fin) and H( fin)

when one deals with a solution of the Landau equation).

Proposition 2. Let s > 2 and assume that [ belongs to L' N Llog L,
and satisfies (19). Then,

) | cL16 H(f)
29 zminfi(f) 2
(29) > minT;(f) > 512 x 16(VL0/s| By 4|2 | 1]

2(NL1)/s’
LL(RN)
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where |By 11| denotes the volume of the unit ball in dimension N — 1.
In particular, for s = 2,

1 eL16H(f)

30 T(f) > .
(30) )2 55 ANL By 42 (N + 1)V

Proof. For any R > 0,

/f(v)1|v|>RdU < Wﬂ7
> i
hence
/f(v)llvlsR dv>1— %&

By lemma 6 of Part I of the present work,

f1|u|§R <e,
vi| <8

with 26 |By 11 |RNY = e/(2exp(2 H(f)/¢)).

Therefore,
WAy @y
2dv > §° —
R G
e Wl
= - - —c ).
16| By 1 |? REV L) 4l (1) Rs

Choosing R = (4||f]|r1)"*, e = 1/4, we obtain the desired inequal-
ity. O

It is clear that this estimate is very rough, and that many other
choices of R, s and ¢ are possible, depending on the context. If one
applies crudely estimate (30) to a function f such that [:[(f) is of the
order of [:[(Mf), one finds a rate A whose order of magnitude is approx-
imately 1043, Better estimates can be obtained by different choices

L4H(f)/e can never be much

of R, s and &, but the very small factor e
bigger than €J‘17 (in dimension 3), which is really very bad ! (compare
to the linear Fokker-Planck equation, for which the rate corresponding
to A is of order 1, see [22]). The main cause is that the estimate in
Llog L is very poor for controlling the concentration of f.

In many cases, we know that in fact f € L°°([0,+o00) x RY). This
is true for example for hard and modified hard potentials, even if the

initial datum is not smooth, and this allows better estimates : for
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instance,

[ Flpicr <28 1Byl 1lam BV

lvi| <8

3. ENTROPY DISSIPATION : SECOND METHOD

Second proof of theorem 1. Here we shall recover the previous result
with a different method. The idea is to try to transform the proof of
the case of equality in the H-theorem into an explicit inequality. We
know that we can restrict ourselves to the case of Maxwellian molecules.
Moreover, we assume N = 3 for simplicity and suppose as in the previ-
ous section that f € S(R?) with |log f| at most quadratically increas-
ing.

For any function (v, v.) — A, ,,, we define

2
T(U) - T(U*) - )‘v,v* (U - U*)'

For any circular permutation (¢, j, k) of (1,2,3), one has

R(v,v,) =

(o= v (o] = (05— 0) (o) - 2o

= - (2w - 2.

We multiply this identity by the test function o, (v.)f(v.), where ¢,
will be chosen later on. Integrating in the variable v,, we obtain

(o o) () () (o)« (5) (7o)

= A% + B%; + C%v; + / [(U — ) A R(v, v*)} feval(vi) dvy,
k
with
A% = [v0;0ifoa — [0:i0;fea,
(31) B = — [ 9;f¢a,

C* = [0;fea.

For « in {1,2,3}, this is a linear 3 x 3 system of equations for the
quantities

Uj

o f af aif  of
2 f *

;T T
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Using Cramer’s formulas, we get

ajf - Det <ff99a7_ffng‘oavza>
(32) - = .
f Det <ff§0a7_ffvj99a7ffvig‘oa>

where

Zo =A%+ B%; + C%; + /(U — ) A R(v,00) |k fepa(vi) do..

We now choose ¢; = 1, 3 = —v;, ¢35 = v;. Assuming as before that
P;; = T;¢;;, the denominator in the right-hand side of (32) is
ff — ffvj foZ 1 0 0
D = - ffvj ffv]? — ffvivj =10 T]‘ 0 = TZ T]‘.
foZ' — ffvivj ffvf 0 0 TZ

Moreover, we immediately compute

0 0 0
A=lo0], B=(o0o], c=[11],
0 1 0

and
Det (/ foa, —/fvjc,oa,Aa + B%; + CQUZ) = T,v;.

Thus, eq. (32) simply becomes
@i Ly Det (f fpa,— ffvjc,oa, f(v — ) A R(v,v.0) |k fepa(vi) dv*>

! T; TiT;

Taking the square of this expression, multiplying by f and integrat-
ing with respect to v, we obtain

e
Fom) =T
x/f‘Det (/fc,oa,—/fvjcpa,/(v—v*)/\R(v,v*)|kf*<pa(v*)dv*>

1 2
ST»Q T2 /f ||f||i%(R3) /(U — U*) A R(U7U*)|k f*¢a(v*) dv*
it

dv
s“T*;’) [ ( [ . |v—v*l21i’(v,v*)2f*> ( j +v3>>

2
(1+3)°
§ T2T2 //d dv, ffulv — v,]? R(v, v*).

(1 4+ 3 is here the sum of the moments of order 0 and 2 of f).

2

dv
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On the other hand, since II(v — v,) is the orthogonal projection onto
(v —wv.)*

// R (V—fm VTf@*)) (VTf@)_VTf(v*)) v — v ?
// Yo 2fF.,

for a suitable function (v,v,) — A, ,,. Therefore, noting that
1 1
= fTQT2 —— infT' >0
M=y L 2 g W

(thanks to the definition of T}), we obtain for all 7, j,

D(f) Zu/ (a]Tf—%Yf-

Expanding the square, we find that the integral in the right-hand side
is simply

v 2
- —f<v*> (v =)

f P T

Summing up over 7, j and dividing by 32, we get

1 2
D(f)Z%(Kf)JrZ:T—E—Z:i)-

/@‘f)2 L L2

But since

1 2
> -2 +3—Z<7—1> >0,
we finally find
D(f) = U = 3).

Note that the coefficient /3 found with this method is much worse
than the coefficient A found in the previous one.

4. THE TREND TOWARDS EQUILIBRIUM : OVERMAXWELLIAN CASE

JFrom now on, we shall consider classical solutions of the Landau
equation on an arbitrary open time interval. We begin with a precise
definition of these.

Definition 1: A solution f on R} x RY of the Landau equation is
said to be smooth if it belongs to C1((0,+00);; S(RY)) and if |log f| is
bounded (for all to, T >0) by Cy 7 (1 + |v|?) when t € [to, T].
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As we said before, these assumptions are always satisfied in the case
of hard potentials, modified or not, under very weak assumptions on
the initial datum (see [13] for complete proofs in the case of hard po-
tentials).

It is now easy to obtain an explicit result of convergence. We use

the notation H(f|M) = H(f) — H(M).

Theorem 3. Let f be a smooth solution (in the sense of definition 1)
of the Landau equation with initial datum f;, and overmazwellian cross
section (i.e. W(|z]) > |z|?). Then, for all time t >0,

(33) H(f(t, )| M) < 2o H (f, | M),
(34) 1F(t ) — MO || gy < e/ 2H( o[ M),

where Ao > 0 depends only on M(fi,), E(fin) and H(f:,), and can be

explicitly estimated from below.

Proof. We first note that (34) is deduced from (33) by the well-known
Csiszar-Kullback inequality [9, 17, 22]. To obtain the theorem, it suf-
fices, as in [22], to use the logarithmic Sobolev inequality of [15], in the
form

1) = I00) = H (),

which implies, thanks to theorem 1 (and proposition 2),

d , .
= H ()| M) 2 200 H(f(L, )| M),
Finally, even if f does not belong to C([0, +c0);, L log L(RY)), estimate

(34) follows from the observation that for all time 6 > 0,
H(f(0,-)|M7m) < H(fin| M)
[

Remark. An explicit lower bound on Ay can be computed thanks to
theorem 1 (including proposition 2), the rescaling (20), and the classical
relations between 1, H(fin), E(fin) and M(f;n). Of course, Ag is equal
to A when M/ = M.

As mentioned in the introduction, we now show that the return to
equilibrium entails better entropy dissipation bounds, which in turn
improve the convergence towards equilibrium. One can prove for ex-
ample the
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Theorem 4. Let f be a smooth solution (in the sense of definition 1)
of the Landau equation with initial datum f;, and overmazwellian cross
section. Then for all time t > 0 and ¢ > 0, there exists s > 0, and C
depending only on sup, || f(t,)||r1wx), such that

d
- SHU M) 2

max{Q(N—l)(l—CH(f(t,-)|Mf) : ),zxo} H(f(t, )| M),

Proof. We prove that for all direction 1,

1—¢

/ﬂmﬁ%§1+0HmMU2

The conclusion will follow by (28).
Clearly,

[rerezas< [yttt [ 1r-ajlop
But for all R > 0,

112y
/U—NVWVSRWf—M”W®W+_7ﬁ%J

Choosing R = (|[f|[niex /Il f — MY || pr@m)'/*, we get

LI(RN

/|f_M| |U|2 S CHf_ MHIJ_Q/S) S CH(f|Mf)1/2J_1/S

Remark.

1. As a consequence of the appearance and (global in time) propa-
gation of all moments in the case of modified hard potentials, we
see that for sufficiently large times, the rate of exponential con-
vergence in L' norm in that situation can be taken bounded from
below by (2 —e)(N — 1) for ¢ > 0 as small as desired.

2. In the case of Maxwellian molecules (i.e. W(|z|) = |z|?), the
second-order moments are explicitly computable and return ex-
ponentially fast to their equilibrium value [24]. This implies that
the rate of the trend to equilibrium is much better.
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5. IMPROVED RESULTS

In the preceding section, we used the entropy estimate to control
the concentration of f. This method is quite natural, but, as we saw,
leads to rather poor results. It turns out, surprisingly, that much more
realistic times are obtained when one controls this concentration by the
use of the entropy dissipation itself.

To this purpose, we consider f € LL(R") a nonnegative function with
M(f) =1, E(f) = N, and we limit ourselves to the overmaxwellian
case. Let us start again from

>ZN T;) aJ{) — N(N —1),

and apply Lemma 1 to find

D(f >ZN T—N N —1) NZ

hence
1 D(f)
< N1 2V
2 sN+y
Since we chose an orthonormal basis in which ffvivj = T;d;;, this
proves the

Proposition 5. Let f € LY(RY) be a nonnegative function with M(f) =
1, E(f)=N, and let Ty = inf.cov [ f(v)(v-e)*dv. Then (under the

overmazwellian assumption ¥(|z|) > |z|*),
1
(35) S

Then we introduce this estimate in the (first) proof of theorem 1,
and we get

2N

D(f) 2 Ty [1(f) = I(M)] = D)+ N?

H(f|M).
Thus

DU + N*D(F) — 2N H(fIM) > 0
Since D(f) > 0, this inequality implies the

Proposition 6. Let f € LY(RY) be a nonnegative function with M(f) =
L, E(f) = N. Then (under the overmazwellian assumption ¥(|z|) >
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21%),
Nt N2

(36) by = o mgan + X2

Now, let f be a classical solution of the Landau equation, with over-
maxwellian potential, satisfying the previous normalizations of mass
and energy. The proposition above implies that H(f(¢)|M) < y(t),
where y is the solution of

(37)
y(0) = yo = H(fin|M).
By standard computations, y is implicitly defined by

t_/yo dZ
Y 1/2N2+NT4—N72

Let Co = /2Ny + N*/4 — N?/2 : since y > 0, (38) entails

tgﬁ—l—ﬁln Co

N 2 1/2Ny—|-NT4—N72

1 5 ., N2\? N*
SERTAP

02 4 4 NO 2 2
_ QZ%GFO%J_WL‘ + OGFCOGJ—FLL.

As a conclusion, using again the Csiszar-Kullback inequality, we have
proven the following refinement of theorem 3.

then

Theorem 7. Let f be a classical solution of the Landau equation with
overmazwellian potential in RY, and such that M(f;,) = 1, E(fin) =
N, H(fin) < co. Let M(v) = e/2/(2m)N/2 | and

Nt N2
Cp = \/QNH(fm|M) IR

4 2
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Then, for all time t,
L t C 2 2t
(39) ISt = M < (VNCoer™®) -5 + (TNN—O> L3

Remarks.

1. The rate obtained, 1/N, differs from the rate of the linear Fokker-
Planck equation 0;f = (N — 1)V - (Vf + fv) by a multiplicative
factor 1/N(N — 1). Of course, it is possible to combine this esti-
mate with theorem 4 to obtain other estimates (more complicated)
with an almost optimal rate.

2. The idea of using the entropy dissipation to control the concen-
tration of f is apparently due to Arkeryd and Nouri [3]; their
motivation was to get L' compactness estimates for solutions of
the stationary Boltzmann equation in a (one-dimensional) slab, in
the absence of entropy estimate. In the present case, from Propo-
sition 6 one immediately deduces that (in the overmaxwellian
case), if (f") is a sequence of nonnegative functions such that
sup, [M(f")+ E(f*)+ D(f")] < oo, then (f™) is weakly relatively

compact in L.

6. THE TREND TOWARDS EQUILIBRIUM : THE CASE OF TRUE HARD
POTENTIALS

For true hard potentials, (that is W(z) = |2]**7), a new difficulty
arises from the fact that if |z| is close to 0, then W(|z|) = |z]**7 is
negligible in front of |z|>. Because of that, when f is close to M, we
recover an algebraic decay instead of an exponential one.

Theorem 8. [f f is a smooth solution (in the sense of definition 1)
of the Landau equation with initial datum f;, and true hard potentials
(that is U(|z]) = |z]**7 with v € (0,1)), then there exists A\j, Ay > 0
(depending only on N, v and X of theorem 1), such that for all time
t>0,

—%H(f(t, )|Mf’") > min()\l H(f(t, -)|]\4f""),)\2 H(f(t, -)|Mf"")1"“;‘>_

In particular, for all time t > 0, there is a constant C depending only
on v, A1, Ay and H(fin), such that

Hf(t, )| M) < O+ )00,

Proof. We consider only the case when f satisfies the normalization
(19). For all € > 0, we have

(40) U(lz]) = [T > 722 =P e
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Estimating the entropy dissipation for ¥ = 1 from above, we get (using
the convolution structure)

1//61@ dv. TL(v — v.) f f. (va(v) — va(v*)> (%f(v) - va(v*)>
?/dv dv*va; *)f*;ffvf - //dv dv, (v — v.)V f(v,) V f(v)
= 1(v) 7 (v)+ [ VLS,
where IT = I  f, and

VHI(z (Z a”H”> % f = _W- 1)(jv_ 2) « [ <0.

Since, in the sense of matrices,
T e < ool £l < 1,

we obtain

5 [ [aeaveo—eors (- Too) (S-S ) <,

f f f

Therefore, in view of (40), and thanks to theorem 1,

=) 2 e () = 101 ) = 10,

> Ao (gW - 5:) ([(f(t,-)) - ](Mfin)> _ Ne?,

where we have used [(MYin) = N. Choosing

[

(42) e? = min { % j—fv ([(f(t, ) — J(Mfm)> } ,
we obtain
S = 2 (1) - 1) )

Separating the cases when I(f(¢,-)) — I(M/in) < 2N or not, we get the
result by (42) and the logarithmic Sobolev inequality. O

Remarks.
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1. The convergence in theorem 8 actually holds in /7°°(R") as soon
as fi, € Lio (RY) for some sq > 7?/2+~+4. This is easily proved
by induction, using the bounds found in [13], and elementary in-
terpolation inequalities such as

1f = M7z @ry < I = Mlpr@s Lf — M g e

< Onllf = Ml @mllf = M| g o

and

W—M%Wmé%/ﬁ—@%+mW

N\ o 1/2
gcw(/U—NW> (/u-wmu+mm%)
< Cullf = Moyl — Mllsen.

2. In this theorem as well as in those of the previous section, the
assumption that the solution of the Landau equation is smooth is
not absolutely necessary. As a general rule, entropy inequalities
are usually true even with very weak solutions, due to the convex
character of the entropy production.

We now turn to another problem, namely the uniform (in time) sta-
bility of the solutions of the Landau equation with true hard potentials.
The local (in time) stability is obtained in [13], as a consequence of re-
sults of Gronwall type which also entail the uniqueness of the solution.
Once the study of the long-time behaviour is done, we are now able to
prove the following result.

Theorem 9. Let fi,, fin € LN LARN) with r > 3y + 4+ N, s >
2v+84+ N, and f, f be the unique weak solutions of the Landau equation
Jor true hard potentials (that is, with ¥(z) = [z|**7, v € (0,1)) and
initial data fi, fin. Then, for any given € >0, there exists 6 > 0 such
that if | fu — foullsanzz < 5 then supyso ||F() = F(1)llosen < &

Proof. Note first that f — M/ is continuous from Li(RY) to L'(RY).
Hence we take 6 > 0 in such a way that

||Mfm _ Mfm

|L1(RN) S 5/3

Then, one of the consequences of theorem 8 is the convergence in L'
of f(t,-) and f(t,) to M/ and MY respectively, with rates that
are bounded by below explicitly, depending only on all second-order

moments of f;,, fin, and the associated entropies. Thus, one can find
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T. > 0 such that when ¢ > T,
1f(t,-) — MTn ey < /3, 1F(t, ) — MFn

Finally, thanks to the property of local (in time) stability of our equa-
tion (Cf. [13]), there exists § > 0 such that

1 fin = Finllornze < 6 = (1 (t) = J(t )| < e/3.
for all ¢t € [0, T.]. O

|L1(RN) S 5/3

Remark. As in [13], one can also obtain the stability with respect to
the cross section, in the sense that ¥ may be replaced by

W(z) = |21+ n(]2),

where 1 as well as its derivatives up to order 2 are small enough in

L=([0, +o0]).
7. POINCARE-TYPE INEQUALITIES AND APPLICATIONS

The aim of this section is to give two applications of the techniques
previously developed in the context of the linearized Landau equation.
These techniques enable us to precise estimates proven in [10] by De-
gond and Lemou and to make some of the constants which appear in
those estimates more explicit.

First, we recall the following Poincaré-type inequality of [10]:

Proposition 10. For all r > 0, one can find C(r) > 0 such that for
any h € D(RY) verifying [ M h =0,

S Py M) [Vh) o = €y [ M(0) )P o
Thanks to a linearization of the logarithmic Sobolev inequality, one

can in fact prove the

Proposition 11. For any h € D(RY) verifying [ M h =0, one has

(44) /M(v) |Vh(v)|? dv > /M(v) |h(v)|? dv.

Proof. Let us write the logarithmic Sobolev inequality in the form

@) [ 2rossy < [195Fw+ (/f3M> 1og(/f3M>,

where f. =14 c¢h and £ > 0 is small enough.

Developing (45) with respect to ¢ when ¢ — 0, and keeping only
the main order terms (that is, those in £?), we exactly recover propo-
sition 11. O
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Remark.

1. The assumption A € D(RY) can be replaced in propositions 10
and 11 by a much weaker assumption. In fact, inequalities (44)
and (45) hold as soon as they are well-defined.

2. In a slightly more abstract setting, this result is known as the
Rothaus-Simon mass gap theorem (Cf. [20, 21, 16]).

Let us now define Lh = 2 M Q(M, M h), the usual linearized Lan-
dau operator. Here () is the symmetric bilinear form related to the
quadratic Landau operator (2), namely

[, dg af
1) Q) = g50{ [ dveasto o0 (£ g0 40 5L 0

af dg
-9 a—vj(v*) - 6—1%(1]*)) }
We denote by (, ) the (weigthed L?) scalar product

(f,9)= [ [gMdv.
RN

It is proven in [10] in the case of true hard potentials that L is coercitive
(up to a known finite dimensional vector space) with respect to this
scalar product. The sketch of the proof is the following : the operator
is decomposed as L = L1+ Ly, where L is a diffusion operator, and L,
is a compact perturbation. The coercitiveness of L is a consequence
of proposition 10, and that of L a consequence of Weyl’s theorem on
compact perturbations of operators. The constant of coercitiveness of
L is therefore not explicitly known.

We show here how, in the simpler case of modified hard potentials
(or more generally for any overmaxwellian cross section), the following
explicit estimate of coercitiveness holds,

Proposition 12. In the case of overmazwellian cross section (that is,
when W(z) > |z]%), one has for any h € D(RY) satisfying the assump-

1 0
tion [Mh| v | = 0] (fori=1,..,.N),
v? 0

Proof. Thanks to theorem 1 and eq. (28) applied to f. = M (1 +¢ch)
(with ¢ > 0 small enough), one has
(48)

—D(fe) 2 M(H(f:) — H(M)) = min (N —=T7) (H(f:) — H(M)),

=1,..,
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where Tf = [ f.v?.
Developing the terms of (48) with respect to £ up to order 2, one
finds

H(p) — HOL == [ 170+ 0(&),

D(f.) = 252/Q(M,Mh)h + 0(&%),

and
Letting € go to 0, we get eq. (47). O

This theorem gives a lower bound on the size of the spectral gap of
L in the case of overmaxwellian molecules. This should be compared
to the frame of the Boltzmann equation, in which the spectrum of the
linearized operator can be explicitly computed only for true Maxwellian
molecules [7].

8. ENTROPY DISSIPATION AND REGULARITY ESTIMATES

We now show that under very weak assumptions, any solution f
of the Landau equation for Maxwellian or hard potentials which is a
weak cluster point of asymptotically grazing solutions of the Boltzmann
equation (Cf. [13] for a precise definition) satisfies \/f € L% ([0, +00)s; HY(RY))

ere the important point is that the initial time is included in the es-
Here the important point is that the initial time is included in th
timate).

Many different assumptions on the type of the considered Boltzmann
equation are possible. We restrict ourselves here to a typical example.

Theorem 13. Let f;, € LiN Llog L(RY), and let (f¢) be a family of
asymptotically grazing solutions of the Boltzmann equation with (cut-
offed or uncutoffed) hard potentials and initial datum f;,, (Cf. [13] for
a precise definition, and the following notations).

Assume in addition that all f° satisfy an entropy inequality, i.e.

I
fers
T?'))v

w1 [ i [ oo dods o = o 0) (577 - 1) o
< H(f) — H(S

Then, any cluster point f in L*(Rf; LY(RY) — w) satisfies
VT € L, ([0,+00)s H'(R])).

Remarks.



26 L. DESVILLETTES AND C. VILLANI

1. For any initial datum fi, € L}, (RY) (with § > 0), such solutions
f° of Boltzmann equation always exist, and in addition f is a weak
solution of the Landau equation with W(z) = [z|"+* (Cf. [26]).

2. If there is uniqueness in the Cauchy problem for the Boltzmann
equation with cross section B., then all solutions satisfy an en-
tropy inequality. This holds in particular for cutoffed cross sec-
tions, i.e. (. € L*(0,7), in view of the results in [19] for instance.

3. We think that most probably the conclusion of Theorem 13 fails
if one does not assume that f;, belongs to Llog L. Think for
example of the fundamental solution E of the heat equation, which

satisfies only HV\/EH%Q(RN) e LY>=(0,T).

Proof. The following result is proven in [26],

1 T
5/0 dt/dvdv*a(v—v*)(V—V*)\/ff* (V= VIVIT

" K
fers

1 /7
< h_mz/ dt/dv dv. df do (. (8) (f’sff — fsff> log
0
In short,

D(f) < limDyp,(f),

where Dp, is the entropy dissipation for the Boltzmann equation with
cross section B.. According to (49), the right-hand side is bounded
by Uim[H (fin) — H(f*(T,-))], which is in turn bounded from above by
H(fn) — H(M5n),

Using estimate (43) (which does not require any smoothness assump-
tion if the left-hand side is defined as the entropy production in the
sense of appendix A) we get

/waua»><+m,

which is enough to conclude.
Note that theorem 1 is used here (and only here in this paper) for
non smooth solutions of the Landau equation. O

APPENDIX A. DEFINITION OF THE ENTROPY DISSIPATION

We have defined the entropy dissipation of a function f € L'(RY) as

the nonnegative quantity (possibly infinite) (1/2)|| K7, (BV xR M) where

K(v,v.) =21(v —v,) \111/2(|v —0.]) (V= VIV [ fe
In order that this be meaningful, we must of course check that K defines

a distribution on RY x RY. Since \/f f. belongs only to L*(RY x R™),
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it would seem that one needs to impose some smoothness assumptions
on Y for the product of distributions to make sense. But, following
remarks done in [26] (see also [23]), we shall show that this is not the
case, and that W only needs to be locally integrable. To that purpose,
we shall use two key points of the structure of the Landau equation,
namely the symmetry and the orthogonal projection.

Let p € C(RY x RY) be a smooth test function. We shall use the
notations

© = o(v,0.), ©r = p(vs,0).

First of all, by symmetry, since K (v.,v) = —K (v, v.),

//]&vv* (v,v0) dvdv, = = //[&vv*cp )

_ //n@ — o)W (jo — 0 )(V = VOV T (o — o).

Next, integrating by parts,

//Kc,o:—//(V—V*)-H(v—v*)\lll/zﬂv—U*|)\/R(<P—<P*)
_//H@—WMV—VQW”W—MMV7EW—¢Q
—//H(U—U*)\III/QHU—U*D\/R(v_v*)(‘ro_@*)-

Now, we note that the integral in the second line vanishes, because
(V — V.)UY2(Jv — v,]) is proportional to v — v,, and lies therefore in
the kernel of II. Since

(V—V.) - 1I(v—v)==2(N—1) (v —v.)/|]v —v?,

we get

[ e == [ [ I o ) VI o = )
= [ 1= e W = o) V(Y = Ve - )

Since /f f. € L? and o—p. = O(|v—v.|) (as a C* function vanishing
when v — v, = 0), we see that this definition is meaningful as soon as
\I;l/2(|v - U*|) € Lloc(dv dv*) I
(50) z— ‘I’(| ) € Li(RY),

which is more than sufficient to cover all the physically interesting cases
(see [26] for related ideas).

loc
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APPENDIX B. APPROXIMATION OF THE ENTROPY DISSIPATION

To prove rigorously theorem 1 in the case when f is not smooth, we
need the following lemma (we note II = II(v — v.)).

Lemma 2. Let f be a nonnegative function belonging to L} (RY), and
let us consider the Landau operator in the case of Maxwellian molecules
(that is, when W(|z|) = |z|*). Then there exists a sequence of smooth
functions f¢ such that f* — f in LY(RY) and D(f*) — D(f) €
[0, +00]. More precisely, f¢ can be chosen in D(RY), or in S(RY) with
[log f°| < C. (1 + |v]?).

Remarks. This lemma also holds for hard potentials, and in fact for
a very large class of cross sections, provided that f lies in a restricted

class of functions (for example L%_l_W(RN) for hard potentials).

Proof. First note that the result is clear if D(f) = +o00. Indeed, if there
existed a sequence f° converging towards f without D(f®) going to
infinity, one could extract a subsequence, still denoted f=, with D(f*) <
C, and by standard convexity arguments D(f) would be finite (at least
if \/f= converges towards \/f in L?(R™)).

Hence, let us assume that D(f) < +oo.

We define

Fr= e = (x/fxn*pa> ,

where x,(v) = x(nv) is a smooth truncation function which is iden-
tically 1 for |v| < nt!) and identically 0 for |v| > 2% and ps(v) =
§tNp(6+ v) is an approximation of the identity for the convolution.
The function p is chosen either compactly supported, or a centered
normalized Maxwellian, in order to get the two versions of the lemma.

For a given n > 0, the convergence of D(f™) towards D(f") is a
simple consequence of the following classical result (in the case when p
is compactly supported, Cf. [14] for instance),

be Wi, ge L = b(Vg)*ps—(bVg)*ps — 0 in Li,,

applied with b = Il [v—uv,|, and g = 4/ f7¢ £ When p is a Maxwellian,
this result also holds with a slightly different proof.

[t remains to check the convergence of D(f") towards D(f). It holds
because by assumption D(f) is finite and f € LL(RY).

Finally, we choose f = f7)¢ with 5(c) defined in a convenient
way, to get the theorem. Note that log(f®) is at most quadratically



ON THE HOMOGENEOUS LANDAU EQUATION 29

increasing when p is a Maxwellian thanks to standard estimates on the
heat semigroup. 0
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