
Boltzmann's Kernel and the SpatiallyHomogeneous Boltzmann EquationL. Desvillettes,March 20, 2001Centre de Math�ematiques et leurs ApplicationsUnit�e de Recherche Associ�ee 1611 (CNRS), Ecole Normale Sup�erieure deCachan61 avenue du Pr�esident Wilson, 94235 Cachan Cedexe-mail: desville@cmla.ens-cachan.frAbstractIn this work, we recall many results by various authors about Boltz-mann's kernel of monoatomic gases. Applications of those results inthe context of the spatially homogeneous Boltzmann equation are thenpresented.1 IntroductionSince the pioneering works of Carleman (Cf. [18]), many results concerningthe Boltzmann equation of monoatomic rare�ed gases (Cf. [22], [24], [74])or its variants (for example the Fokker{Planck{Landau equation, Cf. [49])have been proven. A large number of these results can in fact be viewedas applications of functional properties of Boltzmann's kernel, that is, ofestimates in which the Boltzmann kernel Q and a given function f = f(v)are involved, but in which no reference is made to \the" solution f(t; v) ofthe (spatially homogeneous) Boltzmann equation.This point of view will systematically be adopted in the sequel. For eachsubject (e.g. uniqueness, large time behavior, etc..), we try to extract fromthe existing proofs the functional estimates which seem relevant to us, and toshow how they are used to get a given result for the spatially homogeneousBoltzmann equation.We intend in this way to try to focus on properties of Boltzmann's ker-nel which are succeptible to yield applications in many di�erent situations1



(spatially inhomogeneous Boltzmann equation, Vlasov{Boltzmann equation,Boltzmann equation coupled with a uid or another kinetic equation, etc..).2 Various kinds of cross sectionsThe spatially homogeneous Boltzmann equation of rare�ed gases writes@tf(t; v) = Q(f; f)(t; v); (1)(or to be more coherent with our point of view, @tf(t; v) = [Q(f(t; �); f(t; �))](v)),where Q is a quadratic operator acting only on the v variable and describingthe e�ect of the binary collisions on the density f(t; v) of particles which attime t 2 IR+ have velocity v 2 IR3.The bilinear form associated with Q (and also denoted by Q, or QBwhen the dependance with respect to B is stressed) writesQ(g; f)(v) = Zv�2IR3 Z�2IR2 �f(v0) g(v0�)� f(v) g(v�)��B�jv � v�j; v � v�jv � v�j � ��d�dv�; (2)where v0; v0� are the pre-collisional velocities de�ned by� v0 = v+v�2 + jv�v� j2 �;v0� = v+v�2 � jv�v�j2 �;and B is a nonnegative cross section whose form depends on the interactionbetween particles.For interaction forces in r�s (where r is the distance between particlesand s > 2), B takes the formB(juj; cos�) = juj� �s(�): (3)In the sequel, we shall only consider that kind of cross sections, that is, crosssections which are a tensorial product between a kinetic cross section whichis some power of juj and an angular cross section (depending only on �).In (3), � is given by the formula � = s�5s�1 and �s is a continuous functionon ]0; �] such that �s(�) ��!0 Cte(s) j�j� s+1s�1 ;that is, very many grazing collisions (those collisions for which v0 is close tov and v0� is close to v�, or in an equivalent way, � is close to 0) occur. Here2



and in the sequel, Cte will denote any constant, sometimes depending onparameters (like s here).Because of the strong singularity of �s at 0, it is not possible to give asense to Q(f; g)(v) for a given v when f; g 2 Cc(IR3). It is however possibleto de�ne Q(f; g) in the following weak sense when s > 7=3 for all � 2 S(IR3),and f; g 2 L12(IR3),Zv2IR3 Q(f; g)(v)�(v)dv = Zv2IR3 Zv�2IR3 Z�2S2 f(v) g(v�)�f�(v0)� �(v)g jv� v�j� �s(�) d�dv�: (4)For this reason, the so{called angular cuto� of Grad (Cf. [42]) is oftenintroduced. It consists in replacing �s(�) by ��s(�) = �s(�) ^ n for somelarge n � 0 (or equivalently, to replace �s(�) by �s(�) if j�j � �0 and 0 ifj�j � �0, whence the name of \angular" cuto�). In this situation, Q(f; g)(v)is well{de�ned for a given v as soon as (for example) f; g 2 Cc(IR3), and wedecompose Q in its positive and negative parts:Q(f; g)(v) = Q+(f; g)(v)� f(v)Lg(v);where Q+(f; g)(v) = Zv�2IR3 Z�2S2 f(v0) g(v0�) jv� v�j� ��s(�) d�dv�and Lg(v) = Zv�2IR3 g(v�) jv � v�j� ��s(�) d�dv�:Note that no such decomposition is available in the non cuto� case.Note that an interesting variant of the Boltzmann equation is obtainedwhen one considers L(f; f)(v) = lim"!0QB"(f; f)(v); (5)where B"(juj; cos�) = juj�"3 �s(�");that is, the angular cross section is concentrating on grazing collisions (foran early mention of the relationship between grazing collosions and Landau'soperator, Cf. [22]). Note that slightly di�erent asymptotics, closer to thereal physics, also lead to L, Cf. [80] and the references therein.3



It is then possible to prove that (at least formally, Cf. [10], [25], [26],[32])L(f; f)(v) = Cte� divv Zv�2IR3 jv� v�j��jv � v�j2 Id� (v � v�)
 (v � v�)��f(v�)rvf(v)� f(v)rv�f(v�)�dv�:This formula de�nes the Landau (or Fokker{Planck{Landau) kernel. Therelationship between the cuto� Boltzmann kernel, the non cuto� Boltzmannkernel and the Landau kernel is the following: in the �rst kernel, most of thecollisions are non grazing, in the second, most of the collisions are grazing,and in the last, all collisions are grazing.Traditionally the kinetic parts of the cross sections are classi�ed withrespect to s. When s > 5 (� 2]0; 1[), we speak of hard potentials; for s = 5(� = 0), of Maxwellian molecules; in the case when s 2]7=3; 5[ (� 2]� 2; 0[),of soft potentials; and �nally, for s 2]2; 7=3[ (� 2] � 3; 2[), of very softpotentials (Cf. [80]). The case when s = 2 (that is, Coulomb potential,and � = �3) has very particular features: it doesn't seem possible to givea reasonable sense to the associated non cuto� Boltzmann kernel, so thatin the sequel, we shall only consider the cuto� Boltzmann kernel and theLandau kernel in this case.The cross sections which are of interest to us are then summarized inthe following table, where X means that the kernel cannot be de�ned, CBmeans cuto� Boltzmann's kernel, NCB non cuto� Boltzmann's kernel andL Landau's kernel. Such a table will systematically be used in the sequel.CB NCB LHard Potentials(� 2]0; 1[)Maxwellian Molecules(� = 0)Soft Potentials(� 2] � 2; 0[)Very Soft Potentials(� 2]� 3;�2])Coulomb Potential X(� = �3)The two upper left{hand{side parts of this table (that is, cuto� hardpotentials or cuto� Maxwellian molecules) are sometimes refered as \regular4



cross sections" while the other cases will be called \singular", since at leastone of the two parts of the cross section is not continuous in this case.We end this section by making some comments on the case when the crosssection is not of the form (3). It is often possible to extend the proofs writtenfor a cross section of the form (3) in this case, provided that B(juj; cos�) hasa polynomial behavior (in the variable juj) when juj ! +1. Note that thecross section B(juj; cos�) = juj cos � corresponds to hard{spheres collisions.Most of the results of hard potentials with cuto� also hold for this crosssection.3 Notations and formal resultsWe use in the sequel the notation Lps for the weighted Lp(IR3) space de�nedby the norm: jjf jjpLps = Zv2IR3 jf(v)jp (1 + jvj2)ps=2 dv;and H1r for the weighted H1(IR3) space de�ned by the norm:jjf jj2H1r = Zv2IR3(jf(v)j2+ jrf(v)j2) (1 + jvj2)r dv:Then, we de�ne the respective mass, momentum, energy and entropy of anonnegative function f by0BBB@ �f�f uf�f juf j22 + 32 �f TfH(f) 1CCCA = Zv2IR3 f(v) 0BB@ 1vjvj22log f(v)1CCA dv:At the formal level, it is easy to see that a solution of (1) whose initial datumf(0; �) = fin is nonnegative remains so in the evolution (when t > 0). In thesequel, we shall only consider such solutions.Then, using the identityZv2IR3 Q(f; f)(v) 0@ 1vjvj22 1A dv = 0;we see that (still at the formal level), a solution of (1) satis�es the conser-vation of mass, momentum and energy:0B@ �f(t;�)�f(t;�)uf(t;�)�f(t;�) juf(t;�)j22 + 32 �f(t;�)Tf(t;�)1CA = 0B@ �fin�fin ufin�fin jufin j22 + 32 �fin Tfin 1CA : (6)5



Then, the nonpositivity of the dissipation of entropy (sometimes called �rstpart of Boltzmann's H{theorem)DQ(f) = Zv2IR3 Q(f; f)(v) log f(v) dv � 0 (7)entails the decay of the entropy (at the formal level) for the solutions of eq.(1): 80 � s � t; H(f(t; �))� H(f(s; �)): (8)As a consequence of (6){(8), we get the following (formal) a priori estimateson the solution of eq. (1) (Cf. for example [34] in the inhomogeneoussetting): 8T > 0; supt2[0;T ]Zv2IR3(1 + jvj2 + j log f(t; v)j) f(t; v) dv� Cte(T; �fin; ufin ; Tfin; H(fin)); (9)Z +10 DQ(f(t; �)) dt� Cte(�fin ; ufin ; Tfin; H(fin)): (10)The case of equality in (7) is the second part of Boltzmann's H{theorem:8v 2 IR3; Q(f; f)(v) = 0 () DQ(f) = 0() f(v) = Mf(v); (11)whereMf is the Maxwellian function of v having the same mass, momentumand energy as f , namelyMf(v) = �f(2� Tf )3=2 e� jv�uf j22Tf :This is the key to the long time behavior of the solutions of (1). Formally,we expect that the entropy decreases to its minimum (among functions hav-ing the same mass, momentum and energy as f),limt!+1H(f(t; �)) = inffH(f); = �f = �fin ; uf = ufin ; Tf = Tfing;and that limt!+1 f(t; v) = Mfin :All of the previous results (conservation of energy, decay of entropy, longtime behavior, etc..) can be proven only once existence (and uniqueness)6



is established for (1) (under a given assumption on the cross section). Thestudy of the smoothness of solutions of (1) will enable to get strong solutions.Then, a rigorous proof of (6) will require estimates on the behavior whenjvj ! +1 of the solution of (1), while a rigorous proof of (8) will requiresome knowledge about the lower bounds on these solutions.All those issues (existence, uniqueness, behavior when jvj ! +1, smooth-ness, lower bounds, behavior when t! +1) will successively be treated insections 4 to 9. Then, in section 10, we try to give a synthetic result in themost standard case (cuto� hard potentials). At this point will be given theonly precise theorem (all the other results of this paper are detailed in thereferences). Finally, various results on other issues concerning the solutionsof (1) are reviewed in section 11.4 ExistenceWhen the cross section is regular (that is, for cuto� hard potentials orMaxwellian molecules), existence can be obtained through an inductive pro-cedure, using for example monotonicity (Cf. [6], [59] and [60]). One has tocope with the following di�culties:1. The nonnegativity of the solution must be preserved in the inductiveprocedure;2. The conservation of mass (or energy) must be used to prevent blow{ups due to the quadratic character of the kernel.At the end, one gets \strong" solutions, in the sense that if fin 2 L12,then there exists a solution f to (1) in Ct(L12;v) such that Q(f; f) 2 L1loc;t;v.In order to get equality in (1) for all v (and not for a.e. v), one can use thestudy of smoothness presented in section 7.For (not too) singular cross sections (that is, for cuto� or non cuto�,hard or soft (but not very soft) potentials), solutions are obtained by weakL1 compactness without using estimate (10) (Cf. [7], [41]). If fin 2 L12 andfin log fin 2 L1, estimate (9) ensures that a sequence fn of solutions to (1)with a cross section Bn obtained by smoothing the singular cross sectionB will be compact in L1t;v, thanks to Dunford{Pettis theorem (Cf. [16] forexample). Then, one passes to the limit (fn ! f) in the weak form (4) ofthe kernel. No problems occur because of the variable v since the kernel (inits weak form (4)) is close to a tensor product with respect to this variable.7



Strong compactness (in time) of the velocity averages of fn are then easilyobtained thanks (for example) to Aubin's lemma (Cf. [69]) and ensure thatf satis�es the limit equation.Of course at the end, we only get weak solutions of the equation. Nev-ertheless, in some cases, results of smoothness are known which ensure thatthe solution is in fact strong (Cf. section 7).Finally, for very singular cross sections (that is, for cuto� or non cut-o� very soft potentials, or cuto� Coulombian potential), solutions are alsoobtained by (weak L1) compactness. However, one now needs to use the en-tropy dissipation estimate (10) to give a sense to the kernel. Those solutionsare called entropy solutions or H{solutions (Cf. [75]). An alternative way ofobtaining solutions in this case (but only under the cuto� assumption) is touse the renormalization techniques of [34] and [50]. Finally, in the non cuto�case, the singularity of the angular cross section is sometimes strong enoughto produce a regularising e�ect allowing to recover \usual" weak solutions(Cf. section 7 and [4]).Note that solutions to the Landau equation can also be obtained by aweak L1 compactness argument (Cf. [32]), using the limiting process of (5).It is however possible to directly use techniques coming from the theory ofparabolic equations (Cf. [10] and [32]) to prove existence in this case.We summarize the results about existence in a table, with the followingabbreviations:1. The sign IS means that existence is obtained by an inductive scheme.2. The sign comp means that existence is obtained by a weak compactnessargument.3. The sign H means that existence of entropy solutions is proven.4. The sign renorm means that existence of renormalized solutions isproven.
8



CB NCB LHard Potentials IS comp comp(� 2]0; 1[)Maxwellian Molecules IS comp comp(� = 0)Soft Potentials comp comp comp(� 2] � 2; 0[)Very Soft Potentials H H H(� 2]� 3;�2]) or renorm or comp in some casesCoulombian Potential H X H(� = �3) or renorm5 UniquenessUniqueness is an open question for soft (and of course very soft, or Coulom-bian) potentials.For the cuto� Boltzmann equation with hard potentials, it is a conse-quence of a Gronwall type lemma, which takes into account the gain ofmoments (Cf. section 6). For a precise statement in a weighted L1 setting,Cf. [6] (Cf. also [59] and [60] in the case of Maxellian molecules).For Landau's kernel with hard potentials, one can also use a Gronwalltype lemma, but this time it takes into account not only the gain of momentsbut also the gain of smoothness (Cf. sections 6 and 7). This lemma is aconsequence of the following type of functional estimates on Landau's kernel(Cf. [32]): Z (L(f; f)� L(g; g)) (f � g) (1+ jvj2)q dv� Cte(jjf jjH1r ; jjgjjH1r) jjf � gjj2L2q ;for well chosen q; r > 0. At the end, uniqueness holds in a weighted L2space (where existence is also known to hold).In the particular case of Maxwellian molecules, it is possible to use aGronwall lemma in a weak topology, which enables to get a result even inthe non cuto� situation (Cf. [71]). Note �nally that (still in this case)uniqueness for a martingale problem related to the equation can also beproven (Cf. [67], [68], [31]). 9



Finally, one must keep in mind that some assumption on the energy ofsolutions must be made in the uniqueness theorem (for example, at leastthat the energy does not increase), since strange solutions with a growingenergy are known to exist, even for regular cross sections (Cf. [84]).We end up this section with a table explaining whether uniqueness isproven or not for each type of cross sections.CB NCB LHard Potentials yes yes(� 2]0; 1[)Maxwellian Molecules yes yes yes(� = 0)Soft Potentials(� 2] � 2; 0[)Very Soft Potentials(� 2]� 3;�2])Coulombian Potential X(� = �3)6 Behavior for large velocitiesMost of the results on the behavior of the solution of eq. (1) when jvj ! +1are in fact written in terms of the moments of the solution, that is, of itsL1s norm for s > 0. The main feature of Q with respect to these moments isthat as soon as one looks to the superquadratic case (that is, s > 2), the lossterm of Q is dominant. For � > 0 (not too large), this can be seen on thefollowing functional estimate, valid in most of the situations studied here(cuto� or noncuto� kernel, hard or soft potentials (for very soft potentials,the constant are slightly di�erent), Landau kernel, etc..):Z Q(f; f)(v) jvj2+�dv � �Cte(�f ; uf ; Tf) Z f(v) jvj2+�+�dv+Cte(�f ; uf ; Tf):(12)This estimate can be seen as an integrated version of the Povzner in-equality for a given collision (Cf. [61]).An application of this inequality is the following: all superquadraticmoments are immediately created (and then preserved uniformly in time)for hard potentials, if one of them initially exists (Cf. [27], [35], [32]).10



Moreover, this last condition can be relaxed for the (cuto� or non cuto�)Boltzmann (but not the Landau !) equation, thanks to a reverse Povznerinequality (Cf. [58]).For Maxwellian molecules, polynomial moments are never created, butpropagated (and bounded when t ! +1). They are given by an explicitformula (Cf. [47]) . \Maxwellian moments" like R f(v) exp(� jvj2) dv canalso be studied. This is the interesting theory of Maxwellian tails (Cf. [12]).It also works for \exponential" moments.Finally, for soft potentials, moments are propagated (this is still a con-sequence of (12)) but may blow up when t! +1 (Cf. [27] and [73]).Thanks to this study, it is possible to prove that in most situations, theconservation of energy (6) rigorously holds.We summarize in the table below the results of this section, with thefollowing convention:1. The sign P means that (polynomial superquadratic) moments arepropagated .2. The sign 1 means that these moments remain bounded when t !+1.3. The sign C means that (polynomial superquadratic) moments are im-mediately created .4. The sign ? means that the result is presumably true, but not explicitlyproven in an article. CB NCB LHard Potentials CP1 CP1 CP1(� 2]0; 1[)Maxwellian Molecules P1 P1 P1(� = 0)Soft Potentials P P ? P(� 2] � 2; 0[)Very Soft Potentials P ? P ? P(� 2]� 3;�2])Coulombian Potential P ? X P ?(� = �3) 11



7 SmoothnessThe results on smoothness for the solutions of (1) can be summarized in thefollowing way: smoothness (including weighted Lp regularity) is propagated(but also singularities !) when the cross section is cuto�. It is created assoon as t > 0 when the cross section is non cuto� (or for Landau's kernel).In the cuto� case (more precisely, for hard potentials, Maxwellian moleculesand reasonably soft potentials), the following functional estimate can be ob-tained thanks to Fourier integral operators (Cf. [50]), Radon transform (Cf.[82]) or Fourier transform theory (Cf. [15] and [52]):f 2 L2 ) Q+(f; f); Lf 2 Hqloc;where q = 1 for hard potentials and q 2]0; 1[ for reasonably soft potentials.The propagation of smoothness (and singularities) is then a consequence ofDuhamel's formulaf(t) = f(0) e�R t0 L(f)(�)d� + Z t0 Q+(f; f)(s) e�R ts L(f)(�)d� ds:In particular, one can see that the L2 singularities of the initial datum neverdisappear, but are exponentially damped. Note also that the propagationof (weighted) L1 norms (Cf. [8], [18], [55]) or weighted Lp (for p 2]1;+1[)norms (Cf. [45] and [46]) has been proven.In the non cuto� equation, it is possible to get the following functionalestimate thanks to a Fourier analysis (Cf. [4]):DQ(f) = � Z Q(f; f)(v) log f(v) dv� Cte(R; �f ; uf ; Tf ; H(f)) jjpf jj2Hq(BR) � Cte(�f ; uf ; Tf ; H(f)) jjf jjL12;where q > 0 depends on the angular cross section � and BR is the ballof center 0 and radius R in IR3. Smoothness (in L1t (H1s;v)) for pf is thenobtained thanks to the entropy dissipation estimate (10). Higher derivativesare known to be created and to propagate (sometimes up to in�nty, Cf. [21])in many particular cases (Cf. [28], [29], [30], [62]). Note also the approachto this question using the Malliavin calculus (Cf. [43], [39]).Finally, for Landau's equation, it is possible to apply techniques designedfor parabolic equations (Cf. [10], [32]). Then, for hard potentials, its solu-tion lies in C1(IR�+;S(IR3)) as soon as mass, entropy and a superquadraticmoment initially exist. 12



We now summarize the results about smoothness in a table, with thefollowing convention:1. The sign P means that smoothness (and singularities) is propagated .2. The sign 1 means that some (weighted L2) norm of a derivative isbounded when t! +1 (in the case when it initially exists for cuto�cross sections).3. The sign C means that smoothness is immediately created .4. The sign [ ] means that the result is known to hold only for a molli�edversion of the (soft potential) cross section.5. The sign ? means that the result is presumably true, but not explicitlyproven in an article. CB NCB LHard Potentials P CP CP(� 2]0; 1[)Maxwellian Molecules P1 CP1 P1 ?(� = 0)Soft Potentials [P] C [C] ? [P](� 2] � 2; 0[)Very Soft Potentials C(� 2]� 3;�2])Coulombian Potential X(� = �3)8 Lower boundsIn this section, we use the following idea: the support of Q+(f; f) is biggerthan that of f : because of the collisions, large velocities appear even if theywere not present at the beginning. A quantitative version of that remarkleads to Maxwellian lower bounds for the cuto� hard potentials (Cf. [18],[57], [64], [65]).For the Landau equation, the same kind of estimates is a consequenceof maximum principle techniques (Cf. [32]).Finally, in the non cuto� case, no Maxwellian lower bound is known tohold. In the case of Maxwellian molecules, strict positivity when t > 0 of fis obtained thanks to Malliavin calculus techniques (Cf. [37], [38]).13



Note that the study of lower bounds (and smoothness) enables to rigor-ously prove the decay of entropy (8).The following table summarizes what is known on the existence of lowerbounds for the solution of (1): The sign [ ] means that the result is knownto hold only for a molli�ed version of the (soft potential) cross section, thesign () means that only the strict positivity of the solution is known.CB NCB LHard Potentials yes yes(� 2]0; 1[)Maxwellian Molecules yes (yes) yes(� = 0)Soft Potentials [yes](� 2] � 2; 0[)Very Soft Potentials(� 2]� 3;�2])Coulombian Potential X(� = �3)9 Large time behaviorThe decay of f(t; �) towards Mfin , has been known for a long time in manysituations (Cf. [56] for example).In order to get estimates on the speed of this decay, one can use spectraltheory on the linearized equation (since after some time, f(t; �) will be closeto Mfin) (Cf. [9] and [81]). In this way it is possible to prove that theconvergence is exponential in weighted L1 and Lp (for p 2]1;+1[) spacesfor cuto� hard potentials. Note however that the constants involved in theseestimates are not explicit.In order to get explicit constants, one can try another approach, whichconsists in comparing the entropy dissipation DQ(f) and the relative en-tropy H(f jMf) � Z f(v) log(f(v)=Mf(v)) dv:It means that one tries to prove weak versions of Cercignani's conjecture(Cf. [23]): DQ(f) � Cte(f) �(H(f jMf));14



for some function � which increases not too slowly at point 0, and someCte(f) depending on various norms of f . The conjecture itself (i.-e. with�(x) = x, and C(f) depending only on mass, energy and entropy of f ) istrue in the case of the Landau equation (with Maxwellian cross section), butnot in the case of Boltzmann's equation (Cf. [13] and [33]).Then, one uses the H-theorem in the formddtH(f jMf) = �DQ(f);and some variant of Gronwall's lemma.Such weak versions of the Cercignani conjecture have been introduced�rst in [19] and [20], and then in [33] for the Landau equation, in [72] for hardpotentials and Maxwellian molecules, and in [73] for cuto� soft potentials.They rely on the logarithmic Sobolev inequality of Gross (Cf. [44]), or onideas used in (some of the) proofs of this inequality..At the end, one gets a polynomial convergence in the case of cuto� hardor soft potentials, and an exponential convergence for the Landau equation(and for the Boltzmann equation with Maxwellian molecules, Cf. [40] and[21]), all constants being explicit.Note also that the convergence to equilibrium is sometimes true in thecase when the entropy of the initial datum is in�nite (Cf. [1]).We summarize below the results of this section with the following con-ventions:1. The sign pol means that the convergence has at least an algebraic rate.2. The sign exp means that the convergence has an exponential rate.3. The sign E means that all constants can be explicitly bounded.4. The sign [ ] means that the result is known to hold only for a molli�edversion of the (soft potential) cross section.15



CB NCB LHard Potentials exp, E pol E pol(� 2]0; 1[)Maxwellian Molecules E exp E exp E exp(� = 0)Soft Potentials [E pol] [E pol](� 2] � 2; 0[)Very Soft Potentials [E pol](� 2]� 3;�2])Coulombian Potential X(� = �3)10 Synthetic result for cuto� hard potentialsIn this section, we detail the hypothesis of a theorem on the solutions of(1) in the most standard case, namely, that of cuto� hard potentials. Theproof of the various statements included in this theorem can be found in thereferences described in the sections above.Theorem: Let fin be an initial datum with �nite mass, energy andentropy (that is, RIR3 fin (1 + jvj2 + j log finj) dv < +1), and B be de�nedby B(juj; cos�) = juj� ��s(�), for � 2]0; 1[ (and ��s 2 L1(]0; �[)). Thenthere exists a solution to the Boltzmann equation with cross section B inC1([0;+1[;L1loc(IR3)) for which mass, momentum and energy are conserved(that is, (6) holds).Any other solution (in the same space) such that the energy is conserved(or at least decreases) is equal to this solution.For any time t > 0; this solution is bigger than a given Maxwellian andhas all its (polynomial) moments bounded. Moreover those estimates areuniform on [T;+1[ for all T > 0.Then, f(t; �) lies in Hqloc(IR3) (for a given q 2 IN and a given t > 0) ifand only if fin also lies in Hqloc(IR3).Finally, f satis�es the estimate of decay of entropy (8) rigorously andconverges exponentially fast in L1(IR3) (and algebraically fast with com-putable constants) towards Mfin. 16



11 Other issuesIn this section, we try to review some of the issues about the solutions of(1) which have not been discussed previously.1. Explicit solutions: For the Boltzmann equation, only one family of(non steady) solutions is explicitly known: the so{called BKW mode,in the case of Maxwellian molecules (Cf. [11], [48]). Note that stillfor Maxwellian molecules, all the polynomial moments of any solutioncan be computed explicitly (Cf. [47]), and \semi-explicit" expressionscan be given (Wild sums, etc..) (Cf. [85]).2. Special ways of writing the kernel: Di�erent formulas for the kernel areuseful, among which one can quote: the Fourier transform formulation(in particular in the case of Maxwellian molecules) (Cf. [12], [63]),the Carleman representation (with the generalized Radon transform)(Cf. [18] and [83]), the divergence form of the kernel (Cf. [78]), themartingale problem related to the equation (Cf. [66], [67], [68], [31]),and the pseudodi�erential approach (Cf. [3]).3. Eternal solutions: For the Landau equation with Maxwellian molecules,no non{trivial eternal solutions exist (Cf. [80]). The question is openfor the Boltzmann operator, but solved for some related equations (Cf.[17]).4. Behavior of functionals with higher derivatives: The Fisher informa-tion is decreasing along solutions of the Boltzmann and Landau equa-tion with Maxwellian molecules (Cf. [77] and [76]). Note that thoseresults were previously proven in 1D (Kac's model) and 2D for theBoltzmann equation with Maxwellian molecules (Cf. [53] and [70]).Finally, a study of the functionals which decrease along the solutionsof the Boltzmann equation with Maxwellian molecules can be foundin [14].5. Stability with respect to initial data or cross sections: Results linkedto the uniqueness are proven for the Landau equation with hard po-tentials (Cf. [32]).6. Complex kernels: When the cross section is not a tensor product, manyof the previous results remain true. The situation becomes more intri-cate for polyatomic gases (Cf. [54]), or inelastic collisions, or kernelswith quantum mechanics or relativistic e�ects. To get an example ofthe di�culties inherent to such complex kernels, Cf. [5], [36].17
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