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Abstract

We extend in this work previous results of regularization for the
spatially homogeneous non cutoff 2D radially symmetric Boltzmann
equation which held only in the case of Maxwellian molecules. Velocity
dependent cross sections can now be taken in account.



1 Introduction

The homogeneous Boltzmann equation for rarefied gases writes

of
E = (f)? (1'1)

where @) is a quadratic collision kernel acting only on the variable v and
taking in account any collisions preserving momentum and kinetic energy

(Ct. [Ce], [Ch, Co], [Tr, Mu]).
In the particular case when v € IR?, one can write

UV + Vs UV — Vs

ane = [ [ i R H — RaE)

~ ) f(v*)} B(v — v.,0) dod., (1.2)
where B is a nonnegative cross section depending only on |v — v,| and 0,
and Ry is the rotation of angle 6 in IR

When the collisions in the gas come out of an inverse power law inter-

action in %S (with s > 2), the variables v — v, and € are separate, and the

cross section B writes
B(v —v,,0) = D(v —vy) 5(]6]). (1.3)

Moreover, 8 € L7 (|0, 7]) and has a non integrable singularity in 0.

We shall from now on consider cross sections B of the form (1.3) and
satisfying the following assumption:

Assumption 1: The function D is continuous, radially symmetric, and
such that
Dy >0, Vxe€IR?’,  D(x)> D. (1.4)

Moreover, D is a bounded measure such that
[ @+ 1) Dldy < +ox. (15)
nelR?

Finally, we suppose that

5(6) = |sin(3)| 7 cos(3), (1.6



where v €]1, 3].

The type of singularities of 8 studied here covers exactly the range of
singularities observed in dimension 3 for inverse power forces in %s when
s > 2, in other words for soft and hard potentials (the case of Coulombian
interaction being excluded). However, the hypotheses on D are unrealistic.
This work is only aimed at showing that regularization properties hold for
the non cutoff Boltzmann equation even with a velocity dependent cross
section. The study of a realistic D needs more careful estimates and will be

discussed in other works.

We recall that when the weak angular cutoff assumption of Grad (Cf.
[Gr]) is made, which means that 3 € L([0,7]), no regularizing effect for the
homogeneous Boltzmann equation is expected. On the contrary, one can
prove (under suitable assumptions) (Cf. [L], [We]) that the solution of the
equation keeps exactly the same regularity (in the space of velocities) as the
initial datum. No improvement of regularity can occur in this case because
the solution retains a lot of the properties of the initial datum.

However, we proved in an earlier work (Cf. [De 1]) that when D is a
constant function (that is in the case of Maxwellian molecules) and S is as
in (1.6), the solution f of eq. (1.1) lies in L>°(]0, 4+-oo[; H'°(IR?)) as soon
as the initial datum satisfies the following assumption:

Assumption 2: The initial datum fo > 0 is radially symmetric and such
that

/er Jo(@) (1 + [0]? + | log fo(v)]) dv < +o. (1.7)

We extend here this result in the case when D is not necessarily constant,
but satisfies nevertheless assumption 1. Note first that the following theorem
of existence can easily be deduced from the proofs of [A] (we shall also discuss
those matters in a forthcoming paper (Cf. [De 2])):

Theorem 1: Under assumption 2 on the initial datum fy and assump-
tion 1 on the cross section B, there exists a nonnegative weak solution
f € L*([0, +oo[s; L (IR?)) to eq. (1.1) satisfying for all T > 0,

sup f(t,v) (1 +|v|* +|log f(t,v)]) dv < +oo. (1.8)
te[0,T) JvelR

Moreover, the total mass of f is conserved:

Wt € [0, oo, / _ f(toyd = / _ Jow)dv, (1.9)



and the total energy does not increase:

Vt € [0, +o0], /Ueij(t,v) o> dv < /UEIR fo(v) |v)? dv. (1.10)

As will be seen in the sequel, the analysis must be done here in an L?
context (whereas it could be done entirely in L in the case of Maxwellian
molecules). Therefore we will need an L? assumption on the initial datum.

The paper is structured as follows: the Fourier transform of the collision
term () is studied in section 2. Then, estimates are presented in section
3 for the non dominant parts of < f,Q(f) >r2, and in section 4 for the
dominant part. Section 5 is devoted to a first analysis of the properties of
regularization, which are more thoroughly discussed in section 6. We expose
in section 7 some ideas to investigate those properties in slightly different
contexts.

2 Extraction from Q/(\f) of the dominant term

From now on, we will note 2+ = Rz (z) and 7 f(z) = f(z+y). This section
is devoted to the proof of the following lemma:

Lemma 2.1: Under assumption 1 on the cross section, the Boltzmann ker-
nel Q is such that for any radially symmetric function f € L'(IR?):

er? [ FOQ©d = —xo+t ittty (1)
(elR?
where
_ o (L L F Lyt
=4[ /B / . /B €5 sin( - 0)F(E) I+
s EE ) (€4 ) 1) 7 D) dy | duinde, (22
_ 'y 1 P R 1
=it /R /u|>£ /yewu sm(2|£| y) F©) Fe+n)
F () 7=y D(n) dy |u]~ dudndé, (23)

_ ™S Fo L sint S
X2 =4 EERQ/WERQ/u—oo/yERQ € Sm(ﬂﬂ )f(g){sm(ﬂf\ v)
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J_ A
— sin(g ol o) | €+ ) F) T D)y fol 7 dudnds, (24)

=t [ e s 0 7O (e T

21 u {+nt
—€| = }51n(2’§+ l’
and

y) fE+n") fy) 7=, D(n) dy [u] ™ dudndé, (2.5)

T —_ 0 . 0
= ] | FOUeosgernt) — fe+n")} f(=singe )

. 0 _ 6
x D(n) | sin §| 7 cos 3 dfdndg. (2.6)

Proof of lemma 2.1: Note first that

= ’ leos I
_/77€B2/(9:W{f(0052§+77 ) f( Sln2§_|_77)

. . . 0 _ 0
~ ¢+ ") Fn) | Do) |sin G| cos & do, (27)

Then,

—

2m)2Q(f)(€) = L(§) + 2(8), (2.8)

where

ne = [ 7 {§isingeen+gitingern - fo)

. N .0 0
FE+n") D) [sin 5|7 cos 3 dod, (2.9)

b = [ 7 {feosGerah - i)

f(—sin = £—|—77) D(n) | sin = |Wcosed9dn (2.10)

and

Note that this computation is a generalization of that of [De 1]. In this
work, the same form was given for Q(f) in the particular case of Maxwellian
molecules (i.-e. when D = dy).



It is clear that

O R GLIGES (211)
(ER?

Then,

~ Jr —
[ f@n@de=xi—a [ [ [T e e fer )

X /ye]R? SinQ(%% . y) f(y) ij\D(n) dy |u|—7 dUdnd£

1
—ate=t [ e e fee)

/ sin(Ei - ) sin(E E4n
yeIR? 2 ‘5’ 2 ‘g +77l‘

) f(y) Ty D(n) dy |u| " dudnd

=x1t+x2+x3—4 / / / T f(€) sin(= ut Y)
¢€IR? JnelR? Ju=—o0 y6R2 2|£|

€+t T e+t )““(2é+2ly y) f(y) T_yD(n) dy [u| ™Y dudndé
= X1t X2t X3~ Xo- (2.12)

3 Estimates for the non dominant terms

From now on, various constants will be denoted by C, or by C(v) when
they depend on 7. Moreover, we shall denote by ||f||L}z the L' norm of
(1+|x|9) f(x). We examine successively each of the terms x;, (i = 1,2,3,4),
but give a proof only for the estimate of x;. To get the proof of the other
lemmas, we refer to [De 3].

Lemma 3.1: The first term x1 is such that:

pal<06) [ Dol Ul [ If©Fa 3

neR’

Proof of lemma 3.1: We compute

in f f L
pal <t [ ] ]t s e+



() [D(n)| dy |u| ™" dudndg

=2 teR? /nelpp /w|21 /yelR2 sin ( ) (IFOP +1/E+n0)1%)

x [w|™ £(y) |D(n)| dydwdndé

<a(-07 [ Poldn Il [ 1F©F de,
nelR? £€lR?
and lemma 3.1. is proved.

Lemma 3.2: The second term xo is such that

x| SC(V)/ (Inl*= + [l =1 1D ()] dn Al
nelR 3=
< [ A+ IR de
£elR?
Lemma 3.3: The third term 3 is such that
X3l < C(7) /e (o= + [l =) |D(n)] dn 11
n
< [ QIR e
¢€lR?
Lemma 3.4: One can find ¢ > 0 such that
pal < CONMfllgy [ (11 0237) 1l dy
nelR?

(Ul + [, 1R €1 ).

(3.2)

(3.4)



—

4 Treatment of the dominant term of Q(f)

Lemma 4.1: The dominant term xq is real and satisfies the following esti-
mate:
5=y =3
X0 = C('Y) D, : HDHLgo(BQ)

-1 12 9
X /yeﬂ?? " f(y)dy /ﬁem? IE (9] dg. (4.1)

Proof of lemma 4.1: Using Plancherel’s formula, one gets

+oo
w=2f | | BufP@) Det ) ) ol dudydr, (1.2

where ¢
Luy £(6) = €7 sin(5F - 2 f©) (4.3)
We now introduce
— =1 Uy § ~
T, =T =2 = f(9). 44
Then, for all ¢y > 0,
3=y ( f v—1 Y id .
Xo > C Dy eg <|zl>|n=1 /y€1R2 W W) @ v P @ p)

1|7 2
<[ €T VO a

Oy [ ) ay [ e f @R e (4

But since f is radially symmetric,

1
inf -1 i®id :p®p:—/ -1 dy, (4.6
nf ) e "™ Fy) o CT Y 3 yene "™ fy) dy, (4.6)

and lemma 4.1 is proved.



5 Regularization, part 1
We now give an intermediate result of regularization:

Theorem 2: Let fy be an initial datum satisfying assumption 2 and such
that || follp2(mzy < +oo. Then, if f is a solution given by theorem 1 of
the Boltzmann equation (1.1) with this initial datum and a cross—section

satisfying assumption 1, f lies in fact in L} ([0, +0ol; HJE_I(IR%))

Proof of theorem 2: Note first that according to theorem 1,

sup  [[f(t, )l Ly (mz) < +00- (5.1)
t€[0,+o0[
Therefore, A )
sup [ (& ) peo(m2) + V)| me)
t€[0,400[ € 3
+|Af(, ')HLoo(zRg) < +o0. (5.2)
Moreover,
inf / £t 0) [0~ do > 0, (5.3)
t€[07+oo[ velR?

since on one hand the total mass is conserved, and on the other hand the
family (f(Z,-))te[0,+00[ lies in a weakly compact set of L'(IR2) (because of
theorem 1).

We shall now use various strictly positive constants Cq,Cs, etc.., which
may depend on « and fp.

According to the lemmas already stated, one can find ¢ > 0 (depending
on ) such that when f is as in theorem 1,

Ke (/g,R F(6) Q) dg)

§C1+C5/

ée

FORds = co [ 1t If©ORrd (64)
R2 ¢elR?

Using now the fact that f is solution of the Boltzmann equation (1.1), we
get the following estimate for the L? norm of f:

d R ) R ,
dt /sezm [f(# )7 dE < C1+ Cs /EERQ |f(t. )] dg
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~Co [P OR e (55)
EcR?

Therefore, there exists for all T' > 0 a constant Cr > 0 such that

SHP/ £, &7 dé < Cr, (5.6)
te[0,T] JEEIR?
and
T A~
[ [ ler 1, o) deds < o, (5.7
0 Jéelr?

which concludes the proof of theorem 2.

6 Regularization, part II

We now try to give an optimal version of the previous results of regulariza-
tion. We only give the main steps of the proof.

Lemma 6.1: For all p > 0, one has

) [ O QU@ I de = X0+ X1+ 320+ Xs + Xapr (61)

where

“+o00
—4 (T8 P
o=t [ / . / o / el sin(y & RN

—1,p 1 o
o7 sin G ) A€+ ) ) 7, Do)yl dudnds
(6.2)
— {i 1+p u ; ; 1
=t ] /B /|u>|£| /B sin?(§ - 9 F ) F€+ )
F(y) Ty D) dy |u] = dudnde, (6.3)

o €
i [ /R /7_00 /yewrw psm<2‘§, y) F(€)

mu£ in Eéi ¢ 1 T
{S (2|£| y)—s (2|£+77J_| y)}f(§+77 ) f(y) Ty D(n) dy |u|~ “fdud(zdz

o=t [ T s T
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ISt S e A E+nt
{le+nPa 8 e st

Fy) 7—yD(n) dy |u| ™ dudnde, (6.5)

y) f(E+nT)

and

Vo= [ [T Feos S eent =)} f(—sin Ge)

=—T

A 0, _ 0
D(n) | sin 5] 7 cos 2 dfdnd§. (6.6)

Lemma 6.2: xq, is real and

-3

5
X0,p = C('Y p) HDHLOO (IR?)

< [ W ) dy / €01 F () de. (6.7)
yelR? (elR?

Moreover,

Pl <CGp) [Py DG dn Ifles [P 17 (@) de

(6.8)
el <COnp) [ (= =) D)y 11l
nelR? e
x [ G fOR de. (69)
(elR?
Finally, for all € > 0, one can find ¢ > 0 such that
ol < COp) [ () DG dn 111y
nelR?
[ AT P de, (6.10)
£elR?

and

Xasl < CO) I fllzggamy [ (007142570 Do) dy
n
(g + [, (0 ePyeCTbco2ertio foag). (611
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We now give the main theorem of this work:

Theorem 3: Let fy be an initial datum satisfying assumption 2 and such
that ||follr2(mzy < +o0o. Then, if f is a solution given by theorem 1 of
the Boltzmann equation (1.1) with this initial datum and a cross section
satisfying assumption 1, f lies in fact in LS ([%,+oo[s; H¢(IR2)) for all

t,e > 0. In abridged notation, f lies in LSS (]0, +oo[s; H7O(IR2)).

loc

Proof of theorem 3: According to lemmas 6.1 and 6.2, one can find ¢ > 0
(depending on ~ and p) such that

—

Re( [ PTOQUNO k) < CivCa [ IR de

+Cy [ TP - [ T If©Rd  (612)
£€lr? EelR?

as long as
0<p<3—n. (6.13)

Then, under this hypothesis, one can prove that

d ; 2 ; 2
G oSO A< Ot G [ 1f0, O ag

~Co [ lePT It O e (614)
¢€lR?
Theorem 3 is then proved by induction.

Namely, if for some ¢ > 0,

[ e IFE)R d < +ox, (615)
£€lR?
then for all T > £, there exists C7 > 0 such that
swp [ 6P IF 9P dé < Cr. (6.16)
te[L,T) JEER?
and -
[ [ e if ) dgde < on. (6.17)
0 JéelR?
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Finally, for all € > 0, one can find ¢ €], + ¢[ such that
LA de < oo (6.15)
EelR?

The induction ends when p > 3 —~, which means that v—1+p > 2, whence
theorem 3.

7 How to go further

Note first that the limitation to the regularity of the solution of the Boltz-
mann equation comes out of an inequality of interpolation between deriva-
tives. Therefore if derivatives of higher orders are known to be bounded
for f , the computation can be improved, and f will be more regular at the
end. But derivatives of f are related to polynomial moments of f, and one
can prove that under suitable assumptions such moments remain bounded
when they are initially finite. Finally, the regularity of f will depend on
the speed of decreasing at infinity of fy;. Note that this phenomenon was
already observed in the case of Maxwellian molecules (Cf. [De 1]).

One can also wonder if it is possible to relax some of the assumptions
on the cross section D. Note for example that if D does not decrease fast
enough at infinity, less regularity will be observed for f at the end. The case
when D is not bounded below seems even more difficult to handle.
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